首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Sulfate efflux was measured in inside-out vesicles obtained from human red cells. Inhibition was observed in vesicles derived from cells pretreated with DIDS (4,4′-diisothiocyano-2,2′-stilbene disulfonate) or after addition of dipyridamole to the vesicles, both agents being specific and potent inhibitors of anion transport in cells. Trypsinization of the cytoplasmic side of the membrane in order to release a 40 000 dalton fragment from band 3 (the purported anion transport protein) had no effect on sulfate efflux. Further degradation of band 3 to a 17 000 dalton segment, by trypsinization of inside-out vesicles derived from cells that had been pretreated with chymotrypsin, also showed little reduction in transport activity. Furthermore, such vesicles derived from DIDS pretreated cells were inhibited by over 90%. In DIDS-treated cells, the agent is highly localized in band 3. In trypsinized inside-out vesicles, it is largely found in a 55 000 fragment and in trypsinized vesicles derived from cells pretreated with chymotrypsin it is largely located in the 17 000 fragment. The data suggest that both the anion transport and inhibitor binding sites are located in a 17 000 transmembrane segment of band 3.  相似文献   

2.
External N-(4-azido-2-nitrophenyl)-2-aminoethylsulfonate (NAP-taurine) inhibits human red cell chloride exchange by binding to a site that is distinct from the chloride transport site. Increases in the intracellular chloride concentration (at constant external chloride) cause an increase in the inhibitory potency of external NAP-taurine. This effect is not due to the changes in pH or membrane potential that usually accompany a chloride gradient, since even when these changes are reversed or eliminated the inhibitory potency remains high. According to the ping-pong model for anion exchange, such transmembrane effects of intracellular chloride on external NAP-taurine can be explained if NAP-taurine only binds to its site when the transport site is in the outward-facing (Eo or EClo ) form. Since NAP-taurine prevents the conformational change from EClo to ECli , it must lock the system in the outward-facing form. NAP-taurine can therefore be used just like the competitive inhibitor H2DIDS (4,4'-diisothiocyano-1,2- diphenylethane -2,2'-disulfonic acid) to monitor the fraction of transport sites that face outward. A quantitative analysis of the effects of chloride gradients on the inhibitory potency of NAP-taurine and H2DIDS reveals that the transport system is intrinsically asymmetric, such that when Cli = Clo, most of the unloaded transport sites face the cytoplasmic side of the membrane.  相似文献   

3.
Kuma H  Shinde AA  Howren TR  Jennings ML 《Biochemistry》2002,41(10):3380-3388
The topology of the band 3 (AE1) polypeptide of the erythrocyte membrane is not fully established despite extensive study. Residues near lysine 743 (K743) have been reported to be extracellular in some studies and cytoplasmic in others. In the work presented here, we have attempted to establish the sidedness of K743 using in situ proteolysis. Trypsin, papain, and proteinase K do not cleave band 3 at or near K743 in intact red cells, even under conditions that cause cleavage on the C-terminal side of the glycosylation site (N642) in extracellular loop 4. In contrast, trypsin sealed inside red cell ghosts cleaves at K743, as does trypsin treatment of inside-out vesicles (IOVs). The transport inhibitor 4,4'-diisothiocyanatodihydrostilbene-2,2'-disulfonate (H(2)DIDS), acting from the extracellular side, blocks trypsin cleavage at K743 in unsealed membranes by inducing a protease-resistant conformation. H(2)DIDS added to IOVs does not prevent cleavage at K743; therefore, trypsin cleavage at K743 in IOVs is not a consequence of cleavage of right-side-out or leaky vesicles. Finally, microsomes were prepared from HEK293 cells expressing the membrane domain of AE1 lacking the normal glycosylation site. This polypeptide does not traffic to the surface membrane; trypsin treatment of microsomes containing this polypeptide produces the 20 kDa fragment, providing further evidence that K743 is exposed at the cytoplasmic surface. Therefore, the actions of trypsin on intact cells, resealed ghosts, unsealed ghosts, inside-out vesicles, and microsomes from HEK293 cells all indicate that K743 is cytoplasmic and not extracellular.  相似文献   

4.
The red cell anion transport protein, band 3, can be selectively modified with phenylglyoxal, which modifies arginyl residues (arg) in proteins, usually with a phenylglyoxal: arg stoichiometry of 2:1. Indiscriminate modification of all arg in red cell membrane proteins occurred rapidly when both extra- and intracellular pH were above 10. Selective modification of extracellularly exposed arg was achieved when ghosts with a neutral or acid intracellular pH were treated with phenylglyoxal in an alkaline medium. The rate and specificity of modification depend on the extracellular chloride concentration. At 165 mM chloride maximum transport inactivation was accompanied by the binding of four phenylglyoxals per band 3 molecule. After removal of extracellular chloride, maximum transport inhibition was accompanied by the incorporation of two phenylglyoxals per band 3, which suggests that transport function is inactivated by the modification of a single arg. After cleavage of band 3 with extracellular chymotrypsin, [14C]phenylglyoxal was located almost exclusively in a 35,000-dalton peptide. In contrast, the primary covalent binding site of the isothiocyanostilbenedisulfonates is a lysyl residue in the second cleavage product, a 65,000-dalton fragment. This finding supports the view that the transport region of band 3 is composed of strands from both chymotryptic fragments. The binding of phenylglyoxal and the stilbene inhibitors interfered with each other. The rate of phenylglyoxal binding was reduced by a reversibly binding stilbenedisulfonate (DNDS), and covalent binding of [3H]DIDS to phenylglyoxal-modified membranes was strongly delayed. At DIDS concentrations below 10 10 micrometers, only 50% of the band 3 molecules were labeled with [3H]-DIDS during 90 min at 38 degrees C, thereby demonstrating an interaction between binding of the two inhibitors to the protomers of the oligomeric band 3 molecules.  相似文献   

5.
This work demonstrates the existence of titratable transport and modifier sites in the anion transport system of human red cells. Effects of alkaline extracellular pH on chloride exchange were studied up to pH 13 at 0 degrees C. The studies revealed two sets of reversible titratable groups. One set, having a pK of or approximately 11, appeared to be identical with the inhibitory halide-binding modifier site. Deprotonation of this site stimulated anion transport. The apparent dissociation constants of chloride and iodide at this modifier site were 0.3 and 0.06 M, respectively, and it was confirmed that the organic sulfonate NAP-taurine inhibits anion transport reversibly by a high-affinity interaction with halide-binding modifier sites at the extracellular side of the membrane. Other groups, with apparent pK of or approximately 12 at chloride concentrations above 0.1 M, were named as "transport sites" because transport function depended totally on their protonation. The apparent pK decreased when extracellular halide concentrations was lowered below 0.1 M. It was dependent of the intracellular chloride concentration, and was equally sensitive to extracellular pH of 13, was fully reversible. Hydroxyl ions were not transported to an appreciable extent by the anion exchange system. The pK values of both sets of groups make it likely that they are both arginyl residues, functioning as anion recognition sites similar to the role of functionally essential arginyl residues observed with numerous enzymes.  相似文献   

6.
The binding of human erythrocyte ankyrin (band 2.1) to the erythrocyte membrane has been characterized by reassociating purified ankyrin with ankyrin-depleted inside-out vesicles. Ankyrin reassociates at high affinity with a limited number of protease-sensitive sites located only on the cytoplasmic side of the erythrocyte membrane. Depleting the vesicles of band 4.2 does not affect their binding capacity. A 45,000-dalton polypeptide derived from the cytoplasmic portion of band 3 competitively inhibits the binding of ankyrin to inside-out vesicles. Although the bulk of band 3 molecules appear to have the potential for binding ankyrin, nly a fraction of the band 3 molecules in native membranes or in reconstituted liposomes actually provides accessible high affinity ankyrin binding sites.  相似文献   

7.
M M Kay 《FASEB journal》1991,5(1):109-115
Band 3 is a ubiquitous membrane transport protein found in Golgi, mitochondrial, nuclear, and cell membranes. It is the most heavily used anion transport system in the body because it is responsible for CO2 exchange in all tissues and organs and for acid-base balance. The anion transport regions are mapped along the band 3 molecule using synthetic peptides (pep) from extracellular regions of band 3 and/or suspected anion transport regions. Assays include anion transport/inhibition and immunoblotting with anti-idiotypic antibodies to a transport inhibitor. Results indicate that anion binding/transport regions of band 3 reside within residues 549-594, (588-594 being the most active) and 804-839 (822-839 being the most active), and 869-883. Pep-COOH (residues 812-827), which is part of senescent cell antigen, is an anion binding site with most of the activity localized to residues 813-818 (the six amino acids on the amino side of pep-COOH). The stilbene disulfonate inhibitors of transport bind to peptide 812-830, and possibly peptides 788-805 and 800-818, as determined with anti-idiotypic antibodies. Residues 538-554, which have been reported to be a transport segment of band 3, do not bind sulfate. Band 3 external loops containing residues 539-553 and 812-830, and internal segments containing residues 588-594 and 869-883, are in close spacial proximity in the membrane. The contribution of lysine and/or arginine to anion transport is examined by synthesizing peptides in which glycines or arginines are substituted for lysines or arginines. Lysines can contribute to anion binding but are not required.  相似文献   

8.
A C Newton  S L Cook  W H Huestis 《Biochemistry》1983,22(26):6110-6117
Band 3, the anion transport protein of human erythrocyte membranes, can be transferred from cells to liposomes and from liposomes back to cell membranes, retaining function and native orientation. After incubation with cells, sonicated phosphatidylcholine vesicles bind a transmembrane protein that comigrates with band 3 on sodium dodecyl sulfate-polyacrylamide gels. Like native red cell band 3, the vesicle-bound protein is cleaved by chymotrypsin into 65- and 30-kdalton fragments and is not cleaved by trypsin. The protein can be cross-linked by copper-phenanthroline oxidation either before or after transfer to vesicles; in either case, the vesicle fractions contain high molecular weight material that is dissociated into 95-kdalton species by mercaptoethanol. Band 3-vesicle complexes contain no detectable cell lipid and are specifically permeable to anions. Greater than 99% of their anion uptake can be blocked by the band 3 inhibitor 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS). Red cells whose band 3 function has been blocked irreversibly by DIDS or eosin maleimide regain part of their anion permeability upon incubation with band 3-vesicle complexes. Under the conditions employed, an average of one copy of functional band 3 is delivered to half of the cells, increasing by 2.3-fold the number of cells containing functional anion transporters. Incubation of pure lipid vesicles or red cell membrane buds with either normal red cells or eosin maleimide inhibited cells has no detectable effect on the cells' anion permeability.  相似文献   

9.
Exposure of cells to intense light with the photoactivatable reagent, N- (4-azido-2-nitrophenyl)-2-aminoethylsulfonate (NAP-taurine), present in the external medium results in irreversible inhibition of chloride or sulfate exchange. This irreversible inhibition seems to result from covalent reaction with the same sites to which NAP-taurine binds reversibly in the dark. As shown in the preceding paper, high chloride concentrations decrease the reversible inhibition by NAP-taurine in the dark, in a manner suggesting that NAP-taurine and chloride compete for the modifier site of the anion transport system. In a similar fashion, high chloride concentrations in the medium during exposure to light cause a decrease in both the irreversible binding of NAP-taurine to the membrane and the inhibition of chloride exchange. Most of the chloride- sensitive irreversibly bound NAP-taurine is found in the 95,000 dalton polypeptide known as band 3 and, after pronase treatment of intact cells, in the 65,000 dalton fragment of this protein produced by proteolytic cleavage. After chymotrypsin treatment of ghosts, the NAP- taurine is localized in the 17,000 dalton transmembrane portion of this fragment. Although the possible involvement of minor labeled proteins cannot be rigorously excluded, the modifier site labeled by external NAP-taurine appears, therefore, to be located in the same portion of the 95,000 dalton polypeptide as is the transport site.  相似文献   

10.
Binding of the anion-exchange inhibitor 3H2-labeled 4,4'-diisothiocyano-2,2'-stilbene disulfonic acid (DIDS) to highly purified luminal and basolateral beef kidney tubular membranes was characterized. Specific binding of [3H2]DIDS is present in both luminal and basolateral membranes. Scatchard analysis revealed a Kd for [3H2]DIDS of 5.5 microM and 19.3 microM and a maximal number of binding sites of 10.9 nmol and 31.7 nmol DIDS/mg protein in basolateral and luminal membranes, respectively. To assess the role of this putative anion exchanger on transport we measured 35SO4 uptake by luminal and basolateral membranes. In both luminal and basolateral membranes sulfate uptake was significantly greater in the presence of an outward-directed Cl gradient, OH gradient or HCO3 gradient than in the absence of these gradients. There was an early anion-dependent sulfate uptake of five to ten times the equilibrium uptake at 60 min. The sulfate taken in could be released by lysis of the vesicles indicating true uptake and not binding of sulfate. No significant difference in SO4 uptake was found in the presence and in the absence of valinomycin, indicating that the anion exchanger is electroneutral. The anion-dependent sulfate uptake was completely inhibited by either DIDS or furosemide in both luminal and basolateral membranes. Dixon analysis of HCO3-dependent SO4 uptake by luminal membranes in the presence of different concentrations of DIDS revealed a Ki for DIDS of 20 microM. The similar values of the Kd for [3H2]DIDS binding and the Ki for DIDS inhibition of SO4 uptake might suggest an association between DIDS binding and the inhibition of SO4 transport. In addition, an inward-directed Na gradient stimulated sulfate uptake in luminal but not in basolateral membranes. The Na-dependent sulfate uptake in luminal membranes was also inhibited by DIDS. We conclude that, in addition to the well-known Na-dependent sulfate uptake in luminal membranes, there exists an anion exchanger in both basolateral and luminal membranes capable of sulfate transport.  相似文献   

11.
Band 3 of the human erythrocyte is involved in anion transport and binding of the cytoskeleton to the membrane bilayer. Human erythrocytes were treated to incorporate varying concentrations of DIDS (4,4′-diisothiocyanostilbene-2,2′-disulfonic acid) a non-penetrating, irreversible inhibitor of anion transport, and both functions of Band 3 were analyzed. The rate of efflux of 35SO4. was measured and the binding of cytoskeletal components to the membrane was evaluated by extracting the membranes with 0.1 n NaOH and analyzing for the peptides remaining with the membrane. It was found that 0.1 n NaOH extracts all the extrinsic proteins from membranes of untreated cells, while, in the case of the membranes from cells treated with DIDS, a portion of the cytoskeletal components, spectrin (Bands 1 and 2) and Band 2.1 (ankyrin, syndein) remain with the membrane. The amount of these cytoskeletal components remaining with the membrane depends on the concentrations of DIDS incorporated. The effect of DIDS on the extractability of the spectrin-Band 2.1 complex correlates well with DIDS inhibition of anion transport (r = 0.91). At DIDS concentrations which completely inhibit anion transport, about 10% of total spectrin-Band 2.1 complex remains unextracted. Another anion-transport inhibitor, pyridoxal phosphate, has no effect on binding of the cytoskeleton to the membrane. On the other hand, digestion of DIDS-pretreated intact erythrocytes with Pronase, chymotrypsin, or trypsin releases the tight binding of Band 3 to cytoskeleton on the inside of the membrane. Since trypsin does not hydrolyze Band 3 the data suggest that a second membrane protein which is trypsin sensitive may be involved with Band 3 in cytoskeletal binding.  相似文献   

12.
Numerous models describing anion exchange across the red cell membrane by band 3 have been discussed in literature. These models are readily distinguished from one another by an experiment which tests the ability of band 3 transport sites to be recruited to one side of the membrane. In order to observe directly the transmembrane recruitment of transport sites, we have developed 35Cl NMR techniques that resolve the two transport site populations on opposite sides of the membrane. Using these techniques, we show that the inhibitors 4,4'- dinitrostilbene -2,2'-disulfonate and p- nitrobenzensulfonate each recruit all of the transport sites on both sides of the membrane to the extracellular facing conformation. This result indicates that band 3 has an alternating site transport mechanism: each band 3 transport unit possesses a single functional transport site which is alternately exposed first to one side of the membrane then to the other.  相似文献   

13.
Abstract The purported blocker of anion transport 4, 4′ di-isothiocyano-2-2′ stilbene disulfonate (DIDS) has been shown to partially inhibit 36Cl? influx, 36CIO?3 influx and 35SO2?4 influx into Pisum salivum L. cv. Feltham First seedlings. This inhibitory effect could be prevented by pretreatment with the respective unlabelled medium. There was no effect of DIDS on 14C methylamine influx. The results are consistent with the hypothesis that the binding of DIDS to the site of anion-carrier interaction is responsible for its observed inhibitory effects on anion fluxes. The fluorescent properties of DIDS upon binding to membrane proteins was exploited in an attempt to examine the major sites of anion pumping in whole roots. The results show clearly that in the presence of DIDS the epidermal layers became brightly fluorescent, while cortical layers did not fiuoresce. Lycopersicum esculentum cells taken from locular fluid were plasmolysed using sucrose solution, and the patterns of fluorescence in the presence of DIDS showed in an unambiguous way that the fluorescence is associated with cell membranes. The potential usefulness of this technique to probe sites of anion transport in whole plants and tissues is discussed.  相似文献   

14.
In previous studies it has been shown that protoporphyrin-induced photodynamic effects on red blood cells are caused by photooxidation of amino acid residues in membrane proteins and by the subsequent covalent cross-linking of these proteins. Band 3, the anion transport protein of the red blood cell membrane, has a relatively low sensitivity to photodynamic cross-linking. This cannot be attributed to sterical factors inherent in the specific localization of band 3 in the membrane structure. Solubilized band 3, for instance, showed a similar low sensitivity to cross-linking. By extracellular chymotrypsin cleavage of band 3 into fragments of 60 000 and 35 000 daltons it could be shown that both fragments were about equally sensitive to photodynamic cross-linking. The 17 000 dalton transmembrane segment, on the other hand, was completely insensitive. Inhibition of band 3-mediated sulfate transport proceeded much faster than band 3 interpeptide cross-linking, presumably indicating that the inhibition of transport is caused by photooxidation of essential amino acid residues or intrapeptide cross-linking. A close parallel was observed between photodynamic inhibition of anion transport and decreased binding of 4,4′-diisothiocyanodihydrostilbene-2,2′-disulfonate (H2DIDS), suggesting that a photooxidation in the immediate vicinity of the H2DIDS binding site may be responsible for transport inhibition.  相似文献   

15.
Studies of binding of the reversible inhibitor DNDS (for abbreviations, see Nomenclature) and red blood cell membranes revealed 8.6 +/- 0.7 x 10(5) high-affinity binding sites per cell (KD = 0.8 +/- 0.4 muM). Under conditions of "mutual depletion," inhibition studies of anion exchange revealed 8.0 +/- 0.7 x 10(5) DNDS inhibitory sites per cell (KD = 0.87 +/- 0.04 muM). Binding and kinetics studies with DNDS indicate that there are 0.8 -- 0.9 x 10(6) functional anion transport sites per blood cell. The transport of DNDS displayed high temperature and concentration dependencies, chemical specificity, susceptibility to inhibition by DIDS, and differences between egress and ingress properties. Under conditions of no DNDS penetration (e.g., 0 degrees C), inhibition of anion exchange by DNDS showed marked sidedness from the outside inhibitions and were demonstrable at micromolar concentrations, whereas from the inside no inhibition occurred even at millimolar concentrations. The asymmetry of DNDS transport properties and the sidedness of binding and inhibition suggest that anion transport sites have a very low affinity for or are inaccessible to DNDS at the inner membrane face. The site of DNDS permeation, although susceptible to DIDS, is apparently not the site of anion exchange.  相似文献   

16.
The ping-pong model for the red cell anion exchange system postulates that the transport protein band 3 can exist in two different conformations, one in which the transport site faces the cytoplasm (Ei) and another in which it faces the outside medium (Eo). This model predicts that an increase in intracellular chloride should increase the fraction of sites in the outward-facing, unloaded form (Eo). Since external H2DIDS is a competitive inhibitor of chloride exchange that does not cross the membrane, it must bind only to the Eo form. Thus, an increase in Eo should cause an increase in H2DIDS inhibition. When intracellular chloride was increased at constant extracellular chloride, the inhibitory potency of H2DIDS rose, as predicted by the ping-pong model. This increase was not due to the concomitant changes in intracellular pH or membrane potential. When the chloride gradient was reversed, the inhibitory potency of H2DIDS decreased, again in qualitative agreement with the ping-pong model. These data provide support for the ping-pong model and also demonstrate that chloride gradients can be used to change the orientation of the transport protein.  相似文献   

17.
The anion transport system of human red cells was isolated in vesicles containing the original membrane lipids and the 95 000 dalton polypeptides (band 3) by the method of Wolosin et al. (J. Biol. Chem. (1977) 252, 2419--2427). The vesicles have a functional anion transprot system since they display sulfate transport that is inhibited by the fluorescent probe 8-anilinonaphthalene 1-sulfonate (ANS) with similar potency as in red cells. The vesicles were labeled with the SH-specific probe fluorescein mercuric acetate (FMA). Labeling lowers FMA fluorescence, and is prevented or reversed by dithiothreitol, suggesting that the reaction is with a thiol group on the protein. Fluorescnece titrations show a maximum labeling stoichiometry of 1.3 +/- 0.4 mol FMA/mol 95 000 dalton polypeptide. The polarization of bound FMA fluorescence is high indicating that the probe is highly immobilized. Pretreatment with Cu2+ + o-phenanthroline under conditions that crosslink band 3 in ghosts decreases FMA labeling 50%. Differences in kinetics of FMA labeling in sealed and leaky vesicles suggest that the reactive SH group is located in the intravesicular portion of the protein (corresponding to the cytoplasmic surface of the red cell) and that FMA can cross the membrane. Inhibitors of anion transport have no effect on FMA labeling kinetics suggesting it is not transported via the anion transport system. Sulfate transport in the labeled vesicles remains fully functional. We detected self-energy transfer between bound FMA molecules by fluorescence depolarization. With excitation at 450--50 nm P decreases from 0.4, when less than half of the proteins are labeled, to 0.1 at saturation. This depolarization is not observed with red edge excitation (510--530 nm). Addition of 0.1% sodium dodecyl sulfate (SDS) changes P to 0.32, regardless of the excitation wavelength or degree of saturation with FMA. These results indicate that the band 3 proteins are close enough to allow energy transfer between fluorophores(Ro = 37.4 A), which does not occur upon red edge excitation or when the proteins are separated by SDS. We conclude that the functional anion transport system exists as a dimer or higher oligomer of band 3 proteins in these membranes, confirming previous suggestions derived using other methods. Future applications are discussed.  相似文献   

18.
In this study we have used complementary biochemical and immunological techniques to establish that the lymphoma GP85 membrane glycoprotein is a transmembrane protein with a cytoplasmic domain that binds directly to ankyrin, a molecule known to link the membrane to the cytoskeleton. The evidence supporting our conclusion that the GP85 is a transmembrane glycoprotein is as follows: (a) GP85 can be surface-labeled with Na 125I and contains wheat germ agglutinin-binding sites, indicating that it has an extracellular domain; (b) GP85 can be phosphorylated by intracellular kinases, indicating that it has an intracellular domain; and (c) GP85 can be successfully incorporated into phospholipid vesicles, indicating the existence of a hydrophobic domain in the molecule. Further studies show that GP85 displays immunological cross-reactivity with the lymphocyte Pgp-1 (differentiation-specific) membrane glycoprotein, and with the erythrocyte anion transport membrane protein, band 3. Immunocytochemical studies indicate that an ankyrin-like protein accumulates underneath the lymphoma GP85 cap structure, suggesting an association of the ankyrin-like protein and GP85. This relationship has been further confirmed by the following results of binding and reconstitution experiments: (a) purified GP85 binds directly to an ankyrin-Sepharose column; (b) purified GP85 inserts into phospholipid vesicles in both the normal (right side out) and reversed (inside out) orientation (and with only the reversed configuration permits binding of ankyrin to GP85); and (c) cleavage of GP85 with trypsin yields a 40-kD peptide fragment that is part of the cytoplasmic domain and contains the ankyrin binding site(s). Based on these findings, we suggest that the lymphoma GP85 transmembrane glycoprotein contains a cytoplasmic domain that is directly involved in linking ankyrin to the cytoskeleton. This transmembrane linkage may play a pivotal role in receptor capping and cell activation in lymphocytes.  相似文献   

19.
Mono-, di-, and trisulfonic acids, including 4,4′-diacetamido stilbene-2,2′-disulfonic acid (DAS) and 2-(4′-amino phenyl)-6-methylbenzene thiazol-3′,7-disulfonic acid (APMB) produce a reversible inhibition of sulfate equilibrium exchange in human red cells. A study of the sidedness of the action of a number of these sulfonic acids in red cell ghosts revealed that some, like DAS, inhibit only at the outer membrane surface while others, like APMB, inhibit at either surface. This finding suggests that at least two different types of membrane sites are involved in the control of anion permeability. The nature of the anion permeability controlling sites in the outer cell surface was investigated by studying the effects of DAS on the inhibition by dinitrofluoro-benzene (DNFB) of anion equilibrium exchange and on the binding of DNFB to the proteins of the red blood cell membrane. After exposure to DNFB in the presence of DAS for a certain period of time, there was a reduction of both the inhibitory effect of DNFB on sulfate exchange and the binding of DNFB to the protein in band 3 of SDS polyacrylamide gel electropherograms (nomenclature of Steck, J. Cell. Biol., 62: 1, 1974). Since binding to other membrane proteins was not affected, this observation supports the assumption that the protein in band 3 plays some role in anion transport. In accordance with the absence of an inhibitory effect at the inner membrane surface, internal DAS does not affect DNFB binding to the protein in band 3. DAS protected the anion exchange system not only against inhibition by DNFB but also by m-isothiocyanato benzene sulfonic acid. In contrast to DAS, the equally inhibitory phlorizin does not reduce the rate of dinitrophenylation of the protein in band 3. This suggests that either not all inhibitors of anion exchange exert their action by a combination with sites on the protein in band 3 or that in spite of the described evidence this protein is not involved in the control of anion movements. The effect of the irreversibly binding inhibitor 4-acetamido-4′-isothiocyanato-stilbene-2,2′-disulfonic acid (SITS) on DNFB binding to the protein in band 3 was studied in an attempt to differentiate DNFB binding related to inhibition of anion permeability from DNFB binding which is not involved. At least three distinguishable populations of DNFB binding sites were found: (1) binding sites common for DNFB and SITS which are probably related to inhibition, (2) other common sites which are not related to inhibition and (3) different sites whose dinitrophenylation is not affected by SITS. The number of sites in population (1) was estimated to be 0.8–1.2 ± 106/cell. A study of the concentration dependence of the inhibition of anion equilibrium exchange with 4,4′-isothiocyanato-2,2′-stilbene disulfonic acid (DIDS) and APMB further suggests that among the sites in population (1) a major fraction is susceptible to modification by APMB and DIDS while the rest is only susceptible to DIDS. It remains undecided whether these differences of susceptibility reflect differences of accessibility or reactivity.  相似文献   

20.
The permeability of sarcoplasmic reticulum vesicles to sulfate ions was inhibited by diisothiocyano-1,2-diphenylethane-2,2′-disulfonic acid (H2DIDS), which is a potent inhibitor of anion permeability in red blood cell membrane. The amount of H2DIDS bound to the vesicles was determined by using [3H]-H2DIDS. Apparent half inhibition of sulfate permeation was observed on the binding of 2.5 μmol/g protein. SDS-polyacrylamide gel electrophoresis of the vesicles treated with [3H]H2DIDS showed that about 10% of the total bound H2DIDS corresponds to a 100 000-dalton protein, but the remaining 90% to non-protein components. The content of the H2DIDS-binding protein was about 0.5 μmol/g protein. These results suggest that the H2DIDS-binding protein is different from the calcium pump protein and is possibly an anion transport system similar to band 3 in red blood cell membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号