首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
12-O-Tetradecanoylphorbol-13-acetate (TPA) stimulates the human monoblastoid U937 cell to differentiate into a mature monocyte/macrophage-like cell. Since TPA may produce cellular responses by activating protein kinase C, the effects of TPA on kinase activity in the U937 cell were investigated. Brief exposures (less than or equal to 60 min) to TPA dramatically diminished protein kinase C-dependent phosphorylation of histone and endogenous substrates. However, using a peptide substrate corresponding to residues 720-737 of protein kinase C-epsilon, Ca2(+)-, phospholipid-, and diacylglycerol-dependent kinase activity was reduced only modestly after exposure to TPA. This phospholipid-dependent kinase activity coeluted on DEAE chromatography with protein kinase C. Examination of cytosolic protein kinase C content by Western blot analysis demonstrated a moderate decline in kinase content after TPA treatment. The decline was due primarily to loss of an 80-kDa species with preservation of a 76-kDa protein. The immunoreactive 76-kDa protein observed after TPA treatment comigrated on DEAE chromatography with the kinase activity phosphorylating the protein kinase C-epsilon peptide and had an elution profile similar to protein kinase C derived from untreated cells. Using antisera recognizing the catalytic and regulatory domains of the kinase, no evidence for proteolytic degradation of protein kinase C was observed. Although incubation of extracts from vehicle and TPA-treated cells inhibited the activity of partially purified protein kinase C, the degree of inhibition was similar in the two extracts. These findings suggest that TPA markedly diminishes protein kinase C-dependent phosphorylation of histone and endogenous substrates in part by altering kinase substrate specificity. These observations provide evidence for a novel post-translational process that can modulate protein kinase C-dependent phosphorylation.  相似文献   

2.
Capsids of hepatitis B virus and other hepadnaviruses contain a cellular protein kinase, which phosphorylates the capsid protein. Some phosphorylation sites are shown to be essential for distinct steps of viral replication as pregenome packaging or plus strand DNA synthesis. Although different protein kinases have been reported to phosphorylate the capsid protein, varying experimental approaches do not allow direct comparison. Furthermore, the activity of a specific protein kinase has not yet been correlated to steps in the hepadnaviral life cycle. In this study we show that capsids from various sources encapsidate active protein kinase Cα, irrespective of hepatitis B virus genotype and host cell. Treatment of a virion expressing cell line with a pseudosubstrate inhibitor showed that inhibition of protein kinase C phosphorylation did not affect genome maturation but resulted in capsid accumulation and inhibited virion release to the medium. Our results imply that different protein kinases have distinct functions within the hepadnaviral life cycle.  相似文献   

3.
4.
Activation of protein kinase C has been shown to be involved in the activation pathway of many cell types. Recently, a number of investigations have suggested that protein kinase C plays an essential role in T lymphocyte activation. The recent synthesis of the protein kinase inhibitors, H-7 and HA1004, have now made possible a new approach for testing the relevance of protein kinase C in T cell activation and proliferation. We now report that the antigen-induced and interleukin-2-induced proliferation of murine T cell lines can be consistently inhibited by the protein kinase C inhibitor, H-7. HA1004, a somewhat more potent inhibitor of cyclic nucleotide-dependent protein kinases, but a significantly weaker inhibitor of protein kinase C than H-7, demonstrated no consistent inhibition of these T cell responses. These results represent a further demonstration that protein kinase C plays an essential role in the activation of T cells.  相似文献   

5.
Protein kinase C, calcium and phospholipid degradation.   总被引:17,自引:0,他引:17  
In most cells, calcium signals are transient, while the resulting physiological responses often persist longer. The sustained activation of protein kinase C has been postulated to be essential for maintaining such cellular responses. It is becoming clear that an elaborate network involving protein kinase C, calcium and degradation of membrane phospholipids may generate several molecules that are necessary for sustaining the activation of protein kinase C itself. Multiple members of the protein kinase C family show distinct responses to calcium and the phospholipid degradation products, suggesting their unique functions in cell signalling.  相似文献   

6.
Effects of phorbol 12-myristate 13-acetate (PMA) on the fate of protein kinase C in two mouse thymoma cell lines, which are either responsive (EL4) or unresponsive (IEL4) to PMA-induced interleukin-2 (IL-2) production, were investigated with polyclonal antibodies raised against rat brain enzyme. These antibodies immunoprecipitated completely the protein kinase C from both cell lines and detected mainly an 82-kDa protein by immunoblot analysis of the crude homogenates as well as the partially purified kinase preparations. PMA elicited a time- and dose-dependent redistribution of protein kinase C from cytosol to the particulate fraction and proteolytic degradation of the kinase from both cell lines. The dose of PMA required for half-maximum protein kinase C translocation and degradation was at least five times lower for EL4 than for IEL4. In the presence of 16 nM PMA the rates of protein kinase C translocation and degradation were faster in EL4 than in IEL4, and the half-lives of protein kinase C in EL4 and IEL4 were less than 5 min and greater than 2 h, respectively. Analysis of the tryptic fragments of the immunoprecipitated enzyme, previously phosphorylated in the presence of [gamma-32P]ATP, revealed minor structural differences between the protein kinase C from these two cell lines. In neither cell line did the PMA-induced degradation of protein kinase C result in an accumulation of the Ca2+/phospholipid-independent kinase (catalytic unit) as analyzed by immunoblotting and gel filtration chromatography. Thus, activation of protein kinase C through the proteolytic conversion to the effector-independent catalytic unit plays little role in IL-2 production. The role of protein kinase C translocation and degradation in the PMA-induced responses in EL4 cells is unknown. However, IL-2 production in EL4 cells was reduced when PMA-induced degradation of protein kinase C was retarded by exogenously added protease inhibitors.  相似文献   

7.
The possible role of protein kinase C in avian granulosa cell steroidogenesis was studied in vitro by examining the effect of tumor-promoting phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA) on progesterone synthesis in chicken granulosa cells in short-term (3h) incubations. TPA (1-100 nM) caused a marginal but nonsignificant increase in progesterone production in granulosa cells isolated from the largest preovulatory follicle. When incubated in combination with luteinizing hormone (5-100 ng/mL), TPA suppressed the stimulatory effects of submaximally and maximally effective doses of the gonadotropin in a concentration-related manner. Similarly, the phorbol ester inhibited the steroidogenic responses to forskolin and dibutyryl cyclic AMP. By comparison, TPA had no appreciable effect on the metabolism of exogenous pregnenolone substrate to progesterone. Our data indicate that the tumor-promoting phorbol ester influences steroidogenic steps distal to cyclic AMP generation but at or before pregnenolone formation, and that protein kinase C may be a negative regulator of steroid biosynthesis in chicken granulosa cells.  相似文献   

8.
Epidermal growth factor (EGF) is produced in large quantities by the kidney. We identified EGF-binding sites on cultured rat renal glomerular mesangial cells. These cells serve as a model system for the investigation of renal prostaglandin biosynthesis. Since EGF has been shown to modulate phospholipase activity in other cell lines, we studied the ability of EGF to increase arachidonate release and prostaglandin E2 (PGE2) production in mesangial cells. We found that EGF stimulated arachidonate release and PGE2 production in the presence of the Ca2+ ionophore A23187. This stimulation was markedly potentiated by the addition of phorbol myristate acetate (PMA), which activates protein kinase C. However, down-regulation of protein kinase C by prolonged PMA treatment did not block the ability of EGF to stimulate PGE2 production in the presence of A23187. EGF also markedly potentiated the stimulation of PGE2 production by vasopressin, which increases intracellular Ca2+ and activates protein kinase C in these cells. The stimulatory effects of EGF were not the result of prolongation or enhancement of an increase in intracellular Ca2+ produced by ionophore or vasopressin. Furthermore, the synergistic interaction of EGF with PMA and vasopressin occurred despite the fact that these agents markedly decreased EGF binding in mesangial cells, presumably owing to protein-kinase-C-mediated phosphorylation of the EGF receptor. We conclude that there exists a distinct pathway for EGF-stimulated arachidonate release and PGE2 production in rat renal glomerular mesangial cells, which is synergistic with, but not dependent on, activation of protein kinase C. In contrast with long-term mitogenic responses to EGF, this rapid response may allow delineation of the membrane phospholipid changes and signalling steps involved in this aspect of EGF action.  相似文献   

9.
To study the subcellular events occurring after T cell activation we used cloned human CTL permeabilized with alpha-toxin of Staphylococcus aureus. This method of permeabilization leads to stable transmembrane channels that permit the introduction of small molecules into the cell but preserves the cellular structures and macromolecular contents of the CTL. We used the exocytosis of CTL-specific serine esterases as a marker of T cell activation. The TCR-activated exocytosis is functioning in such permeabilized CTL. Introduction of the membrane impermeable guanosine nucleotide-binding protein (G-protein) activating GTP-analog GTP gamma S into CTL triggers exocytosis if Ca2+ is present. For optimal exocytosis ATP is required. The G-protein inactivating GDP-analog GDP beta S inhibited exocytosis triggered via the TCR-CD3 complex but not that triggered by activating the protein kinase C. If the protein kinase C was depleted in CTL by overnight incubation with phorbolester, the response to GTP-gamma S was reduced by more than 50%. These experiments demonstrate the presence of a G-protein involved in TCR-mediated CTL triggering. In the sequence of signaling steps this G-protein is localized after TCR-triggering but before the formation of the protein kinase C-activating phosphoinositol breakdown product diacylglycerol in the sequence of signaling steps.  相似文献   

10.
These studies were designed to test the hypothesis that changes in intracellular Ca2+ levels and activation of the calcium ion- and phospholipid-dependent protein kinase C were required for the induction of macrophage tumoricidal activity by interferon-gamma (IFN-gamma). Phenothiazines and R24571, known antagonists of calcium-binding proteins and therefore nonspecific inhibitors of protein kinase C, blocked in a dose-dependent manner the induction of macrophage cytocidal activity by either natural or recombinant IFN-gamma. Macrophages depleted of intracellular Ca2+ by chelation with Quin 2, were also unresponsive to IFN-gamma. These treatments effected neither the binding of IFN-gamma to its cell surface receptor nor the normal intracellular processing of IFN-gamma. Activators of protein kinase C (such as phorbol esters) and Ca2+ ionophores when added alone did not effect the activation state of the macrophage population. However, macrophages exposed to both drugs in combination were elevated into the primed activation state such that in the presence of a second signal (lipopolysaccharide or heat killed Listeria monocytogenes), the cells were triggered to express full levels of tumoricidal activity. The capacity of phorbol esters to induce cellular activation correlated with their ability to bind and to activate protein kinase C. No synergistic effect was observed between IFN-gamma and protein kinase C activators and/or Ca2+ ionophores, indicating that the drugs could only prime and could not trigger macrophages for tumor cell killing. These results thus support the concept that protein kinase C activation and mobilization of intracellular Ca2+ are essential steps in the pathway of IFN-gamma-dependent induction of non-specific tumoricidal activity in macrophages.  相似文献   

11.
Quiescent rat glomerular mesangial cells were exposed to repeated cycles of stretching and relaxation, and the effects on the rate of collagen production, proliferation, and S6 kinase activity were investigated. Stretch/relaxation induced increases in production of both collagen and non-collagenous proteins. Proliferation of mesangial cells was stimulated by stretch/relaxation and epidermal growth factor, but not by angiotensin II; however, administration of angiotensin II augmented stretch/relaxation-induced cell proliferation. Cytosolic S6 kinase activity was stimulated by stretch/relaxation, angiotensin II, epidermal growth factor, or phorbol 12-myristate 13-acetate. The increased S6 kinase activity was detectable within 30 min after initiation of stretch/relaxation and was blocked by either inhibitors of protein kinase C or prior down-regulation of protein kinase C following prolonged incubation with phorbol 12-myristate 13-acetate. Both translocation of protein kinase C from the cytosolic to the membrane fraction and phosphorylation of an endogenous 80-kDa protein were observed within 5 min of initiation of stretch/relaxation. These results demonstrate that in mesangial cells, mechanical factors alone can induce increases in production of collagen and non-collagenous proteins and in cell proliferation. The observation that stretch/relaxation induced stimulation of S6 kinase activity through protein kinase C-dependent mechanisms suggests that activation of protein kinase C may be a key event in initiating adaptive responses of mesangial cells to increased workload.  相似文献   

12.
Regulation of surfactant secretion   总被引:4,自引:0,他引:4  
Lung surfactant is synthesized in the alveolar type II cell. Its lipids and hydrophobic proteins (SP-B and SP-C) are stored in lamellar bodies and secreted by regulated exocytosis. In contrast, the hydrophilic proteins (SP-A and SP-D) appear to be secreted independently of lamellar bodies. Regulation of surfactant secretion is mediated by at least three distinct signaling mechanisms: activation of adenylate cyclase with formation of cAMP and activation of cAMP-dependent protein kinase; activation of protein kinase C; and a Ca(2+)-regulated mechanism that likely results in the activation of Ca(2+)-calmodulin-dependent protein kinase. These signaling mechanisms are activated by a variety of agonists, some of which may have a physiological role. ATP is one such agent and it activates all three signaling mechanisms. There is increasing information on the identity of several of the signaling proteins involved in surfactant secretion although others remain to be established. In particular the identity of the phospholipase C, protein kinase C and phospholipase D isomers expressed in the type II cell and/or involved in surfactant secretion has been established. Distal steps in the secretory pathway beyond protein kinase activation as well as the physiological regulation of surfactant secretion, are major issues that need to be addressed.  相似文献   

13.
Phorbol ester tumor promoters such as 12-O-tetradecanoylphorbol acetate (TPA) activate the calcium- and phospholipid-dependent protein kinase C and enhance three biological responses (prolactin release, prolactin synthesis, and cell stretching) in GH4C5 rat pituitary cells. We have examined several actions on GH4C5 cells of TPA and two other classes of protein kinase C activators, synthetic cell permeant dioleins and bryostatins isolated from the marine bryozoan Bugula neritina. Bryostatins 1 and 2 (B1 and B2, respectively) competed for [3H]phorbol 12,13-dibutyrate binding to the protein kinase C complex in intact cells nearly equipotently with TPA. B1 and B2, 1-oleoyl-2-acetylglycerol (OAG) and 1,2-dioctanoylglycerol (Di8) as well as TPA each activated partially purified protein kinase C from GH4C5 cells. B1, B2, and TPA each enhanced the acute release of prolactin from GH4C5 cells to a similar maximal extent. B1, B2, and TPA also enhanced prolactin synthesis. However, B1 and B2 were only partial agonists because they enhanced prolactin synthesis to a lesser maximal extent than did TPA and, given in combination, they reduced TPA-enhanced prolactin synthesis. OAG and Di8 stimulated prolactin release (to a lesser maximal extent than TPA) and did not stimulate prolactin synthesis. Pretreatment with OAG did not reduce TPA-stimulated prolactin release or synthesis. B2 and TPA induced cell stretching in GH4C5 cells, whereas B1, OAG, and Di8 induced little if any stretching. B1, but not B2, given in combination with TPA antagonized TPA-induced stretching but did not reduce thyrotropin-releasing hormone- or epidermal growth factor-induced stretching. We conclude that the bryostatins, phorbol esters, and dioleins bind to the same site on the protein kinase C complex to activate the enzyme, but they alter three biological responses in GH4C5 cells with selectivities and efficacies that differ. We propose that different activators of protein kinase C (such as bryostatins, dioleins, and phorbol esters) may elicit different cellular responses by altering the substrate specificity or activating multiple forms of the kinase.  相似文献   

14.
Glucose transport stimulation by insulin, bombesin, and bradykinin in Swiss 3T3 fibroblasts was compared with the phosphoinositide hydrolysis effects of the same stimulants in a variety of experimental paradigms known to affect generation and/or functioning of intracellular second messengers: short- and long-term treatments with phorbol dibutyrate, that cause activation and down-regulation of protein kinase C, respectively; cell loading with high [quin2], that causes clamping of [Ca2+]i near the resting level; poisoning with pertussis toxin, that affects the GTP binding proteins of the Go/Gi class; treatment with Ca2+ ionophores. Glucose transport stimulation by maximal [insulin] was affected by neither pertussis toxin nor protein kinase C down-regulation. The latter, however, partially blocked the action of suboptimal [insulin]; moreover, acute phorbol dibutyrate treatment caused responses more than additive at all [insulin]. Thus, the insulin action on glucose transport in 3T3 cells appears to be synergistically potentiated by a protein kinase C-dependent mechanism, and not directly mediated by the enzyme. This result correlates with the lack of effect of insulin on phosphoinositide hydrolysis. In contrast, part of the glucose transport responses induced by bombesin and bradykinin appeared to be mediated by protein kinase C in proportion with the stimulation induced by these peptides on the phosphoinositide hydrolysis. The protein kinase C-independent portion of the response to bradykinin was found to be inhibitable by pertussis toxin. This latter result might suggest an interaction between the bradykinin receptor and a glucose transporter, mediated by a protein of the Go/Gi class.  相似文献   

15.
Water flow across the amphibian urinary bladder can be induced by either vasopressin or serosal hypertonicity. In an effort to determine the common intracellular steps mediating both responses, we determined the in situ activation of cyclic AMP-dependent protein kinase in bladders stimulated by vasopressin or hypertonicity. Treatment of bladders with vasopressin (1 mU/ml) caused in situ activation of cytosolic cyclic AMP-dependent protein kinase of epithelial cells, with a rise in the kinase ratio and cyclic AMP content. Similarly, hyperonicity increased the kinase ratio, but this occured without a measurable increase in cyclic AMP content per mg protein. Because of the hypertonicity-induced cell shrinkage, epithelial cell water decreased by 20%, which may result in a proportionate increase in cyclic AMP concentration (per ml cell water). Furthermore, cell shrinkage also increases intracellular electrolyte concentration, which, in turn, should delay reassociation and consequent inactivation of the predominant Type II cyclic AMP-dependent protein kinase of the epithelial cells. Thus activation of cyclic AMP-dependent protein kinase during hypetonicity may be the result of cell shrinkage, with an associated increase in cyclic AMP and electrolyte concentrations. Studies with prostaglandin synthesis inhibitors and colchicine, a microtubule disrupting agent, also indicated common pathways for vasopressin and hypertonicity. Both naproxen and meclofenamate significantly enhanced the hypertonicity response. Colchicine pretreatment, on the other hand, caused a small (18%) but significant inhibition of the hypertnicity response, similar to its effect on the vasopressine response (25% inhibition). Thus, the increased water permeability of the toad bladder in response to both vasopressin and hypertonicity follows a similar pathway. Activation of cyclic AMP-dependent protein kinase represents the first common step yet identified.  相似文献   

16.
Ca2+- and phospholipid-dependent protein kinase (protein kinase C) has been shown to modify receptor-mediated Ca2+ responses in a variety of cells. To assess its possible role in modulating voltage-dependent Ca2+ responses, we examined the effect of tumor-promoting phorbol esters, which activate protein kinase C, on Ca2+ channel function in the PC12 neural cell line. Phorbol 12-myristate 13-acetate reduced K+-depolarization-evoked 45Ca uptake and decreased binding of the Ca2+ channel antagonist [3H] (+)PN200-110 to intact cells. Inhibition of binding was markedly reduced in PC12 membranes, but was restored by reconstituting membranes with protein kinase C activity. Protein kinase C may therefore participate in endogenous regulation of voltage-dependent Ca2+ channels in mammalian neural cells.  相似文献   

17.
18.
We have characterized a serine/threonine protein kinase from Xenopus metaphase-II-blocked oocytes, which phosphorylates in vitro the microtubule-associated protein 2 (MAP2). The MAP2 kinase activity, undetectable in prophase oocytes, is activated during the progesterone-induced meiotic maturation (G2-M transition of the cell cycle). p-Nitrophenyl phosphate, a phosphatase inhibitor, is required to prevent spontaneous deactivation of the MAP2 kinase in crude preparations; conversely, the partially purified enzyme can be in vitro deactivated by the low-Mr polycation-stimulated (PCSL) phosphatase (also termed protein phosphatase 2A2), working as a phosphoserine/phosphothreonine-specific phosphatase and not as a phosphotyrosyl phosphatase indicating that phosphorylation of serine/threonine is necessary for its activity. S6 kinase, a protein kinase activated during oocyte maturation which phosphorylates in vitro ribosomal protein S6 and lamin C, can be deactivated in vitro by PCSL phosphatase. S6 kinase from prophase oocytes can also be activated in vitro in fractions known to contain all the factors necessary to convert pre-M-phase-promoting factor (pre-MPF) to MPF. Active MAP2 kinase can activate in vitro the inactive S6 kinase present in prophase oocytes or reactivate S6 kinase previously inactivated in vitro by PCSL phosphatase. These data are consistent with the hypothesis that the MAP2 kinase is a link of the meiosis signalling pathway and is activated by a serine/threonine kinase. This will lead to the regulation of further steps in the cell cycle, such as microtubular reorganisation and S6 kinase activation.  相似文献   

19.
The phorbol ester tumor promoter, 12-O-tetradecanoylphorbol-13-acetate [TPA) or phorbol 12-myristate 13-acetate), directly activates the calcium- and phospholipid-dependent protein kinase C (protein kinase C), which, in turn, generates a number of cellular responses. The bryostatins, a family of macrocyclic lactones isolated from marine bryozoans, also bind to and active protein kinase C. However, they differ from TPA in the selectivity of their responses in that they behave either as agonists or antagonists of protein kinase C actions. We used several bryostatins and TPA to examine the role of protein kinase C in the regulation of GH4C1 rat pituitary tumor cell proliferation. TPA inhibited [3H]thymidine incorporation in GH4 cells in a stereoselective and concentration-dependent manner. Examination of cell cycle distribution by flow cytometry revealed that TPA decreased the percentage of cells in S-phase and proportionally increased the percentage of G1-phase cells. Bryostatin 1 alone did not affect cell proliferation, but prevented the TPA inhibition of cell proliferation. Bryostatin 1 treatment from 30 min to 6 h after TPA treatment also prevented the growth-inhibitory action of TPA, suggesting that prolonged stimulation of protein kinase C is necessary for growth inhibition. Both bryostatin 1 and TPA down-regulated protein kinase C, indicating that down regulation of the enzyme cannot account for the growth inhibitory action of TPA. Bryostatin 2, which differs from bryostatin 1 by a hydroxyl substitution for the acetyl group at the C-7 carbon of the macrocyclic lactone ring (R1), inhibited cell proliferation and did not reduce the growth-inhibitory action of TPA. Bryostatins 3 and 8 (each of which has an ester group in the R1 position, yet contains other structural modifications) are antagonists for TPA inhibition of GH4 cell proliferation like bryostatin 1. We next examined the effect of bryostatins 3 and 8 on cell-substratum adhesion, a cellular response observed after GH4 cells are treated with growth-inhibitory agents. Bryostatin 8 (like bryostatin 1) did not enhance cell-substratum adhesion and blocked the action of TPA. In contrast, bryostatin 3 enhanced cell-substratum adhesion. Because bryostatin 3 blocked TPA inhibition of cell proliferation, yet did not block TPA-enhanced cell-substratum adhesion, these responses are not interdependent. We next examined the effect of bryostatin on other growth-inhibitory agents for GH4 cells. Bryostatin 8 blocks the effect of TPA on [3H]thymidine incorporation and the entry of G1 cells into S-phase, but does not block the growth-inhibitory action of thyrotropin-releasing hormone or epidermal growth factor.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Sn-1,2-diacylglycerols (DAG) and ionized-free calcium can act as intracellular second messengers for cell activation. Traditionally, T-lymphocyte activation is assessed by measurements of DNA synthesis or lymphokine production, but these responses require several days to occur and involve multiple intermediary regulatory steps. In contrast, we have found that T-lymphocytes demonstrate rapid enhancement of A-(alanine-favoring) system amino acid uptake when treated with DAG or ionomycin. A 30-40% increase in the initial velocity of uptake (vi) of the synthetic A-system specific amino acid, methylamino-isobutyric acid (MeAIB), was measured following 5 min of exposure to DAG or ionomycin. The vi was enhanced 60% from 12 to 19 mumol/liter cell water per min after 30 min exposure of T-cells to optimal concentrations of dioctanoylglycerol (30 microM), oleoylacetylglycerol (30 microM), or ionomycin (5 microM) (P less than .01 for each agent). A 50-fold excess of non-radioactive MeAIB inhibited 80% of [14C]MeAIB uptake in both unstimulated and stimulated cells, indicating that uptake remained largely carrier-mediated on treatment with these agents. Cycloheximide, 100 micrograms/ml, inhibited protein synthesis but did not block the A-system amino acid transport enhancement induced by DAG or ionomycin. The DAG-induced increase in the vi was blocked 40% with 100 microM H-7, an inhibitor of protein kinase C. H-7 treatment did not inhibit the ionomycin-induced A-system enhancement. A marked increase in cytoplasmic free calcium was measured when T-lymphocytes were exposed to ionomycin but not on DAG exposure, and the A-system effect of ionomycin but not DAG was blocked by extracellular EGTA. These data are compatible with two pathways for rapid enhancement of A-system amino acid uptake in T-lymphocytes. DAG stimulation is mediated via protein kinase C whereas ionomycin produces an A-system effect of similar magnitude independent of protein kinase C by an increase in cytoplasmic calcium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号