首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract Recent studies of nutrient cycling in Sycamore Creek in Arizona, USA, suggest that a thorough understanding requires a spatially explicit, hierarchical approach. Physical configuration determines the path that water follows as it moves downstream. Water follows flowpaths through surface stream components, the hyporheic zone beneath the surface stream, and the parafluvial (sand bar) zone. Characteristic biogeochemical processes in these subsystems alter nitrogen (N) species in transport, in part as a function of available concentrations of N species. At several hierarchical levels, substrate materials are an important determinant of nitrogen dynamics in desert streams. Sand is present in bars of variable size and shape, each of which can be considered a unit, interacting with the surface stream. Groups of these stream-sandbar units form a higher level, the reach. At the next higher scale, sandy reaches (runs) alternate with riffles. Where flowpaths converge, rates of N transformation are high and, as a result, change in concentration is a non-linear function of flowpath length. Disturbance by flash floods alters sandbar configuration. Between floods, the interaction of subsurface and surface flowpaths shapes configuration in each, thus a self-organizing element of spatial structure exists. Sandy runs are dominated by subsurface processes and are likely to be net nitrifiers while riffles are dominated by surface flow and are nitrogen fixers. Whether a stream ecosystem retains nitrogen, or transports it to downstream recipient systems, or is a net emitter of gaseous forms of N, depends upon the dynamics of a spatial mosaic of interacting elements. An understanding of the net effect of this mosaic requires a spatially explicit, hierarchical, multi-scale approach.  相似文献   

2.
Metabolism of a Sonoran Desert stream was investigated by both enclosure and whole system oxygen techniques. We used recirculating chambers to estimate surface sediment metabolism and measured deep sediment respiration in isolated sediment cores. Metabolism of the stream ecosystem was determined for a 30-m reach as dark and light oxygen change with and without black plastic sheeting that darkened the stream and prevented diffusion. Average ecosystem respiration for two dates in August (440 mg O2 m-2 h-1) exceeded respiration of either the surface sediment community (155 Mg O2 m-2 h-1) or the hyporheic community (170 mg O2 m-2 h-1) alone. Deep sediments show substantial oxygen and nitrate uptake when isolated. In the stream, this low nitrate interstitial water is exchanged with surface water. Metabolism of the isolated surface community suggests a highly productive and autotrophic system, yet gross production is balanced or exceeded by community respiration when ecosystem boundaries include the hyporheic zone. Thus, despite high rates of gross primary production (600–1200 mg O2 m-2 h-1), desert streams may be heterotrophic (PG < R) during summer.  相似文献   

3.
采用分解网袋法,在古尔班通古特沙漠南缘设置对照N0(0 g N·m-2·a-1)、N5(5 g N·m-2·a-1)、N10(10 g N·m-2·a-1)和N20(20 g N·m-2·a-1)4个施N处理,研究外源N添加对多枝柽柳、盐角草及两者混合凋落物分解过程及养分释放的影响,分析氮沉降对荒漠生态系统凋落物分解的影响。结果表明: 各物种凋落物的分解速率存在显著差异,经过345 d的分解,多枝柽柳、盐角草及混合物在不同N处理间的分解速率分别为0.64~0.70、0.84~0.99和0.71~0.81 kg·kg-1·a-1。凋落物分解过程中,N、P均表现为养分的直接释放,试验结束时,N0、N5、N10和N20处理单种凋落物及其混合物N分别释放60.6%~67.4%、56.7%~62.6%、57.4%~62.3%、46.8%~63.0%,P分别释放51.9%~77.9%、59.9%~74.7%、53.0%~79.9%、52.3%~76.4%。N处理对单种凋落物及其混合物的分解影响不显著,但各种凋落物的养分动态对N添加的响应不同,N处理抑制了盐角草N、P释放及混合凋落物P释放,而对多枝柽柳无影响。在温带荒漠,适量的N输入对凋落物分解速率影响不大,但可能会延缓个别物种养分向土壤系统的归还。  相似文献   

4.
Nitrogen fixation in a desert stream ecosystem   总被引:3,自引:0,他引:3  
Few measurements of nitrogen fixation exist for streams. Desertstreams are warm, well lighted, and often supportabundant cyanobacterial populations; thus N2 fixationmay be significant in these N-poor ecosystems. N2fixation was measured in situ by acetylene reductionfor two patch types (Anabaena mat and anepilithic assemblage). Patch-specific rates were highcompared with published values (maximum 775 µgN2 [83 µmol C2H4]mg chl a -1 h-1or 51 mg N2 [5.4 mmol C2H4] m-2 h-1).Daytime fixation was higher than nighttimefixation, and temperature, light and inorganic Nconcentration explained 52% of variance in hourlyrates over all dates. Diel input-output budgets wereconstructed on five dates when cyanobacteria werepresent in the stream. Diel N2 fixation rates weremeasured for comparison with reach-scale diel nitrogenretention, to assess the importance of this vector to Neconomy of the stream. Fixation accounted for up to85% of net N flux to the benthos, but its importancevaried seasonally. Finally, we applied biomass-specificfixation rates to 1992 and 1993 biomass data to obtainseasonal and annual N2 fixation estimates.Cyanobacteria were absent or rare during winter andspring, thus most of the annual N2 fixation occurredduring summer and autumn. Annual rates of nitrogenfixation for 1992 and 1993 (8.0 g/m2 and 12.5g/m2) were very high compared to other streams,and moderately high compared to other ecosystems.Like other phenomena in this disturbance-proneecosystem, nitrogen fixation is strongly influenced bythe number and temporal distribution of flood events.  相似文献   

5.
1. Due to the hierarchical organization of stream networks, land use changes occurring at larger spatial scales (i.e. the catchment) can affect physical, chemical and biological characteristics at lower spatial scales, ultimately altering stream structure and function. Anthropogenic effects on streams have primarily been documented using structural metrics such as water chemistry, channel alteration and algal biomass. Functional parameters, including metrics of nutrient retention and metabolism, are now being widely used as indicators of stream condition. 2. Within this hierarchical context, we used a multivariate approach to examine how structural and functional (i.e. nutrient retention and metabolism) attributes of streams are related to catchment variables, including land use. The study was done in 13 streams located within a single Mediterranean catchment, but draining sub‐catchments with contrasting land use. 3. At the catchment scale, results showed two contrasting land use gradients: (i) from forested‐ to urban‐dominated catchments and (ii) from low to moderate agricultural‐dominated catchments. Variation in structural and functional parameters was strongly related to these land use gradients. Specifically, NH4+ demand (measured as the uptake velocity, Vf) decreased along the gradient from forested‐ to urban‐dominated catchments primarily in response to increases in stream nutrient concentrations [NH4+, dissolved organic nitrogen (DON) and carbon (DOC)]. Both primary production and respiration increased along the gradient of agricultural development in response to increases in algal biomass (chlorophyll a). Soluble reactive phosphorus demand was not related to any of the land use gradients. 4. Our results illustrate the connections among factors operating at different spatial scales (i.e. from catchments to streams) and their distinct influence on stream ecosystem function. Managers should take into consideration these connections when designing stream management and restoration plans. Because ecologically successful stream management and restoration is expected to restore function as well as structure to streams, the use of appropriate measures of functional processes is required. Nutrient retention and metabolism parameters are good candidates to fill this gap.  相似文献   

6.
The distribution and abundance of black flies (Diptera: Simuliidae) in a small desert stream were influenced by environmental changes caused by recharge of water supply storage basins and an aquaculture operation. Simulium virgatum was the most abundant benthic insect collected in Whitewater Canyon (Riverside County, CA) after April; however, it was never found in trout farm effluent where the ammonium‐nitrogen concentration was > 0.25 mg/liter. S. virgatum densities downstream of the input of water from the Colorado River aqueduct were lower than at other sampling sites in the Whitewater River. Simulium tescorum, an especially anthropophilic black fly, was most abundant during February and March, was not collected from late spring through early autumn, and was found only in the highly enriched, less variable flow of trout farm effluent. The mean concentrations of ammonium nitrogen and nitrate nitrogen in the trout farm effluent nearly 1 km from the fish holding ponds were ten and two times, respectively, the ambient levels in the Whitewater River upstream of the effluent discharge point. A combination of factors probably contributed to the presence of S. tescorum in the trout farm effluent including homogenization of the flow regime, enrichment of larval resources, and the development of riparian vegetation that provided oviposition and attachment sites.  相似文献   

7.
1. Single‐station diel oxygen curves were used to monitor the oxygen metabolism of an intermittent, forested third‐order stream (Fuirosos) in the Mediterranean area, over a period of 22 months. Ecosystem respiration (ER) and gross primary production (GPP) were estimated and related to organic matter inputs and photosynthetically active radiation (PAR) in order to understand the effect of the riparian forest on stream metabolism. 2. Annual ER was 1690 g O2 m?2 year?1 and annual GPP was 275 g O2 m?2 year?1. Fuirosos was therefore a heterotrophic stream, with P : R ratios averaging 0.16. 3. GPP rates were relatively low, ranging from 0.05 to 1.9 g O2 m?2 day?1. The maximum values of GPP occurred during a few weeks in spring, and ended when the riparian canopy was fully closed. The phenology of the riparian vegetation was an important determinant of light availability, and consequently, of GPP. 4. On a daily scale, light and temperature were the most important factors governing the shape of photosynthesis–irradiance (P–I) curves. Several patterns could be generalised in the P–I relationships. Hysteresis‐type curves were characteristic of late autumn and winter. Light saturation responses (that occurred at irradiances higher than 90 μE m?2 s?1) were characteristic of early spring. Linear responses occurred during late spring, summer and early autumn when there was no evidence of light saturation. 5. Rates of ER were high when compared with analogous streams, ranging from 0.4 to 32 g O2 m?2 day?1. ER was highest in autumn 2001, when organic matter accumulations on the streambed were extremely high. By contrast, the higher discharge in autumn 2002 prevented these accumulations and caused lower ER. The Mediterranean climate, and in its effect the hydrological regime, were mainly responsible for the temporal variation in benthic organic matter, and consequently of ER.  相似文献   

8.
为进一步了解养分添加和水分添加对干旱区草地植物多样性的影响, 2009-2011年5月15日, 对准噶尔盆地荒漠草地进行养分和水分添加, 2009-2012年5月25日进行植被调查, 研究群落结构与植物多样性对养分N、P、K与水分(雨、雪)添加的响应, 得出以下结果: (1)添加肥、水后, 荒漠草地植物群落结构发生了变化, 物种数由肥、水添加前的17种减少到添加后的11种, 减少了35.3%, 禾草类植物数目增加, 十字花科植物数量下降; (2)通过裂区试验方差分析, 2009年和2010年, 养分主效应对物种丰富度、Simpson指数、Shannon-Wiener指数、Pielou均匀度指数的影响不显著, 水分主效应和肥水交互作用对以上4个植物多样性指数的影响也不显著; (3) 2012年, 养分主效应对物种丰富度影响显著(p < 0.05), 养分添加降低了荒漠草地物种丰富度, 而水分作用、肥水交互作用对物种丰富度的影响均不显著; 肥水交互作用对植物Simpson指数、Shannon-Wiener指数的影响显著(p < 0.05), 而养分添加、水分添加对其影响亦不显著; (4)荒漠草地植物的Simpson指数、Shannon-Wiener指数、Pielou均匀度指数在年际间呈上升趋势。  相似文献   

9.
10.
荒漠盐生植物根际土壤盐分和养分特征   总被引:15,自引:0,他引:15  
弋良朋  马健  李彦 《生态学报》2007,27(9):3565-3571
中国西北地区是我国干旱、盐碱化土壤分布面积较广、土壤积盐较重的地区,这里发育着丰富的盐生植物。目前对于干旱荒漠区盐生植物根际特征的研究相对较少,而不同盐生植物的根际特征对于研究盐生植物适应盐渍环境的机制有着重要意义。本研究利采用盆栽根袋法对7种不同类型的荒漠盐生植物的根际盐分和养分特征进行了初步探索。结果表明:盐分在盐生植物根际发生富集,稀盐盐生植物和泌盐盐生植物根际土壤中总盐和8种主要盐分离子的含量都有所增加,而在拒盐盐生植物根际中增加不显著,其中Cl-和Na 的富集程度相对其它6种离子的富集程度要高。稀盐盐生植物和泌盐盐生植物根际土中的SO42-/Cl-比土体有显著的降低,表明在稀盐盐生植物和泌盐盐生植物根际土壤中Cl-的富集程度比SO42-高,拒盐盐生植物根际土盐分SO42-/Cl-比略有提高。7种盐生植物根际土中的Na /K ,Na /Ca2 ,Na /Mg2 比均较土体有显著的增加,芦苇根际土中的增加最小。在所有研究植物中,根际土壤中全N含量比土体的含量高,但全P和全K含量却比土体的含量低;根际土壤中有效态养分的变化则与全态相反,根际土壤中的有效N含量比土体中的都显著降低,除芦苇外,其他六种盐生植物根际土壤中有效P和有效K的含量都高于土体,但有效P的富集不及有效K富集的程度高。在研究的七种植物中,钠猪毛菜根际土壤的有效N亏缺量最高,有效P和速效K富集也最少。7种植物,尤其是稀盐盐生植物和泌盐盐生植物的地上部分的主要盐离子含量比地下部分高,如Cl-、Na 、Ca2 和K ,在根际富集程度最高的Cl-和Na ,在植株的地上部分也增加的最多。  相似文献   

11.
Yi L P  Ma J  Li Y 《农业工程》2007,27(9):3565-3571
North-West China is an arid region where halophyte plants are rich. Very little is known on the rhizospheric soil of the halophytes in this arid desert region. We conducted a rhizobag experiment on the desert Solonchak soil to investigate the salt and nutrient content in the rhizospheric soil of the desert halophytes. The total salt and the concentrations of 8 major kinds of salt ions increased in the rhizosphere of both succulent halophytes and salt secreting halophytes, but this increase was insignificant for salt-resisting halophytes. Accumulation of Cl and Na+ is the most significant among the 8 major kinds of salt ions. Accumulation of Cl was more significant than that of SO42– in succulent halophytes and salt secreting halophytes. The Na+/K+, Na+/Ca2+ and Na+/Mg2+ ratios in the rhizosphere of all 7 kinds of halophytes were higher than those in the bulk soil. Total N increased significantly in the rhizosphere, but total P and total K decreased. However, the available N, P and K in the rhizosphere of the 7 kinds of halophytes except Phragmites communis Trin. behaved in such an opposite way that available N decreased but available P and available K increased. The ionic contents in the aboveground parts were higher than those in the underground parts of the 7 kinds of halophytes, in particular of both the succulent halophytes and the salt secreting halophytes. Accumulation of Cl and Na+ in the aboveground parts of the plants was the most significant among that of the 8 major kinds of salt ions.  相似文献   

12.
1. A tracer release study was conducted in a macrophyte‐rich stream, the River Lilleaa in Denmark. The objectives of the study were to compare uptake rates per unit area of by primary producers and consumers in macrophyte and non‐macrophyte habitats, estimate whole‐stream uptake rates of and compare this to other stream types, and identify the pathways and estimate the rate at which enters the food web in macrophyte and non‐macrophyte habitats. 2. Macrophyte habitats had four times higher primary uptake rates and an equal uptake rate by primary consumers per unit habitat area as compared to non‐macrophyte habitats. These rates represent the lower limit of potential macrophyte effects because the rates will be highly dependent on macrophyte bed height and mean bed height in the River Lilleaa was low compared to typical bed heights in many lowland streams. Epiphytes accounted for 30% of primary uptake in macrophyte habitats, illustrating a strong indirect effect of macrophytes as habitat for epiphytes. N flux per unit habitat area from primary uptake compartments to primary consumers was four times lower in macrophyte habitats compared to non‐macrophyte habitats, reflecting much greater biomass accrual in macrophyte habitats. Thus, we did not find higher N flux from macrophyte habitats to primary consumers compared to non‐macrophyte habitats. 3. Whole‐stream uptake rate was 447 mgN m?2 day?1. On a habitat‐weighted basis, fine benthic organic matter (FBOM) accounted for 72% of the whole‐stream uptake rate, and macrophytes and epiphytes accounted for 19 and 8%, respectively. 4. We had expected a priori relatively high whole‐stream N uptake in our study stream compared to other stream types mainly due to generally high biomass and the macrophyte’s role as habitat for autotrophic and heterotrophic organisms, but our results did not confirm this. In comparison with other release study streams, we conclude that nutrient concentration is the overall controlling factor for N uptake rates across streams, mostly as a result of high biomass of primary uptake compartments in streams with high nutrient concentrations in general and not in macrophyte streams in particular. 5. Our results indicate that macrophytes play an important role in the longer‐term retention of N and thus a decrease in net downstream transport during the growing season compared to streams without macrophytes, through direct and indirect effects on the stream reach. Direct effects are high uptake efficiency, low turnover rate (partly due to no direct feeding on macrophytes) and high longevity. An indirect effect is increased sedimentation of FBOM in macrophytes compared to non‐macrophyte habitats and streams which possibly also increase denitrification. Increased retention with macrophyte presence would decrease downstream transport during the growing season and thus the N loading on downstream ecosystems.  相似文献   

13.
林亚军  吴楠  张元明 《生态学报》2018,38(17):6156-6162
以古尔班通古特沙漠2016年6月意外火烧事件为背景,对比分析火烧和未火烧样地区不同土壤深度化学性质、土壤酶活性的变化特征,为全面评估火烧对温带荒漠生态系统的影响提供土壤学依据。结果表明:火烧样地和对照样地土壤养分含量和酶活性总体上均表现为上层土壤(0—5 cm)大于下层土壤(5—10 cm),仅土壤氧化酶(过氧化氢酶)活性表现为下层土壤大于上层土壤。同时,火烧和土壤深度存在交互效应,火烧对土壤特性的影响受土壤深度的限制。土壤化学性质受火烧的影响主要表现在0—5 cm土壤层,尤其是速效养分在火烧之后有显著增加趋势。火烧对5—10 cm土壤层土壤化学性质无显著影响。火烧后,硝态氮(NO3-N)含量显著下降,铵态氮(NH4-N)含量上升。土壤水解酶、氧化酶活性在火烧之后降低,具体表现为,蔗糖酶、脲酶、β-葡萄糖苷酶活性在0—5 cm和5—10 cm土壤层均极显著下降,而碱性磷酸酶活性仅在0—5 cm土壤层显著下降。过氧化氢酶活性则在5—10 cm土壤层活性显著下降。表明上层土壤水解酶活性对火烧干扰较为敏感,氧化酶活性在火烧干扰下相对稳定。从各土层土壤酶活性的变化特征来看,火烧对水解酶活性的影响随土壤深度增加而降低,而氧化酶则呈现相反的趋势。总体而言,火烧显著提高了古尔班通古特沙漠土壤速效养分的含量,降低了土壤酶活性,不同土壤酶对火烧响应的敏感程度不同。为深入评估火烧干扰对温带荒漠生态系统的影响提供一定理论依据。  相似文献   

14.
植物在湿地养分循环中的作用   总被引:2,自引:0,他引:2  
郭雪莲  吕宪国  郗敏 《生态学杂志》2007,26(10):1628-1633
植物是湿地生态系统的重要组成部分之一,在养分循环过程中起着重要的作用。植物通过自身的生长代谢吸收湿地中的营养元素,但植物对营养物质的吸收能力随植物种类、群落组成及季节不同而存在差异;不同植物以及植物的不同器官对营养元素的累积特征存在显著差异,并随生长节律表现出明显的季节动态;植物本身的化学组成和特征制约着枯落物的分解和矿化过程,从而影响植物的养分归还。本文从植物对湿地营养元素吸收、累积以及养分归还方面总结了植物在湿地养分循环中的作用,指出目前研究中存在的不足,并对今后的研究提出一些建议。  相似文献   

15.
Ecological stoichiometry offers a framework for predicting how animal species vary in recycling nutrients, thus providing a mechanism for how animal species identity mediates ecosystem processes. Here we show that variation in the rates and ratios at which 28 vertebrate species (fish, amphibians) recycled nitrogen (N) and phosphorus (P) in a tropical stream supports stoichiometry theory. Mass-specific P excretion rate varied 10-fold among taxa and was negatively related to animal body P content. In addition, the N : P ratio excreted was negatively related to body N : P. Body mass (negatively related to excretion rates) explained additional variance in these excretion parameters. Body P content and P excretion varied much more among taxonomic families than among species within families, suggesting that familial composition may strongly influence ecosystem-wide nutrient cycling. Interspecific variation in nutrient recycling, mediated by phylogenetic constraints on stoichiometry and allometry, illustrates a strong linkage between species identity and ecosystem function.  相似文献   

16.
17.
陈凯  刘增文  李俊  田楠  时腾飞 《生态学报》2011,31(23):7022-7030
对森林生态系统进行分类是认识森林生态过程的根本途径,传统的从结构角度对森林生态系统分类只能反映森林的外在特征,而无法从功能角度区别森林的本质差异.通过对黄土高原3个生物气候区18个不同森林生态系统的养分循环特征测算和分析,选取了能全面反映养分的积累和分布(生物量、枯落物积累量、养分积累量)、循环通量(年吸收量、年存留量、年归还量)以及养分循环效率(循环系数、利用系数、养分生产力)等多方面指标作为分类指标体系,利用自组织映射特征网络(SelfOrganizing Feature Maps,SOFM)聚类方法,从养分循环的角度将黄土高原森林生态系统划分为2个一级类型,6个二级类型.该分类结果与实际较符,从而探索了森林生态系统的功能分类方法,也验证了SOFM网络模型应用于森林养分循环分类的可行性.  相似文献   

18.
A small pond in southwestern peninsular Florida was sampled to determine the areal and depth distribution of total phosphorus, total nitrogen, and organic matter. Concentrations of these constituents decreased from the center to the edge of the pond and from the top to the bottom of the sediments. At the center of the pond total phosphorus showed a secondary concentration peak at a depth of 20 to 40 cm in the sediments indicative of the downward transfer of soluble phosphorus during times of low water.A system of monitoring wells was installed at the pond to measure groundwater input and output nutrient concentrations. There was no difference in total groundwater nitrogen concentration across the pond but the mean increase in total phosphorus concentration between input and output wells, ca. 200 g1–1, was statistically highly significant. The results suggest that whereas nitrogen is recycled from sediments to the pond and the atmosphere, the pond-sediment system loses some phosphorus to groundwater throughflow.  相似文献   

19.
1. Stream riffles in southern Ontario and western Quèbec were sampled for biomass (58 stations from 51 streams) and production (22 stations from 21 streams) of algae and bacteria in periphyton to test the hypothesis that bacteria in benthic biofilms compete with algae for nutrients. 2. Algal and bacterial biomass were positively correlated, as were algal and bacterial production. Bacterial production was also positively correlated to algal and bacterial biomass, but the relationship was not significant. The ratio of algal to bacterial biomass did not vary with nutrients whereas algal production tended to increase with nutrients more rapidly than bacterial production. 3. Instream nitrogen concentrations explained 38–58% of the variability in algal biomass and production. Bacterial abundance explained an additional 9–29% of the residual variance in algal production and biomass. However, the relationship between bacterial abundance and algal production and biomass, once nutrients were taken into account, was positive, in contrast to the predicted effect of competition. 4. Hence, we reject our original hypothesis that bacteria in biofilms compete with algae for nutrients and instead suggest that bacteria and algae in biofilms coexist in an association that offers space and resources to sustain production of both groups of organisms.  相似文献   

20.
The subsurface riparian zone was examined as an ecotone with two interfaces. Inland is a terrestrial boundary, where transport of water and dissolved solutes is toward the channel and controlled by watershed hydrology. Streamside is an aquatic boundary, where exchange of surface water and dissolved solutes is bi-directional and flux is strongly influenced by channel hydraulics. Streamside, bi-directional exchange of water was qualitatively defined using biologically conservative tracers in a third order stream. In several experiments, penetration of surface water extended 18 m inland. Travel time of water from the channel to bankside sediments was highly variable. Subsurface chemical gradients were indirectly related to the travel time. Sites with long travel times tended to be low in nitrate and DO (dissolved oxygen) but high in ammonium and DOC (dissolved organic carbon). Sites with short travel times tended to be high in nitrate and DO but low in ammonium and DOC. Ammonium concentration of interstitial water also was influenced by sorption-desorption processes that involved clay minerals in hyporheic sediments. Denitrification potential in subsurface sediments increased with distance from the channel, and was limited by nitrate at inland sites and by DO in the channel sediments. Conversely, nitrification potential decreased with distance from the channel, and was limited by DO at inland sites and by ammonium at channel locations. Advection of water and dissolved oxygen away from the channel resulted in an oxidized subsurface habitat equivalent to that previously defined as the hyporheic zone. The hyporheic zone is viewed as stream habitat because of its high proportion of surface water and the occurrence of channel organisms. Beyond the channel's hydrologic exchange zone, interstitial water is often chemically reduced. Interstitial water that has not previously entered the channel, groundwater, is viewed as a terrestrial component of the riparian ecotone. Thus, surface water habitats may extend under riparian vegetation, and terrestrial groundwater habitats may be found beneath the stream channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号