首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Physiological and chemical responses of 17 birch (Betula pendula Roth) clones to 1.5–1.7 × ambient ozone were studied in an open‐field experiment over two growing seasons. The saplings were studied for growth, foliar visible injuries, net photosynthesis, stomatal conductance, and chlorophyll, carotenoid, Rubisco, total soluble protein, macronutrient and phenolic concentrations in leaves. Elevated ozone resulted in growth enhancement, changes in shoot‐to‐root (s/r) ratio, visible foliar injuries, reduced stomatal conductance, lower late‐season net photosynthesis, foliar nutrient imbalance, changes in phenolic composition, and reductions in pigment, Rubisco and soluble protein contents indicating accelerated leaf senescence. Majority of clones responded to ozone by changing C allocation towards roots, by stomatal closure (reduced ozone uptake), and by investment in low‐cost foliar antioxidants to avoid and tolerate ozone stress. A third of clones, showing increased s/r ratio, relied on inducible efficient high‐cost antioxidants, and enhanced leaf production to compensate ozone‐caused decline in leaf‐level net photosynthesis. However, the best ozone tolerance was found in two s/r ratio‐unaffected clones showing a high constitutive amount of total phenolics, investment in low‐cost antioxidants and N distribution to leaves, and lower stomatal conductance under ozone stress. The results highlight the importance of phenolic compounds in ozone defence mechanisms in the birch population. Depending on the genotype, ozone detoxification was improved by an increase in either efficient high‐cost or less efficient low‐cost antioxidative phenolics, with close connections to whole‐plant physiology.  相似文献   

2.
3.
The physiological, stomatal and ultrastructural responses to ozone and drought of ozone-sensitive and more ozone-tolerant birch ( Betula pendula Roth.) clones were studied singly and in combination, in a high-stress chamber experiment and in a low-stress open-field experiment. In the chamber experiment, well watered (WW), moderately watered (MW) or drought-stressed (DS) saplings were exposed for 36 d to 0 or 130 nmol mol∠1 ozone. In the open-field experiment, well watered or drought-stressed saplings were grown for one growing season in ambient air or exposed to 1·8 × ambient ozone. Drought stress reduced growth rate, stomatal conductance, stomatal density and the proportion of starch and thylakoids in chloroplasts, but stimulated net photosynthesis, Rubisco and chlorophyll quantity at the end of the growing season, and increased the size and density of plastoglobuli. Ozone fumigations caused more variable, clone- and exposure-dependent responses in growth, decreased stomatal conductance and net photosynthesis, an increased number of stomata, visible and ultrastructural chloroplast injuries, and enhanced autumn yellowing of the leaves. Ozone-induced changes in plastoglobuli, starch and thylakoids resembled drought responses. The two experiments revealed that, depending on the experimental conditions and the variable, the response to drought and ozone stress can be independent, additive or interactive. Drought protected the plants from ozone injuries under high-stress conditions in the chamber experiment. In the low-stress, open-field experiment, however, enhanced ozone damage was observed in birch saplings grown under restricted water supply.  相似文献   

4.
In the first experiment, saplings of ozone-sensitive and a more tolerant clone of Betula pendula Roth were exposed to ambient ozone (control treatment, accumulated exposure over a threshold 40 nmol mol ? 1 (AOT40) exposure of 1·0 μmol mol ? 1 h) and 1·5 × ambient ozone (elevated-ozone treatment, AOT40 of 17·3 μmol mol ? 1 h) over one growing season, 1996. After over-wintering, the dormant elevated-ozone saplings were transferred to the control blocks and assessed for short-term carry-over effects during the following growing season. In the second experiment, three sensitive, four intermediate and three tolerant clones were grown under ambient ozone (control treatment, AOT40 of 0·5–0·8 μmol mol ? 1 h per growing season) and 1·6–1·7 × ambient ozone (elevated-ozone treatment, AOT40 of 18·3–18·6 μmol mol ? 1 h per growing season) from May 1994 until May 1996, and were assessed for long-term carry-over effects during growing season 1997, after a 12–16 months recovery period. Deleterious short-term carry-over effects of ozone exposure included reduced contents of Rubisco, chlorophyll, carotenoids, starch and nutrients in leaves, lower stomatal conductance, and decreased new shoot growth and net assimilation rate, followed by a 7·5% (shoot dry weight (DW)), 15·2% (root DW) and 23·2% (foliage area) decreased biomass accumulation and yield over the long term, including a reduced root : shoot ratio. However, a slow recovery of relative growth rates during the following two seasons without elevated ozone was apparent. Several long-lasting structural, biochemical and stomatal acclimation, stress-defence and compensation reactions were observed in the ozone-tolerant clone, whereas in the sensitive clone allocation shifted from growth towards defensive phenolics such as chlorogenic acid. The results provide evidence of persistent deleterious effects of ozone which remain long after the ozone episode.  相似文献   

5.
Hoshika Y  Omasa K  Paoletti E 《PloS one》2012,7(6):e39270
Steady-state and dynamic gas exchange responses to ozone visible injury were investigated in an ozone-sensitive poplar clone under field conditions. The results were translated into whole tree water loss and carbon assimilation by comparing trees exposed to ambient ozone and trees treated with the ozone-protectant ethylenediurea (EDU). Steady-state stomatal conductance and photosynthesis linearly decreased with increasing ozone visible injury. Dynamic responses simulated by severing of a leaf revealed that stomatal sluggishness increased until a threshold of 5% injury and was then fairly constant. Sluggishness resulted from longer time to respond to the closing signal and slower rate of closing. Changes in photosynthesis were driven by the dynamics of stomata. Whole-tree carbon assimilation and water loss were lower in trees exposed to ambient O(3) than in trees protected by EDU, both under steady-state and dynamic conditions. Although stomatal sluggishness is expected to increase water loss, lower stomatal conductance and premature leaf shedding of injured leaves aggravated O(3) effects on whole tree carbon gain, while compensating for water loss. On average, WUE of trees exposed to ambient ozone was 2-4% lower than that of EDU-protected control trees in September and 6-8% lower in October.  相似文献   

6.
Saplings of an ozone sensitive clone of birch (Betula pendulaRoth,KL-5-M) were well-watered or exposed to mild drought-stresscombined with ambient or elevated (1.5xthe ambient) ozone for11 weeks in open-field conditions in central Finland. Stomatalresponse, visible injury, chlorophyll and nutrient content,and changes in cellular anatomy and plant growth were studied.Drought stress alone, in ambient ozone, reduced stomatal densityand stomatal conductance. Drought stress and ozone effects wereadditive, reducing total leaf number, foliage area and starchformation in mesophyll cells. Drought stress and ozone effectswere additive, increasing the N concentration in the leaves,the thickness of the upper epidermal cell wall, the number ofpectinaceous projections of mesophyll cell walls, and the vacuolartannin-like depositions and phenolic droplets, regarded as signsof activated stress defence mechanisms. The increase in specificfoliage mass, cytoplasmic lipids (younger leaves), and a condensedappearance of the upper epidermal mucilaginous layer were causedby both drought and ozone, but were not additive. The resultsshow that combined drought stress contributed to birch responsesto 1.5xcurrent ambient ozone concentrations, corresponding tocritical-level ozone exposure. The only beneficial effect ofdrought stress was the slight reduction of visible leaf symptomsinduced by ozone in autumnal leaves.Copyright 1998 Annals ofBotany Company Birch,Betula pendula, sensitive clone, ozone, drought, microscopy.  相似文献   

7.
  • Stomatal ozone flux is closely related to ozone injury to plants. Jarvis‐type multiplicative model has been recommended for estimating stomatal ozone flux in forest trees. Ozone can change stomatal conductance by both stomatal closure and less efficient stomatal control (stomatal sluggishness). However, current Jarvis‐type models do not account for these ozone effects on stomatal conductance in forest trees.
  • We examined seasonal course of stomatal conductance in two common deciduous tree species native to northern Japan (white birch: Betula platyphylla var. japonica ; deciduous oak: Quercus mongolica var. crispula ) grown under free‐air ozone exposure. We innovatively considered stomatal sluggishness in the Jarvis‐type model using a simple parameter, s , relating to cumulative ozone uptake (defined as POD : phytotoxic ozone dose).
  • We found that ozone decreased stomatal conductance of white birch leaves after full expansion (?28%). However, such a reduction of stomatal conductance by ozone fell in late summer (?10%). At the same time, ozone reduced stomatal sensitivity of white birch to VPD and increased stomatal conductance under low light conditions. In contrast, in deciduous oak, ozone did not clearly change the model parameters.
  • The consideration of both ozone‐induced stomatal closure and stomatal sluggishness improved the model performance to estimate stomatal conductance and to explain the dose–response relationship on ozone‐induced decline of photosynthesis of white birch. Our results indicate that ozone effects on stomatal conductance (i.e . stomatal closure and stomatal sluggishness) are crucial for modelling studies to determine stomatal response in deciduous trees, especially in species sensitive to ozone.
  相似文献   

8.
Ozone is a major gaseous pollutant thought to contribute to forest decline. Although the physiological and morphological responses of forest trees to ozone have been well characterized, little is known about the molecular basis for these responses. Our studies compared the response to ozone of ozone-sensitive and ozone-tolerant clones of hybrid poplar (Populus maximowizii × Populus trichocarpa) at the physiological and molecular levels. Gas-exchange analyses demonstrated clear differences between the ozone-sensitive clone 388 and the ozone-tolerant clone 245. Although ozone induced a decrease in photosynthetic rate and stomatal conductance in both clones, the magnitude of the decrease in stomatal conductance was significantly greater in the ozone-tolerant clone. RNA-blot analysis established that ozone-induced mRNA levels for phenylalanine ammonia-lyase, O-methyltransferase, a pathogenesis-related protein, and a wound-inducible gene were significantly higher in the ozone-tolerant than in the ozone-sensitive plants. Wound- and pathogen-induced levels of these mRNAs were also higher in the ozone-tolerant compared with the ozone-sensitive plants. The different physiological and molecular responses to ozone exposure exhibited by clones 245 and 388 suggest that ozone tolerance involves the activation of salicylic-acid- and jasmonic-acid-mediated signaling pathways, which may be important in triggering defense responses against oxidative stress.  相似文献   

9.
We investigated the effects of acid rain and ozone on respiration rates of 1-year-old and current-year foliage of half-sib seedlings and mature clones of a ponderosa pine genotype by measurement of foliar metabolic heat rates. Two rain regimes (pH 5-1 and 3-0) were applied weekly to foliage only, from January to April 1992. Two ozone regimes (ambient and twice-ambient) were applied from September 1991 to November 1992. Metabolic heat rate was measured in April on 1-year-old foliage, in June on both 1-year-old and current-year foliage, and in November on current-year foliage in 1992. Except for current-year foliage in June, the metabolic heat rate was calculated per unit of both foliar dry mass and N mass. In seedlings, both measures of metabolic heat rate increased in late June for 1-year-old foliage exposed to twice-ambient ozone, and in November for current-year foliage exposed to the combination of twice-ambient ozone and pH 3-0 rain. In mature trees, metabolic heat rate was not affected significantly by ozone, rain acidity, or their interaction. In June, when both 1-year-old and current-year tissues were examined, the metabolic heat rate of expanding, current-year foliage was higher than that of fully expanded, 1-year-old foliage regardless of plant age or treatment combination.  相似文献   

10.
Thirty-six F2 hybrid poplar (Populus trichocarpa × P. deltoides) clones were fumigated with ozone to record its effects on growth, correlate them with stomatal response and screen for ozone sensitivity. Fumigation was applied for 6 to 9 h each day for approximately 3 months at ozone concentrations of 85 to 128 μg g−1 using open-top chambers. Height, diameter, number of leaves, stomatal conductance, transpiration rate, total biomass, biomass components and root/shoot ratios were reduced by ozone stress. Percent of leaf fall in ozone-treated plants was nearly three times higher than in control plants exposed to charcoal-filtered air. Leaf senescence, because of ozone exposure, did not appear to be associated with reduced biomass production. Some clones had a high percentage of leaf-fall with ozone exposure, but were able to maintain total biomass production near that of the control. Their response may be an example of an ability to adjust or compensate for ozone damage. There was no significant or consistent relationship between stomatal conductance and total biomass or the change in stomatal conductance as a result of ozone exposure and the change in total biomass. Taken together, these results suggest that effects of ozone on poplar growth cannot be solely correlated to changes in stomatal conductance, more physiological and biochemical parameters should be examined.  相似文献   

11.
The influence of Calacarus heveae Feres on physiological processes was evaluated in two rubber tree clones. Experiments were conducted in a greenhouse with 5-month-old potted seedlings of RRIM 600 and GT 1 clones, that were either infested with C. heveae or not (non-infested control). The level of photosynthetic pigments, net photosynthetic rate, stomatal conductance, transpiration rate, changes in relative humidity between leaf surface and ambient air (Δw) and intercellular CO(2) concentration (Ci CO(2)) were evaluated. Infested plants showed significant reductions in the rate of transpiration, the rate of photosynthesis, stomatal conductance and Δw. RRIM 600 seedlings showed more pronounced physiological damage than GT 1 seedlings, indicating a lower physiological tolerance of the former clone to the mite. However, carotenoid levels were reduced only in GT 1 seedlings. Photosynthesis was probably reduced due to a decrease in stomatal opening, as indicated by reductions in transpiration rate and stomatal conductance and by the absence of differences in chlorophyll levels between treatments. Our results indicate that populations of C. heveae reduce the productivity of rubber trees. Thus, farmers must to be aware to control this mite pest in rubber tree plantations.  相似文献   

12.
The chronic effects of ozone (O3) alone or combined with elevated carbon dioxide (CO2) on the foliar physiology of unfertilized field-grown yellow-poplar ( Liriodendron tulipifera L.) seedlings were studied from 1992 to 1996. Within open-top chambers, juvenile trees were exposed to the following: charcoal-filtered air (CF); 1× ambient ozone (1XO3); 1.5× ambient ozone (1.5XO3); 1.5× ambient ozone plus 700 ppm carbon dioxide (1.5XO3+CO2); or chamberless open-air (OA). Seasonal 24-h mean ambient O3 concentrations ranged from 32 to 46 ppm over the five seasons. Averaged over 5 years, midseason net photosynthesis at saturating light ( A sat) was reduced by 14% ( P =0.029) and stomatal conductance ( g s) was reduced, albeit non-significant, by 13% ( P =0.096) in upper canopy foliage exposed to 1.5XO3-air relative to CF controls. There were no significant differences over the 5 years in A sat and g s between trees grown in 1XO3- and 1.5XO3-air. Our results support the hypothesis that the magnitude of O3 effects on A sat and g s decreases as saplings age. When averaged over the five seasons of exposure, total chlorophyll concentration ( chl) was not significantly affected by exposure to elevated O3; however, in 1.5XO3+CO2-air, foliar chl was reduced by 33% relative to all others ( P <0.001). In 1.5XO3+CO2-air, A sat was 1.4–1.9 times higher ( P <0.001) and g s was 0.7 times lower ( P =0.022) than all others. O3 uptake in juvenile trees exposed to elevated O3 plus elevated CO2 (1.5XO3+CO2-air) was most comparable to trees exposed to ambient air (1XO3) throughout the study. These findings suggest that elevated CO2 may minimize the negative effects of O3 by reducing O3 uptake through decreased stomatal conductance.  相似文献   

13.
Leaf gas exchange parameters and the content of ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco) in the leaves of two 2‐year‐old aspen (Populus tremuloides Michx.) clones (no. 216, ozone tolerant and no. 259, ozone sensitive) were determined to estimate the relative stomatal and mesophyll limitations to photosynthesis and to determine how these limitations were altered by exposure to elevated CO2 and/or O3. The plants were exposed either to ambient air (control), elevated CO2 (560 p.p.m.) elevated O3 (55 p.p.b.) or a mixture of elevated CO2 and O3 in a free air CO2 enrichment (FACE) facility located near Rhinelander, Wisconsin, USA. Light‐saturated photosynthesis and stomatal conductance were measured in all leaves of the current terminal and of two lateral branches (one from the upper and one from the lower canopy) to detect possible age‐related variation in relative stomatal limitation (leaf age is described as a function of leaf plastochron index). Photosynthesis was increased by elevated CO2 and decreased by O3 at both control and elevated CO2. The relative stomatal limitation to photosynthesis (ls) was in both clones about 10% under control and elevated O3. Exposure to elevated CO2 + O3 in both clones and to elevated CO2 in clone 259, decreased ls even further – to about 5%. The corresponding changes in Rubisco content and the stability of Ci/Ca ratio suggest that the changes in photosynthesis in response to elevated CO2 and O3 were primarily triggered by altered mesophyll processes in the two aspen clones of contrasting O3 tolerance. The changes in stomatal conductance seem to be a secondary response, maintaining stable Ci under the given treatment, that indicates close coupling between stomatal and mesophyll processes.  相似文献   

14.
The long‐term interactive effects of ozone and light on whole‐tree carbon balance of sugar maple (Acer saccharum Marsh.) seedlings were examined, with an emphasis on carbon acquisition, foliar partitioning into starch and soluble sugars, and allocation to growth. Sugar maple seedlings were fumigated with ambient, 1·7 × ambient and 3·0 × ambient ozone in open‐top chambers for 3 years under low and high light (15 and 35% full sunlight, respectively). Three years of ozone fumigation reduced the total biomass of seedlings in the low‐ and high‐light treatments by 64 and 41%, respectively, but had no effect on whole‐plant biomass allocation. Ozone had no effect on net photosynthesis until late in the growing season, with low‐light seedlings generally exhibiting more pronounced reductions in photosynthesis. The late‐season reduction in photosynthesis was not due to impaired stomatal function, but was associated more with accelerated senescence or senescence‐like injury. In contrast, the 3·0 × ambient ozone treatment immediately reduced diurnal starch accumulation in leaves by over 50% and increased partitioning of total non‐structural carbohydrates into soluble sugars, suggesting that injury repair processes may be maintaining photosynthesis in late spring and early summer at the expense of storage carbon. The results in the present study indicate that changes in leaf‐level photosynthesis may not accurately predict the growth response of sugar maple to ozone in different light environments. The larger reduction in seedling growth under low‐light conditions suggests that seedlings in gap or closed‐canopy environments are more susceptible to ozone than those in a clearing. Similarly, understanding the effects of tropospheric ozone on net carbon gain of a mature tree will require scaling of leaf‐level responses to heterogeneous light environments, where some leaves may be more susceptible than others.  相似文献   

15.
To determine how increased atmospheric CO2 will affect the physiology of coppiced plants, sprouts originating from two hybrid poplar clones ( Populus trichocarpa × P. deltoides - Beaupre and P. deltoides × P. nigra - Robusta) were grown in open-top chambers containing ambient or elevated (ambient + 360 μmol mol−1) CO2 concentration. The effects of elevated CO2 concentration on leaf photosynthesis, stomatal conductance, dark respiration, carbohydrate concentration and nitrogen concentration were measured. Furthermore, dark respiration of leaves was partitioned into growth and maintenance components by regressing specific respiration rate vs specific growth rate. Sprouts of both clones exposed to CO2 enrichment showed no indication of photosynthetic down-regulation. During reciprocal gas exchange measurements, CO2 enrichment significantly increased photosynthesis of all sprouts by approximately 60% ( P < 0.01) on both an early and late season sampling date, decreased stomatal conductance of all sprouts by 10% ( P < 0.04) on the early sampling date and nonsignificantly decreased dark respiration by an average of 11%. Growth under elevated CO2 had no consistent effect on foliar sugar concentration but significantly increased foliar starch by 80%. Respiration rate was highly correlated with both specific growth rate and percent nitrogen. Long-term CO2 enrichment did not significantly affect the maintenance respiration coefficient or the growth respiration coefficient. Carbon dioxide enrichment affected the physiology of the sprouts the same way it affected these plants before they were coppiced.  相似文献   

16.
Both sensitive and tolerant clones of aspen ( Populus tremuloides ) were exposed to ozone using four different exposure regimes under controlled environmental conditions. Based on data on ambient ozone from 10 cities in the USA, three treatments of 4-wk exposure to the same SUM06 (an accumulation of hourly O3 concentrations greater than 0.06 ml l−1) were constructed. The regimes allowed us to investigate: (a) the importance of long (3 wk, treatment 1) versus short (1 wk, treatment 2) duration of regimes with high peaks; (b) the effect of treatments with variable peak occurrence (treatments 1 and 2) versus uniform peak occurrence (treatment 3) during the exposure period. Nonfumigated control plants were maintained at ozone concentrations <10 nl l−1. Bifacial black necrosis, a typical symptom of ozone injury on aspen leaves, occurred on both clones after 2 wk exposure. Up to 60% of the leaves on the sensitive clone were injured, with an average of 6% of total leaf area injured. In the tolerant clone only 10% of the leaves were injured, with less than 1% of the total leaf area symptomatic. The severity of injury was consistently greatest in treatment 2, followed by treatments 1 and 3, respectively. The interval between peak exposures was less important than the occurrence of peaks versus a stable maximum concentration. Premature leaf abscission occurred in the sensitive clone. Measures of gas exchange demonstrated reduced photosynthesis under ozone fumigation, but exposure regime was not a significant factor. Concentrations of two antioxidants, ascorbic acid and glutathione, were almost always greater in the resistant than in the sensitive clone, but the differences were not statistically significant. The levels of these antioxidants in aspen leaves did not change with ozone fumigation or leaf age.  相似文献   

17.
This 2-year field study examined stomatal conductance, photosynthesis, and biomass allocation of Liquidambar styraciflua saplings in response to below- and aboveground competition with the vines Lonicera japonica and Parthenocissus quinquefolia. Vine competition did not affect stomatal conductance of the host trees. The leaf photosynthetic capacity and photosynthetic nitrogen-use efficiency were significantly reduced by root competition with vines, either singly or in combination with aboveground competition, early in the second growing season. However, such differences disappeared by the end of the second growing season. Trees competing below ground with vines also had lower allocation to leaves compared with steins. Aboveground competition with vines resulted in reduced photosynthetic capacity per unit leaf area, but not per unit leaf weight, in trees. No correlation was found between single leaf photosynthetic capacity and tree growth. In contrast, a high positive correlation existed between allocation to leaves and diameter growth. Results from this study suggest that allocation patterns are more affected than leaf photosynthesis in trees competing with vines.  相似文献   

18.
 Two clones of poplar known for their phenomenological difference in response to ozone were fumigated with 150 nl l–1 of ozone for 5 h. In both clones the treatment significantly reduced the light-saturated rate of CO2 uptake of recently mature leaves and this was accompanied by a decrease in stomatal conductance. Intercellular CO2 concentration of the resistant clone increased following the fumigation. After 20 h of recovery, photosynthesis recovered completely only in the resistant clone. Electrolyte leakage of leaf disks increased in both clones to indicate damage to membranes; after the recovery time this parameter only reached values of the control in the resistant clone. The photochemical efficiency of PSII slightly decreased in the resistant clone. In the other clone, the treatment caused a decline of all chlorophyll fluorescence parameters and only some of them returned to normal values after the recovery time. The physiological response appears to be different in the two clones. In the resistant one, the most probable mechanism involved in the photosynthetic reduction was a regulatory reduction in CO2 fixation. Also data obtained by the solute leakage indicate that in the resistant clone repair mechanisms play a role. The reduction of photosynthesis observed in the sensitive clone is related both to strong stomatal closure and to an impairment in fluorescence parameters. These alterations can indicate a general disruption at the membrane level as confirmed by the solute leakage data. Received: 30 June 1997 / Accepted: 3 September 1997  相似文献   

19.

Background and Aims

Resistance of plants to ozone stress can be classified as either avoidance or tolerance. Avoidance of ozone stress may be explained by decreased stomatal conductance during ozone exposure because stomata are the principal interface for entry of ozone into plants. In this study, a coupled photosynthesis–stomatal model was modified to test whether the presence of ozone can induce avoidance of ozone stress by stomatal closure.

Methods

The response of Siebold''s beech (Fagus crenata), a representative deciduous tree species, to ozone was studied in a free-air ozone exposure experiment in Japan. Photosynthesis and stomatal conductance were measured under ambient and elevated ozone. An optimization model of stomata involving water, CO2 and ozone flux was tested using the leaf gas exchange data.

Key Results

The data suggest that there are two phases in the avoidance of ozone stress via stomatal closure for Siebold''s beech: (1) in early summer ozone influx is efficiently limited by a reduction in stomatal conductance, without any clear effect on photosynthetic capacity; and (2) in late summer and autumn the efficiency of ozone stress avoidance was decreased because the decrease in stomatal conductance was small and accompanied by an ozone-induced decline of photosynthetic capacity.

Conclusions

Ozone-induced stomatal closure in Siebold''s beech during early summer reduces ozone influx and allows the maximum photosynthetic capacity to be reached, but is not sufficient in older leaves to protect the photosynthetic system.  相似文献   

20.
Seasonal activity of superoxide dismutase (SOD, EC 1.15.1.1). ascorbate peroxidase (APOD, EC 1.11.1.11) and guaiacol-oxidizing enzymes (GPODs, EC 1.11.1.7) was examined in needles of 12- to 15-year-old ponderosa pine (Pinus ponderosa Laws.) trees which received ozone (O3) and acid precipitation treatment. Individual branches were enclosed in branch exposure chambers delivering either charcoal-filtered (O3-reduced) air, ambient air, or air with twice ambient (2 x ambient) concentrations of O3. Acid precipitation treatments were rain of pH 3.0 or 5.1 or no rain. Changes in antioxidant enzyme activity were not a consistent response to O3 fumigation or acid precipitation, but when observed, they occurred most often in the O3-sensitive clone and in symptomatic, fumigated branches. In the second year of fumigation. O3 fleck symptoms appeared on needles of the sensitive clone as early as July and APOD activities were significantly increased by O3 at all sampling dates. In the tolerant clone, antioxidant enzyme activities were not significantly changed by O3 in the first season of fumigation (March to December 1990), not even during an episode when ambient O3 concentrations reached 125 nl 1?1 (240 nl 1?1 in 2x ambient chambers). No foliar symptoms were observed on needles of the tolerant clone during this year. However, in the second year of fumigation (1992), O3 fleck symptoms were observed on the tolerant clone and APOD activities were significantly increased in previous-year needles. The tolerant clone had SOD, APOD, and GPOD activities at least 40% higher than those of the sensitive clone before fumigation and 65, 178, and 119% higher, respectively, during both years of fumigation. The higher constitutive levels of these enzymes may have protected against foliar injury in 1990, however in 1992 we concluded that the stimulations in antioxidant enzyme activities observed in symptomatic branches of both clones were a consequence of O3 injury. Total (intra- and extracellular) activities of the antioxidant enzymes did not appear to be good indicators of O3 tolerance. Phenotypically, the O3-tolerant clone was much more vigorous and in both years of fumigation, gas exchange rates were 30 to 71% higher than in the sensitive clone (P. D. Anderson, unpublished data). The greater vigor of the tolerant clone may allow more carbon allocation to protective and repair processes which include, but are not restricted to, the turnover of antioxidant enzymes and metabolites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号