首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Efficient lipid-mediated transfection of DNA into primary rat hepatocytes   总被引:3,自引:0,他引:3  
Cationic lipids are an effective means for transfecting nucleic acids into a variety of cell types. Very few of these lipids, however, have been reported to be effective with primary cells. We report on the efficacy of several commercially available cationic lipid reagents to transfect plasmid DNA into primary rat hepatocytes in culture. The reagents tested in this study include TransfectAce, LipofectAmine, Lipofectin, N-[1-(2,3-dioleyloxy)propyl]-n,n,n-trimethylammoniumchloride (DOTMA), (N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethyl-ammonium methylsulfate (DOTAP), and cetyltrimethyl-ammonium bromide/dioleoylphosphatidylethanol-amine (CTAB/DOPE). Electron micrographic (EM) studies indicate that similar size Lipofectin and DOTAP vesicles contain DNA-like material internally and that these vesicles attach to the cell membrane. DOTAP vesicles are multilamellar, appear as clusters, and have a high DNA-to-lipid ratio. Lipofectin vesicles appear to attach to the cell surface as individual vesicles. The EM observations are consistent with current theories on the mechanism of transfection by cationic lipids. While Lipofectin has proven to be effective in transfection studies of primary cells in culture, we have found DOTAP to be a viable alternative. DOTAP yields transfection rates in hepatocytes comparable to DOTMA and Lipofectin, however, at lower concentrations of reagent and at considerably less cost. Optimal conditions for transfecting 5 μg of plasmid DNA with DOTAP were achieved by utilizing multilamellar (vortexed) vesicles at a concentration of 15 μg DOTAP per 2 ml media in 60-mm plates for 2 h transfection time. In this study, DOTAP has proven to be economical, easy to prepare, and very effective in transfecting DNA into primary rat hepatocytes.  相似文献   

2.
Mitochondrial-type ferredoxin-NADP(H) oxidoreductases (FNR) catalyze the electron transport between NADPH and substrates such as ferredoxins. Even though enzymes belonging to this family are present in several organisms, including prokaryotes, their biological function is not clearly understood. In a previous work, we reported the existence of a mitochondrial-type FNR in the trematode Schistosoma mansoni (SmFNR). This enzyme conferred tolerance to oxidative stress conditions when tested in an heterologous system. In this work, we demonstrate that the SmFNR can be imported to mitochondria in mammal cells and show that its expression is induced in parasite cultures by reactive oxygen species (ROS). The results reported herein give further support to the involvement of SmFNR in ROS metabolism.  相似文献   

3.
Urea cycle (UC) is the main pathway of ammonium removal. A deficiency in any of the five classical enzymes of the pathway causes a urea cycle disorder. Hepatocellular transplantation is one of the techniques applicable to treat this disorder. In the present work, we investigated the activities and the relative expression levels of two of the UC enzymes: Carbamyl phosphate synthetase I (CPSI) and ornithine transcarbamylase (OTC), in isolated hepatocytes preserved up to 120 h in University of Wisconsin (UW) solution at 0 degrees C, and during the rewarming of these suspensions. During preservation, CPSI showed differences in mRNA levels respect to time 0, while ornithine transcarbamylase remained unchanged. At the end of the rewarming, CPSI showed values of enzymatic activity and relative mRNA level comparable with the control, meanwhile, there was an increment in OTC activity. In line with these results, we found that hepatocytes cold preserved up to 120h in UW solution maintained their ability to remove an ammonium load comparable to freshly isolated hepatocytes. These data indicated that our preservation conditions up to 120h in UW solution followed by rewarming, preserves UC enzymes at levels similar to freshly isolated hepatocytes, allowing the use of these cells in bioartificial liver devices or hepatocellular transplantation.  相似文献   

4.
Ferredoxin-NADP(H) reductase (FNR) catalyses the final step of the photosynthetic electron transport in chloroplasts. Using an antisense RNA strategy to reduce expression of this flavoenzyme in transgenic tobacco plants, it has been demonstrated that FNR mediates a rate-limiting step of photosynthesis under both limiting and saturating light conditions. Here, we show that these FNR-deficient plants are abnormally prone to photo-oxidative injury. When grown under autotrophic conditions for 3 weeks, specimens with 20-40% extant reductase undergo leaf bleaching, lipid peroxidation and membrane damage. The magnitude of the effect was proportional to the light intensity and to the extent of FNR depletion, and was accompanied by morphological changes involving accumulation of aberrant plastids with defective thylakoid stacking. Damage was initially confined to chloroplast membranes, whereas Rubisco and other stromal proteins began to decline only after several weeks of autotrophic growth, paralleled by partial recovery of NADPH levels. Exposure of the transgenic plants to moderately high irradiation resulted in rapid loss of photosynthetic capacity and accumulation of singlet oxygen in leaves. The collected results suggest that the extensive photo-oxidative damage sustained by plants impaired in FNR expression was caused by singlet oxygen building up to toxic levels in these tissues, as a direct consequence of the over-reduction of the electron transport chain in FNR-deficient chloroplasts.  相似文献   

5.
Antioxidant responses to varying degrees of paraquat stress in freshly isolated photosynthesizing pea (Pisum sativum L.) protoplasts from cultivars Progress and Nugget were studied. Leaves of comparable maturity were used for protoplast isolation. Nugget protoplasts were more resistant to paraquat in the micromolar range under our conditions. In Nugget, a non-bleaching paraquat concentration (10 µM) inhibited CO2-dependent O2 evolution ca 50% during the first 40 min, remaining at that rate (“coping behavior”) for up to 100 min. In contrast, Progress protoplasts treated with the same concentration of paraquat did not exhibit coping behavior. Antioxidant enzyme activities were unaltered throughout the time course of the experiment in treated protoplasts from Nugget and in chloroplasts isolated from them. Thus, the coping behavior of Nugget protoplasts cannot be attributed to changes in activities of the three antioxidant enzymes tested. Paraquat treatment did not affect antioxidant enzyme activities in Progress protoplasts nor in chloroplasts isolated from them. When higher doses of paraquat were used (12 h, 0.1 mM paraquat), protoplasts from both cultivars were rapidly bleached and total protein decreased to ca 30% of pre-stress levels. Glutathione reductase (GR, EC 1.6.4.2) activity dropped in protoplasts from both cultivars under the severe stress conditions in concert with declines in protein levels. However, superoxide dismutase (SOD, EC 1.15.1.1) activity remained constant over the first 9 h of the time course, increasing to ca 150& of original levels by the final, 12-h time point. The activity of the plastid Cu,Zn isoform, expressed as a percentage of total SOD activity, declined over the time course of the experiment while that of mitochondrial MnSOD appeared to increase. This change in activity of MnSOD correlated with cell decline, therefore, and was not correlated with protection. These data are in agreement with some earlier reports and are compatible with the hypothesis that SOD activity levels increase in response to reactive oxygen species levels, even under conditions leading to cell death.  相似文献   

6.
There is increasing evidence that carbon monoxide (CO), a signaling molecule generated during the degradation of heme by heme oxygenase-1 (HO-1) in biological systems, has a variety of cytoprotective actions, including anti-hypoxic effects at low temperatures. However, during liver cold preservation, a direct effect needs to be established. Here, we designed a study to analyze the role of CO, delivered via a carbon monoxide-releasing molecule (CO-RM) in the maintenance of liver function, and integrity in rats during cold ischemia/reperfusion (CI/R) injury. We used an isolated normothermic perfused liver system (INPL) following a clinically relevant model of ex vivo 48 h cold ischemia stored in a modified University of Wisconsin (UW) solution, to determine the specific effects of CO in a rat model. CO was generated from 50 μM tricarbonylchloro ruthenium-glycinato (CORM-3), a water-soluble transition metal carbonyl that exerts pharmacological activities via the liberation of controlled amounts of CO in biological systems. The physiological effects of CORM-3 were confirmed by the parallel use of a specific inactive compound (iCORM-3), which does not liberate CO in the cellular environment.CORM-3 addition was found to prevent the injury caused by cold storage by improving significantly the perfusion flow during reperfusion (by almost 90%), and by decreasing the intrahepatic resistance (by 88%) when compared with livers cold preserved in UW alone. Also, CORM-3 supplementation preserved good metabolic capacity as indicated by hepatic oxygen consumption, glycogen content, and release of lactate dehydrogenase. Liver histology was also partially preserved by CORM-3 treatment.

Conclusions

These findings suggest that CO-RM could be utilized as adjuvant therapeutics in UW solutions to limit the injury sustained by donor livers during cold storage prior to transplantation, as has been similarly proposed for the heart, and kidney.  相似文献   

7.
BACKGROUND INFORMATION: ATP is released from many cell types exposed to hypo-osmotic shock and is involved in RVD (regulatory volume decrease). Purinergic signalling events have been extensively investigated in mammals, but not in marine teleosteans. RESULTS: The effect of hypo-osmotic shock on ATP release was examined in isolated hepatocytes from turbot (Scophthalmus maximus), a marine flatfish. Hypo-osmotic stress (240 mOsm x kg(-1)) induced a significant increase in ATP efflux, and was inhibited by a potential CFTR (cystic fibrosis transmembrane conductance regulator) inhibitor, glibenclamide, but not by the MDR1 (multidrug resistance 1) P-glycoprotein inhibitor, verapamil. ATP efflux could be a cAMP-dependent process, as IBMX (isobutylmethylxanthine) and forskolin triggered the process under iso-osmotic conditions. Protein kinases, including protein kinase C, could also be involved, as staurosporine and chelerythrine inhibited the mechanism. Calcium could contribute to ATP efflux as ionomycin, a calcium ionophore, elicited a rapid release under iso-osmotic conditions, and chelation using EGTA abolished ATP release under hypo-osmotic conditions. RVD was partially abolished by apyrase, an ATP scavenger, and suramin, a purinoceptor antagonist. Moreover, hypo-osmotic shock induced a rise in intracellular calcium which could be involved in RVD. Since extracellular ATP triggered an increase in cellular free-calcium content under iso-osmotic conditions, our results could indicate that hypo-osmotic-induced ATP efflux contributes to RVD in turbot hepatocytes by stimulating purinergic receptors, which may lead to activation of a calcium signalling pathway. CONCLUSIONS: These data provide the first evidence of volume-sensitive ATP signalling for volume maintenance in a marine teleost fish cell type.  相似文献   

8.
Ischaemia impairs organ quality during preservation in a time‐dependent manner, due to a lack of oxygen supply. Its impact on pancreas and islet transplantation outcome has been demonstrated by a correlation between cold ischaemia time and poor islet isolation efficiency. Our goal in the present study was to improve pancreas and islet quality using a novel natural oxygen carrier (M101, 2 g/L), which has been proven safe and efficient in other clinical applications, including kidney transplantation, and for several pre‐clinical transplantation models. When M101 was added to the preservation solution of rat pancreas during ischaemia, a decrease in oxidative stress (ROS), necrosis (HMGB1), and cellular stress pathway (p38 MAPK)activity was observed. Freshly isolated islets had improved function when M101 was injected in the pancreas. Additionally, human pancreases exposed to M101 for 3 hours had an increase in complex 1 mitochondrial activity, as well as activation of AKT activity, a cell survival marker. Insulin secretion was also up‐regulated for isolated islets. In summary, these results demonstrate a positive effect of the oxygen carrier M101 on rat and human pancreas during preservation, with an overall improvement in post‐isolation islet quality.  相似文献   

9.
A direct involvement of the antioxidant enzyme NAD(P)H:quinone oxidoreductase (NQO1) in neuroprotection has not yet been shown. The aim of this study was to examine changes, localization and role of NQO1 after different neuronal injury paradigms. In primary cultures of rat cortex the activity of NQO1 was measured after treatment with ethylcholine aziridinium (AF64A; 40 micro m), inducing mainly apoptotic cell death, or oxygen-glucose deprivation (OGD; 120 min), which combines features of apoptotic and necrotic cell death. After treatment with AF64A a significant NQO1 activation started after 24 h. Sixty minutes after OGD a significant early induction of the enzyme was observed, followed by a second increase 24 h later. Enzyme activity was preferentially localized in glial cells in control and injured cultures, however, expression also occurred in injured neuronal cells. Inhibition of the NQO1 activity by dicoumarol, cibacron blue or chrysin (1-100 nM) protected the cells both after exposure to AF64A or OGD as assessed by the decreased release of lactate dehydrogenase. Comparable results were obtained in vivo using a mouse model of focal cerebral ischaemia. Dicoumarol treatment (30 nmol intracerebroventricular) reduced the infarct volume by 29% (p = 0.005) 48 h after the insult. After chemical induction of NQO1 activity by t-butylhydroquinone in vitro neuronal damage was exaggerated. Our data suggest that the activity of NQO1 is a deteriorating rather than a protective factor in neuronal cell death.  相似文献   

10.
NAD(P)H:quinone oxidoreductase (NQO1; EC 1.6.99.2) catalyzes a two-electron transfer involved in the protection of cells from reactive oxygen species. These reactive oxygen species are often generated by the one-electron reduction of quinones or quinone analogs. We report here on the previously unreported Fe(III) reduction activity of human NQO1. Under steady state conditions with Fe(III) citrate, the apparent Michaelis-Menten constant (Km(app)) was approximately 0.3 nM and the apparent maximum velocity (Vmax(app)) was 16 U mg(-1). Substrate inhibition was observed above 5 nM. NADH was the electron donor, Km(app)= 340 microM and Vmax(app) = 46 Umg(-1). FAD was also a cofactor with a Km(app) of 3.1 microM and Vmax(app) of 89 U mg(-1). The turnover number for NADH oxidation was 25 s(-1). Possible physiological roles of the Fe(III) reduction by this enzyme are discussed.  相似文献   

11.
We have studied changes in plasma membrane NAD(P)H:quinone oxidoreductases of HL-60 cells under serum withdrawal conditions, as a model to analyze cell responses to oxidative stress. Highly enriched plasma membrane fractions were obtained from cell homogenates. A major part of NADH-quinone oxidoreductase in the plasma membrane was insensitive to micromolar concentrations of dicumarol, a specific inhibitor of the NAD(P)H:quinone oxidoreductase 1 (NQO1, DT-diaphorase), and only a minor portion was characterized as DT-diaphorase. An enzyme with properties of a cytochrome b 5 reductase accounted for most dicumarol-resistant quinone reductase activity in HL-60 plasma membranes. The enzyme used mainly NADH as donor, it reduced coenzyme Q0 through a one-electron mechanism with generation of superoxide, and its inhibition profile by p-hydroxymercuribenzoate was similar to that of authentic cytochrome b 5 reductase. Both NQO1 and a novel dicumarol-insensitive quinone reductase that was not accounted by a cytochrome b 5 reductase were significantly increased in plasma membranes after serum deprivation, showing a peak at 32 h of treatment. The reductase was specific for NADH, did not generate superoxide during quinone reduction, and was significantly resistant to p-hydroxymercuribenzoate. The function of this novel quinone reductase remains to be elucidated whereas dicumarol inhibition of NQO1 strongly potentiated growth arrest and decreased viability of HL-60 cells in the absence of serum. Our results demonstrate that upregulation of two-electron quinone reductases at the plasma membrane is a mechanism evoked by cells for defense against oxidative stress caused by serum withdrawal.  相似文献   

12.
13.
The effects of reduced osmotic potential on photosynthesis and respiration were studied in mesophyll protoplasts of pea (Pisum sativum). Osmotic stress was induced by increasing the sorbitol concentration in the medium from 0·4 kmol m−3 (-1·3 MPa) to 1·0 kmol m−3 (-3·1 MPa). Protoplasts lost up to 35% of the maximum capacity of photo-synthetic carbon assimilation (but not PS II mediated activity) soon after exposure to 1·0 kmol m−3 sorbitol. The response of protoplast respiration to osmotic stress was intriguing. Respiration was stimulated if stress was induced at 25°C, but was inhibited when protoplasts were subjected to osmotic stress at 0°C. Photosynthesis was also much more sensitive to osmotic stress at 0°C than at 25°C. The inhibitory effects of osmotic stress on photosynthesis as well as respiration were amplified by not only chilling but also photoinhibitory light. The photosynthetic or respiratory activities of protoplasts recovered remarkably when they were transferred from hyperosmotic (1·0 kmol m−3 sorbitol) back to iso-osmotic medium (0·4 kmol m−3 sorbitol), demonstrating the reversibility of osmotic-stress-induced changes in protoplasts. Respiration was more resistant to osmotic stress and was quicker to recover than photosynthesis. We suggest that the experimental system of protoplasts can be useful in studying the effects of osmotic stress on plant tissues.  相似文献   

14.
The effect of the plasticizer di(2-ethylhexyl)phthalate on the intracellular membranes of hepatocytes was investigated. Supplementation of the diet with 2% plasticizer resulted in the appearance of a large number of peroxisomes, and the number of mitochondria was also greatly increased. No significant change in the amount or appearance of the endoplasmic reticulum was detected. The oxidation of palmitoyl-CoA in peroxisomes and the activities of carnitine-acyltransferases are increased to a great extent in both mitochondria and peroxisomes. Intact respiratory control and oxidative phosphorylation indicated that mitochondrial integrity was maintained during the induction. In microsomes, cytochrome P-450 and NADPH-cytochrome c reductase are elevated. The increased incorporation of glycerol into phospholipids indicated an increased rate of synthesis. The induction of peroxisomal and mitochondrial membranes and enzymes, but not of the membranes of the endoplasmic reticulum, by phthalate esters is an unusual and valuable induction pattern not seen with other inducers.  相似文献   

15.
16.
Neutral red (NR) in medium was absorbed and concentrated in lysosomes of cultured rat and human hepatocytes. NR uptake increased with the time of incubation and reached a plateau in 2 hr. Uptake was proportional to the concentration of the NR solution and the numbers of viable liver cells. Prolonged culture of hepatocytes increased the numbers of lysosomes, and thus, the dye accumulation. The NR can be extracted from lysosomes for quantitative measurement of hepatocyte viability and cytotoxicity of xenobiotics. With this assay, several serum-free media (e.g., Waymouth's, MEM, LHC-8, etc.) were compared for the maintenance of viable hepatocytes in vitro. Interestingly, LHC-8 medium, which is used to grow human bronchial epithelial cells, best preserved viable rat hepatocytes. The cytotoxic effects of dimethylnitrosamine (DMN) and aflatoxin B1 (AFB1) were examined by NR assay on rat and human hepatocyte cultures and were found to be dependent on dose and time of the exposures. NR50 was 20 mM for DMN and 0.072 µM for AFB1 in rat hepatocytes with 24 hr of exposures and reduced to 12.5 mM for DMN and 0.053 µ uM for AFB1 with 48 fr exposures. Human hepatocytes were more resistant to the toxicity of both chemicals; NR50 values were 100 mM DMN and 1.8 µM AFB1 respectively, for 24 hr treatments. Compared with lactate dehydrogenase (LDH) leakage test, the NR assay was simpler and more sensitive in determining the viability and cytotoxicity of xenobiotics in primary cultures of hepatocytes.Abbreviations NR Neutral Red - MEM Eagle's Minimum Essential Medium - DMN dimethylnitrosamine - AFB1 aflatoxin B1 - LDH lactate dehydrogenase - HBSS Hanks balanced salt solution; - EDTA ethylene bis (oxyethylenenitrilo)-tetraacetic acid - L-15 Leibovitz's 15 - NADH B-nicotinamide adenine dinu - FBS fetal bovine serum - IA immediate autopsy Contribution No. 2816 from Laboratory of Genotoxicology.  相似文献   

17.
It is well established that several iron complexes can induce oxidative damage in hepatic mitochondrial membranes by catalyzing the formation of ·OH radicals and/or by promoting lipid peroxidation. This is a relevant process for the molecular basis of iron overload diseases. The present work demonstrates that Fe(II)ATP complexes (5–50M) promote an oxygen consumption burst in a suspension of isolated rat liver mitochondria (either in the absence or presence of Antimycin A), caused mainly by lipid peroxidation. Fe(II)ATP alone induced small levels of oxygen uptake but no burst. The time course of Fe(II)ATP oxidation to Fe(III)ATP in the extramitochondrial media also reveals a simultaneous burst phase. The iron chelator Desferal (DFO) or the chain-break antioxidant butylated hydroxytoluene (BHT) fully prevented both lipid peroxidation (quantified as oxygen uptake burst) and mitochondrial swelling. DFO and BHT were capable of stopping the ongoing process of peroxidation at any point of their addition to the mitochondrial suspension. Conversely, DFO and BHT only halted the Fe(II)ATP-induced mitochondrial swelling at the onset of the process. Fe(II)ATP could also cause the collapse of mitochondrial potential, which was protected by BHT if added at the onset of the damaging process. These results, as well as correlation studies between peroxidation and mitochondrial swelling, suggest that a two phase process is occurring during Fe(II)ATP-induced mitochondrial damage: one dependent and another independent of lipid peroxidation. The involvement of lipid peroxidation in the overall process of mitochondrial membrane injury is discussed.Abbreviations AA Antimycin A - BHT butylated hydroxytoluene - EGTA ethylene glycol-bis(-aminoethyl ether) - N,N,N,N tetraacetic acid - DFO Desferal - HEPES N-(2-hydroxyethyl)piperazine-N-2-ethanesulfonic acid - SOD superoxide dismutase - TPP+ tetraphenylphosphonium bromide - TBARS thiobarbituric acid reactive substances  相似文献   

18.
The mechanism by which plants regulate channelling of photosynthetically derived electrons into different areas of chloroplast metabolism remains obscure. Possible fates of such electrons include use in carbon assimilation, nitrogen assimilation and redox signalling pathways, or return to the plastoquinone pool through cyclic electron flow. In higher plants, these electrons are made accessible to stromal enzymes, or for cyclic electron flow, as reduced ferredoxin (Fd), or NADPH. We investigated how knockout of an Arabidopsis ( Arabidopsis thaliana ) ferredoxin:NADPH reductase (FNR) isoprotein and the loss of strong thylakoid binding by the remaining FNR in this mutant affected the channelling of photosynthetic electrons into NADPH- and Fd-dependent metabolism. Chlorophyll fluorescence data show that these mutants have complex variation in cyclic electron flow, dependent on light conditions. Measurements of electron transport in isolated thylakoid and chloroplast systems demonstrated perturbed channelling to NADPH-dependent carbon and Fd-dependent nitrogen assimilating metabolism, with greater competition in the mutant. Moreover, mutants accumulate greater biomass than the wild type under low nitrate growth conditions, indicating that such altered chloroplast electron channelling has profound physiological effects. Taken together, our results demonstrate the integral role played by FNR isoform and location in the partitioning of photosynthetic reducing power.  相似文献   

19.
Mammalian NAD(P)H:quinone oxidoreductase (NQO1, DT-diaphorase, EC 1.6.99.2) catalyzes the two-electron reduction of quinones and plays one of the main roles in the bioactivation of quinoidal drugs. In order to understand the enzyme substrate specificity, we have examined the reactions of rat NQO1 with a number of quinones with available potentials of single-electron (E(1)(7)) reduction and pK(a) of their semiquinones. The hydride transfer potentials (E(7)(H(-))) were calculated from the midpoint potentials of quinones and pK(a) of hydroquinones. Our findings imply that benzo- and naphthoquinones with a van der Waals volume (VdWvol) < or = 200 A(3) are much more reactive than glutathionyl-substituted naphthoquinones, polycyclic quinones, and FMN (VdWvol>200 A(3)) with the same reduction potentials. The entropies of activation (DeltaS(not equal)) in the reduction of "fast" oxidants are equal to -84 to -76 J mol(-1) K(-1), whereas in the reduction of "slow" oxidants Delta S(not equal)=-36 to -11 J mol(-1) K(-1). The large negative Delta S(not equal) in the reduction of fast oxidants may be explained by their better electronic coupling with reduced FAD or the formation of charge-transfer complexes, since fast oxidants bind at the dicumarol binding site, whereas the binding of some slow oxidants outside it has been demonstrated. The reactivity of quinones may be equally well described in terms of the three-step (e(-),H(+),e(-)) hydride transfer, using E(1)(7), pK(a)(QH*), and VdWvol as correlation parameters, or in terms of single-step (H(-)) hydride transfer, using E(7)(H(-)) and VdWvol in the correlation. The analysis of NQO1 reactions with single-electron acceptors and quinones using an "outer-sphere" electron transfer model points to the possibility of a three-step hydride transfer.  相似文献   

20.
Ubiquinol is considered to serve as an endogenous antioxidant. However, the mechanism by which the redox state of intracellular ubiquinone (UQ) is maintained is not well established. The effect of dicumarol, an inhibitor of NAD(P)H: quinone acceptor oxidoreductase 1 (NQO1=DT-diaphorase, EC 1.6.99.2), on the reduction of UQ in cultured rat hepatocytes was investigated in order to clarify whether or not NQO1 is involved in reducing intracellular UQ. A concentration of 5 μM dicumarol, which does not inhibit cytosolic NADPH-dependent UQ reductase in vitro , was observed to almost completely inhibit NQO1 and thereby to stimulate cytotoxicity of 2-methyl-1,4-naphthoquinone (menadione) in cultured rat hepatocytes. However, 5 μM dicumarol did not inhibit reduction of endogenous UQ-9, as well as exogenous UQ-10 added to the hepatocytes. In addition, it did not stimulate the formation of thiobarbituric acid reactive substances (TBARS) in the hepatocytes. These results suggested that NQO1 is not involved in maintaining UQ in the reduced state in the intact liver cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号