首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Parkinson's disease: a genetic perspective   总被引:1,自引:0,他引:1  
Belin AC  Westerlund M 《The FEBS journal》2008,275(7):1377-1383
Parkinson's disease (PD) is a common neurodegenerative disorder in the aging population, affecting more than 1% over the age of 65 years. Certain rare forms of the disease are monogenic, representing 5-10% of PD patients, but there is increasing evidence that multiple genetic risk factors are important also for common forms of PD. To date, 13 genetic loci, PARK1-13, have been suggested for rare forms of PD such as autosomal dominant and autosomal recessive PD. At six of these loci, genes have been identified and reported by several groups to carry mutations that are linked to affected family members. Genes in which mutations have been linked to familial PD have also been shown to be candidate genes for idiopathic forms of PD, as those same genes may also carry other mutations that merely increase the risk. Four of the PARK genes, SNCA at PARK1, UCH-L1 at PARK5, PINK1 at PARK6 and LRRK2 at PARK8, have been implicated in sporadic PD. There are indeed multiple genetic risk factors that combine in different ways to increase or decrease risk, and several of these need to be identified in order to begin unwinding the causative pathways leading to the different forms of PD. In this review, we present the molecular genetics of PD that are understood today, to help explain the pathways leading to neurodegeneration.  相似文献   

2.
Parkinson disease (PD) is known as a common progressive neurodegenerative disease which is clinically diagnosed by the manifestation of numerous motor and nonmotor symptoms. PD is a genetically heterogeneous disorder with both familial and sporadic forms. To date, researches in the field of Parkinsonism have identified 23 genes or loci linked to rare monogenic familial forms of PD with Mendelian inheritance. Biochemical studies revealed that the products of these genes usually play key roles in the proper protein and mitochondrial quality control processes, as well as synaptic transmission and vesicular recycling pathways within neurons. Despite this, large number of patients affected with PD typically tends to show sporadic forms of disease with lack of a clear family history. Recent genome-wide association studies (GWAS) meta-analyses on the large sporadic PD case–control samples from European populations have identified over 12 genetic risk factors. However, the genetic etiology that underlies pathogenesis of PD is also discussed, since it remains unidentified in 40% of all PD-affected cases. Nowadays, with the emergence of new genetic techniques, international PD genomics consortiums and public online resources such as PDGene, there are many hopes that future large-scale genetics projects provide further insights into the genetic etiology of PD and improve diagnostic accuracy and therapeutic clinical trial designs.  相似文献   

3.
Intensive research over the last 15 years has led to the identification of several autosomal recessive and dominant genes that cause familial Parkinson’s disease (PD). Importantly, the functional characterization of these genes has shed considerable insights into the molecular mechanisms underlying the etiology and pathogenesis of PD. Collectively; these studies implicate aberrant protein and mitochondrial homeostasis as key contributors to the development of PD, with oxidative stress likely acting as an important nexus between the two pathogenic events. Interestingly, recent genome-wide association studies (GWAS) have revealed variations in at least two of the identified familial PD genes (i.e. α-synuclein and LRRK2) as significant risk factors for the development of sporadic PD. At the same time, the studies also uncovered variability in novel alleles that is associated with increased risk for the disease. Additionally, in-silico meta-analyses of GWAS data have allowed major steps into the investigation of the roles of gene-gene and gene-environment interactions in sporadic PD. The emergent picture from the progress made thus far is that the etiology of sporadic PD is multi-factorial and presumably involves a complex interplay between a multitude of gene networks and the environment. Nonetheless, the biochemical pathways underlying familial and sporadic forms of PD are likely to be shared.  相似文献   

4.
Although originally discounted, hereditary factors have emerged as the focus of research in Parkinson's disease (PD). Genetic studies have identified mutations in alpha-synuclein and ubiquitin C-terminal hydrolase as rare causes of autosomal dominant PD and mutations in parkin as a cause of autosomal recessive PD. Functional characterization of the identified disease genes implicates the ubiquitin-mediated protein degradation pathway in these hereditary forms of PD and also in the more common sporadic forms of PD. Subsequent identification of further loci in familial PD and diverse genetic factors modulating the risk for sporadic PD point to substantial genetic heterogeneity in the disease. Thus, new candidate genes are expected to encode proteins either involved in ubiquitin-mediated protein degradation or sequestrated in intracytoplasmic protein aggregations. Future identification of disease genes is required to confirm this hypothesis, thereby unifying the clinical and genetic heterogeneity of PD, including the common sporadic form of the disease, by one biochemical pathway.  相似文献   

5.
Neurochemical and Neurogenetic Correlates of Parkinson's Disease   总被引:5,自引:2,他引:3  
Abstract: We discuss neurochemical and neurogenetic correlates of Parkinson's disease (PD) based on the recent progress in the study of its etiology and pathogenesis. Nigral degeneration with the presence of Lewy bodies in the remaining neurons is the pathologic hallmark of PD, and the resultant loss of striatal dopamine is responsible for most of the clinical manifestations. Although the primary cause is still unknown, mitochondrial respiratory failure and oxidative stress appear to be two major contributors to the nigral cell death. Many endogenous and exogenous compounds with structural similarity to MPTP have been postulated as potential neurotoxins inducing nigral cell death in PD, but there is little evidence of accumulation of such compounds in the nigra. Genetic influence has increasingly been recognized as an important risk factor for PD. In this respect, genetic linkage analysis and molecular cloning of the disease genes in familial parkinsonism are of utmost importance today. Recently, the disease gene for one of the autosomal dominant forms of familial PD was identified, and we cloned the gene for an autosomal recessive type of familial parkinsonism that had been mapped to the long arm of chromosome 6 by our group. Information obtained on familial parkinsonism will contribute to the studies on sporadic PD as well.  相似文献   

6.
Although Parkinson's disease (PD) is generally a sporadic neurological disorder, the discovery of monogenic, hereditable forms of the disease has been crucial in delineating the molecular pathways that lead to this pathology. Genes responsible for familial PD can be ascribed to two categories based both on their mode of inheritance and their suggested biological function. Mutations in parkin, PINK1 and DJ-1 cause of recessive Parkinsonism, with a variable pathology often lacking the characteristic Lewy bodies (LBs) in the surviving neurons. Intriguingly, recent findings highlight a converging role of all these genes in mitochondria function, suggesting a common molecular pathway for recessive Parkinsonism. Mutations in a second group of genes, encoding alpha-synuclein (α-syn) and LRRK2, are transmitted in a dominant fashion and generally lead to LB pathology, with α-syn being the major component of these proteinaceous aggregates. In experimental systems, overexpression of mutant proteins is toxic, as predicted for dominant mutations, but the normal function of both proteins is still elusive. The fact that α-syn is heavily phosphorylated in LBs and that LRRK2 is a protein kinase, suggests that a link, not necessarily direct, exists between the two. What are the experimental data supporting a common molecular pathway for dominant PD genes? Do α-syn and LRRK2 target common molecules? Does LRRK2 act upstream of α-syn? In this review we will try to address these of questions based on the recent findings available in the literature.  相似文献   

7.
Parkin ubiquitinates and promotes the degradation of RanBP2   总被引:6,自引:0,他引:6  
Parkinson disease (PD) is a common neurodegenerative disorder, which involves the deterioration of dopaminergic neurons in the pars compacta of the substantia nigra. The etiology of PD is still unknown, but recent identification of mutations in familial cases of PD has advanced the understanding of the molecular mechanisms of this neurological disease. Mutations in the parkin gene, which encodes for ubiquitin-protein ligase (E3), have been implicated in autosomal recessive juvenile Parkinsonism, an early onset and common familial form of PD. Here we reported that Parkin selectively binds to RanBP2, which is localized in the cytoplasmic filament of the nuclear pore complex and belongs to the small ubiquitin-related modifier E3 ligase family. We also demonstrated that RanBP2 becomes a target for Parkin E3 ubiquitin-ligase and is processed via Parkin-mediated ubiquitination and subsequent proteasomal degradation. Furthermore, Parkin controls the intracellular levels of sumoylated HDAC4, as a result of the ubiquitination and degradation of RanBP2. Our findings suggested that the intracellular levels of RanBP2 and its functional activity may be modulated by Parkin-mediated ubiquitination and proteasomal pathways.  相似文献   

8.
《Autophagy》2013,9(7):952-954
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder, and thus elucidation of the pathogenic mechanism and establishment of a fundamental cure is essential in terms of public welfare. Fortunately, our understanding of the pathogenesis of two types of recessive familial PDs-early-onset familial PD caused by dysfunction of the PTEN induced putative kinase 1 (PINK1) gene and autosomal recessive juvenile Parkinsonism (AR-JP) caused by a mutation in the Parkin gene-has evolved and continues to expand.  相似文献   

9.
Parkinson disease (PD) is a chronic and progressive neurological disease associated with a loss of dopaminergic neurons. In most cases the disease is sporadic but genetically inherited cases also exist. One of the major pathological features of PD is the presence of aggregates that localize in neuronal cytoplasm as Lewy bodies, mainly composed of α-synuclein (α-syn) and ubiquitin. The selective degeneration of dopaminergic neurons suggests that dopamine itself may contribute to the neurodegenerative process in PD. Furthermore, mitochondrial dysfunction and oxidative stress constitute key pathogenic events of this disorder. Thus, in this review we give an actual perspective to classical pathways involving these two mechanisms of neurodegeneration, including the role of dopamine in sporadic and familial PD, as well as in the case of abuse of amphetamine-type drugs. Mutations in genes related to familial PD causing autosomal dominant or recessive forms may also have crucial effects on mitochondrial morphology, function, and oxidative stress. Environmental factors, such as MPTP and rotenone, have been reported to induce selective degeneration of the nigrostriatal pathways leading to α-syn-positive inclusions, possibly by inhibiting mitochondrial complex I of the respiratory chain and subsequently increasing oxidative stress. Recently, increased risk for PD was found in amphetamine users. Amphetamine drugs have effects similar to those of other environmental factors for PD, because long-term exposure to these drugs leads to dopamine depletion. Moreover, amphetamine neurotoxicity involves α-syn aggregation, mitochondrial dysfunction, and oxidative stress. Therefore, dopamine and related oxidative stress, as well as mitochondrial dysfunction, seem to be common links between PD and amphetamine neurotoxicity.  相似文献   

10.
The concept that activation of cellular pathways of programmed cell death (PCD) may lead to the death of neurons has been an important hypothesis for adult neurodegenerative diseases. For Parkinson's disease (PD), up until now, the evidence for this hypothesis has largely been of two types: clear evidence of a role for PCD in neurotoxin models of the disease, and somewhat controversial evidence from human postmortem studies. With the rapid pace of discoveries in recent years of the genetic basis of PD, a new form of evidence has emerged. The prevailing concept of the role for PCD in PD has been that its mediators are 'downstream' effectors of more proximate and specific causes related to genetic or environmental factors. However, recent studies of three genes which cause autosomal recessive forms of parkinsonism, parkin, PTEN-induced kinase, and DJ-1, suggest that they may have more intimate relationships with the mediators of PCD and that loss-of-function mutations may result in an increased propensity for neurons to die. Intriguingly, independent studies of the function of these genes have suggested that they may share roles in regulating survival signaling pathways, such as those mediated by the survival signaling kinase Akt. Further elucidation of these relationships will have implications for the pathogenesis and neuroprotective treatment of PD.  相似文献   

11.
Understanding the molecular causes of Parkinson's disease   总被引:8,自引:0,他引:8  
Parkinson's disease (PD) is a neurodegenerative disease that is both common and incurable. The majority of cases are sporadic and of unknown origin but several genes have been identified that, when mutated, give rise to rare, familial forms of the disease. The principal genes that have been shown to cause PD are alpha-synuclein (SNCA), parkin, leucine-rich repeat kinase 2 (LRRK2), PTEN-induced putative kinase 1 (PINK1) and DJ-1. Here, we discuss what has been learnt from the study of these genes and what has been elucidated of the molecular pathways that lead to cell degeneration. Of importance is what these molecular events and pathways tell scientists of the common sporadic form of PD. Although complete knowledge of these genes' functions remains elusive, recent work implicates abnormal protein accumulation, protein phosphorylation, mitochondrial dysfunction and oxidative stress as common pathways to PD pathogenesis.  相似文献   

12.
Parkin and the molecular pathways of Parkinson's disease   总被引:10,自引:0,他引:10  
Giasson BI  Lee VM 《Neuron》2001,31(6):885-888
Parkinson's disease (PD) is a neurodegenerative disease characterized by the selective demise of specific neuronal populations leading to impairment of motor functions. Recent genetic studies have uncovered several genes involved in inherited forms of the disease. These gene products are implicated in the biochemical pathways underlying the etiology of sporadic PD. Mutations in the parkin gene causal of autosomal recessive juvenile parkinsonism highlight that ubiquitin-mediated proteolysis may play an important role in the pathobiology of PD.  相似文献   

13.
Parkinson's disease (PD; OMIM #168600) is the second most common neurodegenerative disorder in the Western world and presents as a progressive movement disorder. The hallmark pathological features of PD are loss of dopaminergic neurons from the substantia nigra and neuronal intracellular Lewy body inclusions. Parkinsonism is typically sporadic in nature; however, several rare familial forms are linked to genetic loci, and the identification of causal mutations has provided insight into the disease process. PARK8, identified in 2002 by Funayama and colleagues, appears to be a common cause of familial PD. We describe here the cloning of a novel gene that contains missense mutations segregating with PARK8-linked PD in five families from England and Spain. Because of the tremor observed in PD and because a number of the families are of Basque descent, we have named this protein dardarin, derived from the Basque word dardara, meaning tremor.  相似文献   

14.
Parkinson disease (PD) is the most common movement disorder and is characterized by dopaminergic dysfunction. The majority of PD cases are sporadic; however, the discovery of genes linked to rare familial forms of the disease has provided crucial insight into the molecular mechanisms of disease pathogenesis. Multiple genes mediating familial forms of Parkinson’s disease (PD) have been identified, such as parkin (PARK2) and phosphatase and tensin homologue deleted on chromosome ten (PTEN)-induced putative kinase 1: PINK1 (PARK6). Here, we showed that Parkin directly interacts with PINK1, but did not bind to pathogenic PINK1 mutants. Parkin, but not its pathogenic mutants, stabilizes PINK1 by interfering with its degradation via the ubiquitin-mediated proteasomal pathway. In addition, the interaction between Parkin and PINK1 resulted in reciprocal reduction of their solubility. Our results indicate that Parkin regulates PINK1 stabilization via direct interaction with PINK1, and operates through a common pathway with PINK1 in the pathogenesis of early-onset PD.  相似文献   

15.
Parkinson's disease is characterized by the progressive and selective loss of the dopaminergic neurons in the substantia nigra and the presence of ubiquitinated protein inclusions termed Lewy bodies. In the past six years, four genes involved in rare inherited forms of Parkinson's disease have been identified: mutations in the alpha-synuclein and ubiquitin carboxyterminal hydrolase L1 genes (UCH-L1) cause autosomal dominant forms, whereas mutations in the Parkin and DJ-1 genes are responsible for autosomal recessive forms of the disease. A toxic gain of function related to the ability of alpha-synuclein to assemble into insoluble amyloid fibrils may underlie neuronal cell death in parkinsonism due to alpha-synuclein gene mutations. In contrast, loss of protein function appears to be the cause of the disease in parkinsonism due to mutations in the genes encoding Parkin and UCH-L1, which are key enzymes of the ubiquitin-proteasome pathway. The presence of alpha-synuclein, Parkin and UCH-L1 in Lewy bodies suggests that dysfunction of pathways involved in protein folding and degradation is not only involved in the pathogenesis of familial Parkinson's disease, but could also play a role in the frequent sporadic form of the disease (idiopathic Parkinson's disease).  相似文献   

16.
Parkinson’s disease (PD) is the second most common progressive neurodegenerative disorder beyond Alzheimer’s disease, affecting approximately 1% of people over the age of 65. The major pathological hallmarks of PD are significant loss of nigrostriatal dopaminergic (DA) neurons and the presence of intraneuronal protein inclusions termed Lewy bodies. Sporadic cases represent more than 90% of total patients with PD, while there exist several inherited forms caused by mutations in single genes. Identification and characterization of these causative genes and their products can help us understand the molecular mechanisms of DA neuronal cell death and design new approaches to treat both the inherited and sporadic forms of PD. Based on the finding that a point mutation in the gene encoding α-synuclein (αSyn) protein causes a rare familial form of PD, PARK1, it is now confirmed that αSyn is a major component of Lewy bodies in patients with sporadic PD. Abnormal accumulation of αSyn protein is considered a neurotoxic event in the development of PD. PARK4, another dominantly inherited form of familial PD, is caused by duplication or triplication of the αSyn gene locus. This genetic mutation results in the production of large amounts of wild-type αSyn protein, supporting the αSyn-induced neurodegeneration hypothesis. On the other hand, the recessively inherited early-onset Parkinsonism is caused in about half of the cases with loss-of-function mutations in PARK2, which encodes E3 ubiquitin ligase parkin in the ubiquitin–proteasome system. These findings have shed light on DA neurodegeneration caused by accumulation of toxic protein species that can be degraded and/or detoxicated through parkin activity. In this review, we will focus on the regulatory roles of αSyn and parkin proteins in DA neuronal cell apoptosis and provide evidence for the possible therapeutic action of parkin in sporadic patients with PD.  相似文献   

17.
Parkinson’s disease (PD) is a severe, progressive, age-associated, neurodegenerative disorder. Current therapies are symptomatic and not effective at halting or significantly slowing the disease progress. The search for etiologic-based therapies has focused largely on genetic findings made in familial forms of this disease. Mutations of five genes have been unequivocally linked to PD; two of these, LRRK2 and PINK1, encode kinases and as such are attractive tools with which to understand the disease process; furthermore, preliminary functional data suggests that these proteins, or the pathways in which they are involved, are viable therapeutic targets. Here we explore the current data and thoughts regarding LRRK2 and PINK1 and discuss further avenues of research to understand the pathologic effects of mutations at these loci and potential points of therapeutic intervention, such as within these kinases or in associated pathways such as Jun N-terminal kinase and Akt pathways.  相似文献   

18.
Over the past 20 years, substantial progress has been made in identifying the underlying genetics of Parkinson’s disease (PD). Of the known genes, LRRK2 is a major genetic contributor to PD. However, the exact function of LRRK2 remains to be elucidated. In this review, we discuss how familial forms of PD have led us to hypothesize that alterations in endomembrane trafficking play a role in the pathobiology of PD. We will discuss the major observations that have been made to elucidate the role of LRRK2 in particular, including LRRK2 animal models and high-throughput proteomics approaches. Taken together, these studies strongly support a role of LRRK2 in vesicular dynamics. We also propose that targeting these pathways may not only be beneficial for developing therapeutics for LRRK2-driven PD, but also for other familial and sporadic cases.  相似文献   

19.
Parkinson’s disease (PD) is a complex disease, with genetics and environment contributing to the disease onset. Recent studies of causative PD genes have confirmed the involvement of cellular mechanisms engaged in mitochondrial and UPS dysfunction, oxidative stress and apoptosis in the progressive degeneration of the dopaminergic neurons in PD. In addition, clinical, epidemiological and experimental evidence has implicated neuroinflammation in the disease progression. This review will discuss neuroinflammation in PD, with particular focus on the genetic and toxin-based models of the disease. These studies have confirmed elevated oxidative stress and the pro-inflammatory response occurs early in the disease and these processes contribute to and/or exacerbate the nigro-striatal degeneration. In addition, the experimental models discussed here have also provided strong evidence that these pathways are an important link between the familial and sporadic causes of PD. The potential application of anti-inflammatory interventions in limiting the dopaminergic neuronal cell death in these models is discussed with evidence suggesting that the further investigation of their use as part of multi-targeted clinical trials is warranted.  相似文献   

20.
Parkinson's disease (PD) is a severe, progressive, age-associated, neurodegenerative disorder. Current therapies are symptomatic and not effective at halting or significantly slowing the disease progress. The search for etiologic-based therapies has focused largely on genetic findings made in familial forms of this disease. Mutations of five genes have been unequivocally linked to PD; two of these, LRRK2 and PINK1, encode kinases and as such are attractive tools with which to understand the disease process; furthermore, preliminary functional data suggests that these proteins, or the pathways in which they are involved, are viable therapeutic targets. Here we explore the current data and thoughts regarding LRRK2 and PINK1 and discuss further avenues of research to understand the pathologic effects of mutations at these loci and potential points of therapeutic intervention, such as within these kinases or in associated pathways such as Jun N-terminal kinase and Akt pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号