首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kinetics of fructose-1,6-disphosphate aldolase (EC 4.1.2.13) catalyzed conversion of fructose phosphates was analyzed by coupling the aldolase reactions to the metabolically sequential enzyme, glycerol-3-phosphate dehydrogenase (EC 1.1.1.8), which interacts with aldolase. At low enzyme concentration poly(ethylene glycol) was added to promote complex formation of aldolase and glycerol-phosphate dehydrogenase resulting in a 3-fold increase in KM of fructose-1,6-bisphosphate and no change in Vmax. Kinetic parameters for fructose-1-phosphate conversion changed inversely upon complex formation: Vmax increased while KM remained unchanged. Gel penetration and ion-exchange chromatographic experiments showed positive modulation of the interaction of aldolase and dehydrogenase by fructose-1,6-bisphosphate. The dissociation constant of the heterologous enzyme complex decreased 10-fold in the presence of this substrate. Fructose-1-phosphate or dihydroxyacetone phosphate had no effect on the dissociation constant of the aldolase-dehydrogenase complex. In addition, titration of fluorescein-labelled glycerol-phosphate dehydrogenase with aldolase indicated that both fructose-1,6-bisphosphate and fructose-2,6-biphosphate enhanced the affinity of aldolase to glycerol-phosphate dehydrogenase. The results of the kinetic and binding experiments suggest that binding of the C-6 phosphate group of fructose-1,6-bisphosphate to aldolase complexed with dehydrogenase is sterically impeded while saturation of the C-6 phosphate group site increases the affinity of aldolase for dehydrogenase. The possible molecular mechanism of the fructose-1,6-bisphosphate modulated interaction is discussed.  相似文献   

2.
Quantitative analysis of the time courses of fluorescence anisotropy changes due to the binding of fructose-1,6-bisphosphate aldolase to the dissociable cytoplasmic glycerol-3-phosphate dehydrogenase covalently labelled with fluorescent dye was carried out. The behaviour of the aldolase-dehydrogenase system seems to be consistent with a cyclic reversible model characterized by the formation and dissociation of complexes of both the monomeric and the dimeric forms of dehydrogenase with aldolase, and rapid equilibrium between the free monomeric and dimeric forms of dehydrogenase. The half-life time of the formation of dimeric dehydrogenase-aldolase complex at the concentration of the enzymes expected to exist in the cell (i.e. in the micromolar range) is some minutes, and the time needed for equilibration between the aldolase-bound dimeric and monomeric forms of dehydrogenase is a few minutes as well. Consequently, one may expect that both the formation and the dissociation of this heterologous enzyme complex have physiological relevance.  相似文献   

3.
At the normal pH of the cytosol (7.0 to 7.1) and in the presence of physiological (1.0 mM) levels of free Mg2+, the Vmax of the NADPH oxidation is only slightly lower than the Vmax of NADH oxidation in the cytosolic glycerol-3-phosphate dehydrogenase (E.C. 1.1.1.8) reaction. Under these conditions physiological (30 microM) levels of cytosolic malate dehydrogenase (E.C. 1.1.1.37) inhibited oxidation of 20 microM NADH but had no effect on oxidation of 20 microM NADPH by glycerol-3-phosphate dehydrogenase. Consequently malate dehydrogenase increased the ratio of NADPH to NADH oxidation of glycerol-3-phosphate dehydrogenase. On the basis of the measured KD of complexes between malate dehydrogenase and these reduced pyridine nucleotides, and their Km in the glycerol-3-phosphate dehydrogenase reactions, it could be concluded that malate dehydrogenase would have markedly inhibited NADPH oxidation and inhibited NADH oxidation considerably more than observed if its only effect were to decrease the level of free NADH or NADPH. This indicates that due to the opposite chiral specificity of the two enzymes with respect to reduced pyridine nucleotides, complexes between malate dehydrogenase and NADH or NADPH can function as substrates for glycerol-3-phosphate dehydrogenase, but the complex with NADH is less active than free NADH, while the complex with NADPH is as active as free NADPH. Mg2+ enhanced the interactions between malate dehydrogenase and glycerol-3-phosphate dehydrogenase described above. Lactate dehydrogenase (E.C. 1.1.1.27) had effects similar to those of malate dehydrogenase only in the presence of Mg2+. In the absence of Mg2+, there was no evidence of interaction between lactate dehydrogenase and glycerol-3-phosphate dehydrogenase.  相似文献   

4.
The 11.5-kDa Zn(2+)-binding protein (ZnBP) was covalently linked to Sepharose. Affinity chromatography with a cytosolic subfraction from liver resulted in purification of a predominant 38-kDa protein. In comparable experiments with brain cytosol a 39-kDa protein was enriched. The ZnBP-protein interactions were zinc-specific. Both proteins were identified as fructose-1,6-bisphosphate aldolase. Experiments with crude cytosol showed zinc-specific interaction of additional enzymes involved in carbohydrate metabolism. From liver cytosol greater than 90% of the following enzymes were specifically retained: aldolase, phosphofructokinase-1, hexokinase/glucokinase, glucose-6-phosphate dehydrogenase, glycerol-3-phosphate dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, and fructose-1,6-bisphosphatase. Glucose-6-phosphate isomerase, phosphoglycerate kinase, enolase, lactate dehydrogenase, and most of triosephosphate isomerase remained unbound. From L-type pyruvate kinase only the phosphorylated form seems to interact with ZnBP. Using brain cytosol hexokinase, phosphofructokinase-1, and aldolase were completely bound to the affinity column, whereas glucose-6-phosphate isomerase, phosphoglycerate kinase, enolase, lactate dehydrogenase, pyruvate kinase, and most of triose-phosphate isomerase remained unbound. The behavior of glucose-6-phosphate dehydrogenase and glycerol-3-phosphate dehydrogenase from this tissue could not be followed. A possible function of ZnBP in supramolecular organization of carbohydrate metabolism is proposed.  相似文献   

5.
A novel approach has been elaborated to identify the mechanism of intermediate transfer in interacting enzyme systems. The aldolase/glycerol-3-phosphate-dehydrogenase enzyme system was investigated since complex formation between these two enzymes had been demonstrated. The kinetics of dihydroxyacetone phosphate conversion catalyzed by the dehydrogenase in the absence and presence of aldolase was analyzed. It was found that the second-order rate constant (kcat/Km) of the enzymatic reaction decreases due to the formation of a heterologous complex. The decrease could be attributed to an increase of the Km value since kcat did not change in the presence of aldolase. In contrast, an apparent increase in the second-order rate constant of dihydroxyacetone phosphate conversion by the dehydrogenase was observed if the triose phosphate was produced by aldolase from fructose 1,6-bisphosphate (consecutive reaction). Moreover, no effect of dihydroxyacetone phosphate on the dissociation constant of the heterologous enzyme complex could be detected by physico-chemical methods. The results suggest that the endogenous dihydroxyacetone phosphate produced by aldolase complexed with dehydrogenase is more accessible for the dehydrogenase than the exogenous one, the binding of which is impeded due to steric hindrance by bound aldolase.  相似文献   

6.
Dynamic interactions of enzymes involved in triosephosphate metabolism   总被引:1,自引:0,他引:1  
A steady-state kinetic analysis of the coupled reactions catalysed by the three-enzyme system, aldolase, glyceraldehyde-3-phosphate dehydrogenase and triosephosphate isomerase, was performed. The kinetic parameters of the progress curves of end-product formation calculated for noninteracting enzymes were compared with those measured in the two-enzyme and three-enzyme systems. Changes in the fluorescence anisotropy of labelled dehydrogenase upon addition of aldolase and/or isomerase were also measured. Glyceraldehyde-3-phosphate oxidation catalysed by glyceraldehyde-3-phosphate dehydrogenase in the presence of isomerase (which ensures rapid equilibration of the triosephosphates) follows single first-order kinetics. The rate constant depends simply on the concentration of the dehydrogenase, indicating no kinetically significant isomerase-dehydrogenase interaction. Fluorescence anisotropy measurements also fail to reveal complex formation between the two enzymes. The steady-state velocity of 3-phosphoglycerate formation from fructose 1, 6-bisphosphate in the reactions catalysed by aldolase and dehydrogenase is not increased twofold on addition of the isomerase, even though a 1:2 stoichiometry of fructose 1,6-bisphosphate/glyceraldehyde 3-phosphate is expected. In fact, by increasing the concentration of the isomerase, the steady-state velocity actually decreases. This effect of the isomerase may be a kinetic consequence of an aldolase-isomerase interaction, which results in a decrease of aldolase activity. Furthermore, the fluorescence anisotropy of labelled dehydrogenase, measured at different aldolase concentrations, is significantly lower when the sample contains isomerase. The decrease in the steady-state velocity of the consecutive reactions caused by the elevation of isomerase concentration could be negated by increasing the dehydrogenase concentrations in the three-enzyme system. All of these observations fit the assumption that the amount of aldolase-dehydrogenase complex is reduced due to competition of isomerase with dehydrogenase. The alternate binding of dehydrogenase and isomerase to aldolase may regulate the flux rate of glycolysis.  相似文献   

7.
Glycerol is effective in the treatment of brain oedema but it is unclear if this is due solely to osmotic effects of glycerol or whether the brain may metabolize glycerol. We found that intracerebral injection of [14C]glycerol in rat gave a higher specific activity of glutamate than of glutamine, indicating neuronal metabolism of glycerol. Interestingly, the specific activity of GABA became higher than that of glutamate. NMR spectroscopy of brains of mice given 150 micromol [U-13C]glycerol (0.5 m i.v.) confirmed this predominant labelling of GABA, indicating avid glycerol metabolism in GABAergic neurones. Uptake of [14C]glycerol into cultured cerebellar granule cells was inhibited by Hg2+, suggesting uptake through aquaporins, whereas Hg2+ stimulated glycerol uptake into cultured astrocytes. The neuronal metabolism of glycerol, which was confirmed in experiments with purified synaptosomes and cultured cerebellar granule cells, suggested neuronal expression of glycerol kinase and some isoform of glycerol-3-phosphate dehydrogenase. Histochemically, we demonstrated mitochondrial glycerol-3-phosphate dehydrogenase in neurones, whereas cytosolic glycerol-3-phosphate dehydrogenase was three to four times more active in white matter than in grey matter, reflecting its selective expression in oligodendroglia. The localization of mitochondrial and cytosolic glycerol-3-phosphate dehydrogenases in different cell types implies that the glycerol-3-phosphate shuttle is of little importance in the brain.  相似文献   

8.
The synthesis of the enzymes of the glycerophosphate pathway in Neurospora has been examined during exponential growth of cells on acetate as the sole carbon source. After the addition of glycerol to the media, increases in the levels of both glycerokinase and a mitochondrial glycerol-3-phosphate dehydrogenase are observed within 1 h and fully induced levels are reached within one and a half mass doublings for glycerokinase and two and a half mass doublings for glycerol-3-phosphate dehydrogenase. The increase in glycerokinase activity represents de novo synthesis of enzyme as evidenced by the absence of immunologically related protein in uninduced cell extracts. The synthesis of both glycerokinase and glycerol-3-phosphate dehydrogenase can be totally inhibited by treatment of cells with 20 μg/ml cycloheximide. During incubation with 4 mg/ml chloramphenicol, there is normal synthesis of glycerokinase but a 30–50% inhibition of mitochondrial glycerol-3-phosphate dehydrogenase synthesis. However, under these conditions, in the cytosol fraction there is a significant increase in glycerol-3-phosphate dehydrogenase specific activity, suggesting that precursors are synthesized and accumulated in the cytosol prior to incorporation into mitochondria. Upon removal of chloramphenicol, the rate of appearance of glycerol-3-phosphate dehydrogenase into the mitochondria is up to four times greater than observed in untreated controls. It is concluded that both glycerokinase and glycerol-3-phosphate dehydrogenase are synthesized on cytoplasmic ribosomes, but that final assembly of glycerol-3-phosphate dehydrogenase into mitochondria is dependent on concomitant synthesis of mitochondrial inner membrane.  相似文献   

9.
The combination of binding and kinetic approaches is suggested to study (i) the mechanism of substrate-modulated dynamic enzyme associations; (ii) the specificity of enzyme interactions. The effect of complex formation between aldolase and glyceraldehyde-3-phosphate dehydrogenase (D-glyceraldehyde-3-phosphate:NAD+ oxidoreductase (phosphorylating), EC 1.2.1.12) on aldolase catalysis was investigated under pseudo-first-order conditions. No change in kcat but a significant increase in KM of fructose 1,6-bisphosphate for aldolase was found when both enzymes were obtained from muscle. In contrast, kcat rather than KM changed if dehydrogenase was isolated from yeast. Next, the conversion of fructose 1-phosphate was not affected by interactions between enzyme couples isolated from muscle. The influence of fructose phosphates on the enzyme-complex formation was studied by means of covalently attached fluorescent probe. We found that the interaction ws not perturbed by the presence of fructose 1-phosphate; however, fructose 1,6-bisphosphate altered the dissociation constant of the enzyme complex. A molecular model for fructose 1,6-bisphosphate-modulated enzyme interaction has been evaluated which suggests that high levels of fructose bisphosphate would drive the formation of the 'channelling' complex between aldolase and glyceraldehyde-3-phosphate dehydrogenase.  相似文献   

10.
Transient-state kinetic experiments and analyses have been performed to examine the validity of hitherto unchallenged evidence proposed to be indicative of a channelled transfer of triose phosphates from aldolase to glyceraldehyde-3-phosphate dehydrogenase and glycerol-3-phosphate dehydrogenase. The results lend no support to such proposals, but show that the kinetic behaviour of the examined aldolase-dehydrogenase reactions is fully consistent with a free-diffusion mechanism of metabolite transfer.  相似文献   

11.
Compartmentalized ATP synthesis in skeletal muscle triads.   总被引:9,自引:0,他引:9  
Isolated skeletal muscle triads contain a compartmentalized glycolytic reaction sequence catalyzed by aldolase, triosephosphate isomerase, glyceraldehyde-3-phosphate dehydrogenase, and phosphoglycerate kinase. These enzymes express activity in the structure-associated state leading to synthesis of ATP in the triadic junction upon supply of glyceraldehyde 3-phosphate or fructose 1,6-bisphosphate. ATP formation occurs transiently and appears to be kinetically compartmentalized, i.e., the synthesized ATP is not in equilibrium with the bulk ATP. The apparent rate constants of the aldolase and the glyceraldehyde-3-phosphate dehydrogenase/phosphoglycerate kinase reaction are significantly increased when fructose 1,6-bisphosphate instead of glyceraldehyde 3-phosphate is employed as substrate. The observations suggest that fructose 1,6-bisphosphate is especially effectively channelled into the junctional gap. The amplitude of the ATP transient is decreasing with increasing free [Ca2+] in the range of 1 nM to 30 microM. In the presence of fluoride, the ATP transient is significantly enhanced and its declining phase is substantially retarded. This observation suggests utilization of endogenously synthesized ATP in part by structure associated protein kinases and phosphatases which is confirmed by the detection of phosphorylated triadic proteins after gel electrophoresis and autoradiography. Endogenous protein kinases phosphorylate proteins of apparent Mr 450,000, 180,000, 160,000, 145,000, 135,000, 90,000, 54,000, 51,000, and 20,000, respectively. Some of these phosphorylated polypeptides are in the Mr range of known phosphoproteins involved in excitation-contraction coupling of skeletal muscle, which might give a first hint at the functional importance of the sequential glycolytic reactions compartmentalized in triads.  相似文献   

12.
Soluble enzymes were immobilized and visualized by polyacrylamide gel slabs, impregnated with the incubation medium including auxiliary enzymes. The method has several advantages over existing techniques which make use of gel films or a semipermeable membrane. The diffusion of tissue compounds is effectively limited, while auxiliary enzymes may be operative. Moreover the viscosity of the medium is temperature-independent so that the incubation temperature can be varied. To demonstrate the suitability of the method glycerol-3-phosphate dehydrogenase, lactate dehydrogenase, glucose-6-phosphate dehydrogenase, hexokinase, phosphoglucomutase and aldolase were visulaized in human or rat skeletal muscle. Cytosolic and mitochondrial glycerol-3-phosphate dehydrogenase were both visualized in the absence of added NAD+ and menadione. For the visualization of ATP producint enzymes, like creatine kinase and pyruvate kinase, the method is not suitable.  相似文献   

13.
Glycerol uptake, glycerol kinase (EC 2.7.1.30) and glycerol-3-phosphate dehydrogenase (EC 1.1.99.5) activities are specifically induced during growth ofPseudomonas aeruginosa PAO on either glycerol or glycerol-3-phosphate. Mutants of strain PAO unable to grow on both glycerol and glycerol-3-phosphate were isolated. Mutant PFB 121 was deficient in an inducible, membrane-bound, pyridine nucleotide-independent, glycerol-3-phosphate dehydrogenase activity and PFB 82 was deficient in glycerol uptake and glycerol kinase and glycerol-3-phosphate dehydrogenase activities. Each mutant spontaneously reverted to wild phenotype, which indicates that each contained a single genetic lesion. These results demonstrate that membrane-bound, inducible glycerol-3-phosphate dehydrogenase is required for catabolism of both glycerol and glycerol-3-phosphate and provide suggestive evidence for a single regulatory locus that controls the synthesis of glycerol uptake, glycerol kinase, and glycerol-3-phosphate dehydrogenase inP. aeruginosa.  相似文献   

14.
Summary A system has been developed for the quantitative measurement of glyceraldehyde 3-phosphate dehydrogenase activity in tissue sections. An obstacle to the histochemical study of this enzyme has been the fact that the substrate, glyceraldehyde 3-phosphate, is very unstable. In the present system a stable compound, fructose 1, 6-diphosphate, is used as the primary substrate and the demonstration of the glyceraldehyde 3-phosphate dehydrogenase activity depends on the conversion of this compound into the specific substrate by the aldolase present in the tissue. The characteristics of the dehydrogenase activity resulting from the addition of fructose 1, 6-diphosphate, resemble closely the known properties of purified glyceraldehyde 3-phosphate dehydrogenase. Use of polyvinyl alcohol in the reaction medium prevents release of enzymes from the sections, as occurs in aqueous media. Although in this study intrinsic aldolase activity was found to be adequate for the rapid conversion of fructose 1, 6-diphosphate into the specific substrate for the dehydrogenase, the use of exogenous aldolase may be of particular advantage in assessing the integrity of the Embden-Meyerhof pathway.  相似文献   

15.
The activities of the enzymes glycerol-3-phosphate dehydrogenase and fatty acid synthase are inhibited by palmitoyl-coenzyme A and oleate. The two isoforms of fatty acid binding proteins (PI 6.9 and PI 5.4) enhance the activities of glycerol-3-phosphate dehydrogenase and fatty acid synthase in the absence of palmitoyl-coenzyme A or oleate and also protect them against palmitoyl-coenzyme A or oleate inhibition. Levels of fatty acid binding proteins, the activities of the enzymes fatty acid synthase and glycerol-3-phosphate dehydrogenase increase with gestation showing a peak at term. However, the activity of fatty acid synthase showed the same trend up to the 30th week of gestation and then declined slightly at term. With the advancement of pregnancy when more lipids are required for the developing placenta, fatty acid binding proteins supply more fatty acids and glycerol-3-phosphate for the synthesis of lipids. Thus a correlation exists between glycerol-3-phosphate dehydrogenase, fatty acid synthase and fatty acid binding proteins in developing human placenta.  相似文献   

16.
Summary Soluble enzymes were immobilized and visualized by polyacrylamide gel slabs, impregnated with the incubation medium including auxiliairy enzymes. The method has several advantages over existing techniques which make use of gel films or a semipermeable membrane. The diffusion of tissue compounds is effectively limited, while auxiliary enzymes may be operative. Moreover the viscosity of the medium is temperature-independent so that the incubation temperature can be varied.To demonstrate the suitability of the method glycerol-3-phosphate dehydrogenase, lactate dehydrogenase, glucose-6-phosphate dehydrogenase, hexokinase, phosphoglucomutase and aldolase were visualized in human or rat skeletal muscle. Cytosolic and mitochondrial glycerol-3-phosphate dehydrogenase were both visualized in the absence of added NAD+ and menadione.For the visualization of ATP producing enzymes, like creatine kinase and pyruvate kinase, the method is not suitable.  相似文献   

17.
B Henderson 《Histochemistry》1976,48(3):191-204
A system has been developed for the quantitative measurment of glyceraldehyde 3-phosphate dehydrogenase activity in tissue sections. An obstacle to the histochemical study of this enzyme has been the fact that the substrate, gylceraldehyde 3-phosphate, is very unstable. In the present system a stable compound, fructose 1, 6-diphosphate, is used as the primary substrate and the demonsatration of the glyceraldehyde 3-phosphate dehydrogenase activity depends on the conversion of this compound into the specific substrate by the aldolase present in the tissue. The characteristics of the dehydrogenase activity resulting from the addition of fructose 1, 6-diphosphate, resemble closely the known properties of purified glyceraldehyde 3-phosphate dehydrogenase. Use of polyvinyl alcohol in the reaction medium prevents release of enzymes from the sections, as occurs in aqueous media. Although in this study intrinsic aldolase activity was found to be adequate for the rapid conversion of fructose 1, 6-diphosphate into the specific substrate for the dehydrogenase, the use of exogenous aldolase may be of particular advantage in assessing the intergrity of the Embden-Meyerhof pathway.  相似文献   

18.
Previous attempts to manipulate oil synthesis in plants have mainly concentrated on the genes involved in the biosynthesis and use of fatty acids, neglecting the possible role of glycerol-3-phosphate supply on the rate of triacylglycerol synthesis. In this study, a yeast gene coding for cytosolic glycerol-3-phosphate dehydrogenase ( gpd 1) was expressed in transgenic oil-seed rape under the control of the seed-specific napin promoter. It was found that a twofold increase in glycerol-3-phosphate dehydrogenase activity led to a three- to fourfold increase in the level of glycerol-3-phosphate in developing seeds, resulting in a 40% increase in the final lipid content of the seed, with the protein content remaining substantially unchanged. This was accompanied by a decrease in the glycolytic intermediate dihydroxyacetone phosphate, the direct precursor of glycerol-3-phosphate dehydrogenase. The levels of sucrose and various metabolites in the pathway from sucrose to fatty acids remained unaltered. The results show that glycerol-3-phosphate supply co-limits oil accumulation in developing seeds. This has important implications for strategies that aim to increase the overall level of oil in commercial oil-seed crops for use as a renewable alternative to petrol.  相似文献   

19.
Summary The differentiation of Purkinje fibres and ordinary ventricular and atrial myocytes in bovine hearts was studied with specific antibodies against M-line proteins (MM-creatine kinase and myomesin) and with enzyme histochemistry (succinate dehydrogenase and mitochondrial glycerol-3-phosphate dehydrogenase). MM-creatine kinase was detected at an earlier stage in Purkinje fibres and atrial myocytes than in ordinary ventricular myocytes. The findings are in agreement with previous ultrastructural observations that an earlier appearance of a dense M-band occurs in Purkinje fibres than in ordinary ventricular myocytes. Myomesin was detected in all three cell types even at early foetal stages, in accordance with suggestions that it is an integral component of the myofibrillar structure. The activity of succinate dehydrogenase gradually increased in both ordinary ventricular and atrial myocytes, while the activity of mitochondrial glycerol-3-phosphate dehydrogenase was high at different stages of early foetal development in the two tissues, finally becoming low in the adult stage. The activity of succinate dehydrogenase and mitochondrial glycerol-3-phosphate dehydrogenase seemed to remain unchanged in the Purkinje fibres from early to late foetal stages. The present study shows that the Purkinje fibres are already different from ordinary ventricular myocytes at early foetal stages and that the two cell types differentiate in different ways. It is concluded that there are also developmental differences between ordinary ventricular and atrial myocytes.  相似文献   

20.
Mitochondriall-glycerol-3-phosphate dehydrogenase (E.C. 1.1.99.5.) was studied by chemical modificationin situ with different amino acid side chain specific reagents in mitochondria isolated from hamster brown adipose tissue. The SH-modifying reagents have only slight effect on the enzyme activity. The most effective chemicals were tetranitromethane and diazobenzene sulfonic acid. The enzyme activity can be abolished completely by both of them. In the presence of Ca2+ and/or glycerol-3-phosphate inhibition was greater at the same electrophilic reagent concentration. The effect of Ca2+ and glycerol-3-phosphate is nonadditive on inhibition by these reagents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号