首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary In Australia, diurnal courses of leaf conductance and transpiration of hemiparasitic mistletoes (Loranthaceae) and their hosts were measured using steady-state porometers under conditions of partial drought and high evaporative demand. The sites spanned a diversity of climatic regions ranging from the subtropical arid zone with winter rainfall, through the subtropical arid zone with summer rainfall to the tropical summer rainfall zone. With one exception (Acacia farnesiana with deciduous leaves), the hosts were trees or shrubs with evergreen, sclerophyllous leaves or phyllodes.The measurements confirm previous observations that mistletoes transpire at higher rates than their hosts. For adult leaves from all of the 18 different host/mistletoe pairs investigated, the daily average leaf conductances were higher in the parasites than in their hosts. The ratios ranged from 1.5 to 7.9. In the most extreme case,Amyema maidenii had a daily rate of water loss 8.9 times higher than its hostAcacia cowleana. Hoever, the parasites did not exhibit unlimited transpiration. Despite high water loss rates, leaf conductance showed large and consistent changes during the course of the day, indicating definite stomatal regulation. The typical diurnal pattern of conductance in both mistletoes and hosts consisted of an early morning peak followed by a continuous decrease throughout the remainder of the day. There was no abrupt decrease in leaf conductance of the parasites that might be interpreted as a threshold response with respect to internal water potential. In most cases, the continuous stomatal closure occurred without substantial changes in leaf water potential over a time span of several hours. The decrease in leaf conductance was correlated with an increase in leaf-to-air water vapor difference, which was associated with increasing leaf temperatures. It seems probable that external humidity plays a major role in the stomatal response. Diurnal courses of leaf conductance of the host/parasite pairs usually showed similar general patterns, even when the absolute rates were quite different. Thus, mistletoes not only control their water loss by stomatal action but this regulation seems to occur in coordination with the stomatal response of their hosts.The integrated mistletoe/host system must also endure severe drought conditions. Controlled water use is necessary for long-term survival of the host. Assuming stomatal behavior in the host is well adapted to ensure its existence, then similar performance in the mistletoe would promote survival of both host and parasite.  相似文献   

2.
Stomatal control of transpiration from a developing sugarcane canopy   总被引:2,自引:2,他引:0  
Abstract. Stomatal conductance of single leaves and transpiration from an entire sugarcane (Saccharum spp. hybrid) canopy were measured simultaneously using independent techniques. Stomatal and environmental controls of transpiration were assessed at three stages of canopy development, corresponding to leaf area indices (L) of 2.2, 3.6 and 5.6. Leaf and canopy boundary layers impeded transport of transpired water vapour away from the canopy, causing humidity around the leaves to find its own value through local equilibration rather than a value determined by the humidity of the bulk air mass above the canopy. This tended to uncouple transpiration from direct stomatal control, so that transpiration predicted from measurement of stomatal conductance and leaf-to-air vapour pressure differences was increasingly overestimated as the reference point for ambient vapour pressure measurement was moved farther from the leaf and into the bulk air. The partitioning of control between net radiation and stomata was expressed as a dimensionless decoupling coefficent ranging from zero to 1.0. When the stomatal aperture was near its maximum this coefficient was approximately 0.9, indicating that small reductions in stomatal aperture would have had little effect on canopy transpiration. Maximum rates of transpiration were, however, limited by large adjustments in maximum stomatal conductance during canopy development. The product of maximum stomatal conductance and L. a potential total canopy conductance in the absence of boundary layer effects, remained constant as L increased. Similarly, maximum canopy conductance, derived from independent micrometeorological measurements, also remained constant over this period. Calculations indicated that combined leaf and canopy boundary layer conductance decreased with increasing L such that the ratio of boundary layer conductance to maximum stomatal conductance remained nearly constant at approximately 0.5. These observations indicated that stomata adjusted to maintain both transpiration and the degree of stomatal control of transpiration constant as canopy development proceeded.  相似文献   

3.
Two diffusion porometers of different design, dynamic and steady-state,were used to measure diffusive conductance of wheat leaves inthe field. The two values of conductance measured for each leafwere compared by two statistical methods which revealed a systematicdifference of between 20 and 30% between the measurements. Randomdeviations from this averaged around 35%. The cause of the systematicdifference is not known, but was considered unlikely to be theresult of rapid stomatal response to abnormal exposure withinthe instruments. It must therefore come from a systematic errorin one or both instruments or be a consequence of the differentprinciples of operation. The random variation was found to bea combination of the random errors inherent in the measurementof relative humidity in both instruments plus a similar contributionfrom the variation in leaf diffusive conductance measured atdifferent points on the leaf.  相似文献   

4.
Recent soil pressurization experiments have shown that stomatal closure in response to high leaf–air humidity gradients can be explained by direct feedback from leaf water potential. The more complex temperature‐by‐humidity interactive effects on stomatal conductance have not yet been explained fully. Measurements of the change in shoot conductance with temperature were made on Phaseolus vulgaris (common bean) to test whether temperature‐induced changes in the liquid‐phase transport capacity could explain these temperature‐ by‐humidity effects. In addition, shoot hydraulic resistances were partitioned within the stem and leaves to determine whether or not leaves exhibit a greater resistance. Changes in hydraulic conductance were calculated based on an Ohm’s law analogy. Whole‐plant gas exchange was used to determine steady‐ state transpiration rates. A combination of in situ psychrometer measurements, Scholander pressure chamber measurements and psychrometric measurements of leaf punches was used to determine water potential differences within the shoot. Hydraulic conductance for each portion of the pathway was estimated as the total flow divided by the water potential difference. Temperature‐induced changes in stomatal conductance were correlated linearly with temperature‐induced changes in hydraulic conductance. The magnitude of the temperature‐induced changes in whole‐plant hydraulic conductance was sufficient to account for the interactive effects of temperature and humidity on stomatal conductance.  相似文献   

5.
A mechanism for co-ordinating behaviour of stomata within an areole during patchy stomatal conductance has recently been proposed. This mechanism depends on hydraulic interactions among stomata that are mediated by transpiration-induced changes in epidermal turgor. One testable prediction that arises from this proposed mechanism is that the strength of hydraulic coupling among stomata should be proportional to evaporative demand and, therefore, inversely proportional to humidity. When a leaf is illuminated following a period of darkness, there is typically a period of time, termed the Spannungsphase, during which guard cell osmotic and turgor pressure are increasing, but the pore remains closed. If hydraulic coupling is proportional to evaporative demand, then variation among stomata in the duration of the Spannungsphase should be lower for leaves at low humidity than for leaves at high humidity. A similar prediction emerged from a computer model based on the proposed hydraulic mechanisms. These predictions were tested by measuring individual stomatal apertures on intact transpiring leaves at low and high humidity and on vacuum-infiltrated leaf pieces (to eliminate transpiration) as PFD was increased to high values from either darkness or a low value. Results showed that the range of Spannungsphasenamong stomata was reduced at low humidity compared to high humidities. Experiments that began at low PFD, rather than at darkness, showed no delay in stomatal opening. These results are discussed in the context of the proposed hydraulic coupling mechanisms.  相似文献   

6.
During the grain filling period we followed diurnal courses in leaf water potential (ψ1), leaf osmotic potential (ψπ), transpiration (E), leaf conductance to water vapour transfer (g) and microclimatic parameters in field-grown spring barley (Hordeum distichum L. cv. Gunnar). The barley crop was grown on a coarse textured sandy soil at low (50 kg ha−1) or high (200 kg ha−1) levels of potassium applied as KCl. The investigation was undertaken at full irrigation or under drought. Drought was imposed at the beginning of the grain filling period. Leaf conductance and rate of transpiration were higher in the flag leaf than in the leaves of lower insertion. The rate of transpiration of the awns on a dry weight basis was of similar magnitude to that of the flag leaves. On clear days the rate of transpiration of fully watered barley plants was at a high level during most part of the day. The transpiration only decreased at low light intensities. The rate of transpiration was high despite leaf water potentials falling to rather low values due to high evaporative demands. In water stressed plants transpiration decreased and midday depression of transpiration occurred. Normally, daily accumulated transpirational water loss was lower in high K leaves than in low K leaves and generally the bulk water relations of the leaves were more favourable in high K plants than in low K plants. The factorial dependency of the flag leaf conductances on leaf water potential, light intensity, leaf temperature, and leaf-to-air water vapour concentration difference (ΔW) was analysed from a set of field data. From these data, similar sets of microclimatic conditions were classified, and dependencies of leaf conductance on the various environmental parameters were ascertained. The resulting mathematical functions were combined in an empirical simulation model. The results of the model were tested against other sets of measured data. Deviations between measured and predicted leaf conductance occurred at low light intensities. In the flag leaf, water potentials below-1.6 MPa reduced the stomatal apertures and determined the upper limit of leaf conductance. In leaves of lower insertion level conductances were reduced already at higher leaf water potentials. Leaf conductance was increased hyperbolically as photosynthetic active radiation (PAR) increased from darkness to full light. Leaf conductance as a function of leaf temperature followed an optimum curve which in the model was replaced by two linear regression lines intersecting at the optimum temperature of 23.4°C. Increasing leaf-to-air water vapour concentration difference caused a linear decrease in leaf conductance. Leaf conductances became slightly more reduced by lowered water potentials in the low K plants. Stomatal closure in response to a temperature change away from the optimum was more sensitive in high K plants, and also the decrease in leaf conductance under the influence of lowered ambient humidity proceeded with a higher sensitivity in high K plants. Thus, under conditions which favoured high conductances increase of evaporative demand caused an about 10% larger decrease in leaf conductance in the high K plants than in the low K plants. Stomatal sizes and density in the flag leaves differed between low and high K plants. In plants with partially open stomata, leaf conductance, calculated from stomatal pore dimensions, was up to 10% lower in the high K plants than in the low K plants. A similar reduction in leaf conductance in high K plants was measured porometrically. It was concluded that the beneficial effect of K supply on water use efficiency reported in former studies primarily resulted from altered stomatal sizes and densities.  相似文献   

7.
A reinterpretation of stomatal responses to humidity   总被引:20,自引:3,他引:17  
The stomatal conductance (g) for single leaves and the equivalent canopy conductance for stands of vegetation are often represented in models as empirical functions of saturation vapour pressure deficit or relative humidity. The mechanistic basis of this dependence is very weak. A reanalysis of 52 sets of measurements on 16 species supports the conclusion of Mott & Parkhurst (1991, Plant, Cell and Environment 14, 509–515) that stomata respond to the rate of transpiration (E) rather than to humidity per se. In general, ?g/?E is negative and constant so that the relation between g and E can be defined by two parameters: a maximum conductance gm obtained by extrapolation to zero transpiration, and a maximum rate of transpiration Em obtained by extrapolation to zero conductance. Both parameters are shown to be functions of temperature, CO2 concentration, and soil water content. Exceptionally, transpiration rate and conductance may decrease together in very dry air, possibly because of patchy closure of stomata.  相似文献   

8.
Stomatal control of crown transpiration was studied in Anacardium excelsum, a large-leaved, emergent canopy species common in the moist forests of Central and northern South America. A construction crane equipped with a gondola was used to gain access to the uppermost level in the crown of a 35-m-tall individual. Stomatal conductance at the single leaf scale, and transpiration and total vapour phase conductance (stomatal and boundary layer) at the branch scale were measured simultaneously using the independent techniques of porometry and stem heat balance, respectively. This permitted the sensitivity of transpiration to a marginal change in stomatal conductance to be evaluated using a dimensionless coupling coefficient (1-ω) ranging from zero to 1, with 1 representing maximal stomatal control of transpiration. Average stomatal conductance varied from 0.09 mol m?2 s?1 during the dry season to 0.3 mol m?2 s?1 during the wet season. Since boundary layer conductance was relatively low (0.4 mol m?2 s?1), 1-ω ranged from 0.46 during the dry season to only 0.25 during the wet season. A pronounced stomatal response to humidity was observed, which strongly limited transpiration as evaporative demand increased. The stomatal response to humidity was apparent only when the leaf surface was used as the reference point for measurement of external vapour pressure. Average transpiration was predicted to be nearly the same during the dry and wet seasons despite a 1 kPa difference in the prevailing leaf-to-air vapour pressure difference. The patterns of stomatal behaviour and transpiration observed were consistent with recent proposals that stomatal responses to humidity are based on sensing the transpiration rate itself.  相似文献   

9.
Three types of observations were used to test the hypothesis that the response of stomatal conductance to a change in vapour pressure deficit is controlled by whole-leaf transpiration rate or by feedback from leaf water potential. Varying the leaf water potential of a measured leaf by controlling the transpiration rate of other leaves on the plant did not affect the response of stomatal conductance to vapour pressure deficit in Glycine max. In three species, stomatal sensitivity to vapour pressure deficit was eliminated when measurements were made at near-zero carbon dioxide concentrations, despite the much higher transpiration rates of leaves at low carbon dioxide. In Abutilon theophrasti, increasing vapour pressure deficit sometimes resulted in both decreased stomatal conductance and a lower transpiration rate even though the response of assimilation rate to the calculated substomatal carbon dioxide concentration indicated that there was no ‘patchy’ stomatal closure at high vapour pressure deficit in this case. These results are not consistent with stomatal closure at high vapour pressure deficit caused by increased whole-leaf transpiration rate or by lower leaf water potential. The lack of response of conductance to vapour pressure deficit in carbon dioxide-free air suggests that abscisic acid may mediate the response.  相似文献   

10.
Summary Responses to humidity of net photosynthesis and leaf conductance of single attached leaves were examined in populations of herbs from wet soil sites in Beltsville, Maryland and Davis, California, USA. Plants were grown in controlled environments under three conditions which differed in the magnitude of the day-night temperature difference and in daytime air saturation deficit. No population differences in response were found in Abutilon theophrasti. In Amaranthus hybridus stomatal conductance and net photosynthesis were more reduced by increasing leaf to air water vapor pressure difference (VPD) in the population from Beltsville, but only for the growth condition with a constant 25°C temperature. In Chenopodium album, stomatal conductance was more sensitive to VPD in the population from Davis, but only for the growth condition with 28/22°C day/night temperatures. Population differences in the sensitivity to VPD of leaf conductance were associated with differences in leaf area to root weight ratio. The relative reduction of net photosynthesis as VPD increased was greater than, equal to, or less than the relative decrease in substomatal carbon dioxide partial pressure. The pattern depended on species, and on growth condition. From these results one can not conclude that environmental humidity has been a strong selective force in determining sensitivity to humidity of stomatal conductance.  相似文献   

11.
Uptake of CO2 by the leaf is associated with loss of water. Control of stomatal aperture by volume changes of guard cell pairs optimizes the efficiency of water use. Under water stress, the protein kinase OPEN STOMATA 1 (OST1) activates the guard‐cell anion release channel SLOW ANION CHANNEL‐ASSOCIATED 1 (SLAC1), and thereby triggers stomatal closure. Plants with mutated OST1 and SLAC1 are defective in guard‐cell turgor regulation. To study the effect of stomatal movement on leaf turgor using intact leaves of Arabidopsis, we used a new pressure probe to monitor transpiration and turgor pressure simultaneously and non‐invasively. This probe permits routine easy access to parameters related to water status and stomatal conductance under physiological conditions using the model plant Arabidopsis thaliana. Long‐term leaf turgor pressure recordings over several weeks showed a drop in turgor during the day and recovery at night. Thus pressure changes directly correlated with the degree of plant transpiration. Leaf turgor of wild‐type plants responded to CO2, light, humidity, ozone and abscisic acid (ABA) in a guard cell‐specific manner. Pressure probe measurements of mutants lacking OST1 and SLAC1 function indicated impairment in stomatal responses to light and humidity. In contrast to wild‐type plants, leaves from well‐watered ost1 plants exposed to a dry atmosphere wilted after light‐induced stomatal opening. Experiments with open stomata mutants indicated that the hydraulic conductance of leaf stomata is higher than that of the root–shoot continuum. Thus leaf turgor appears to rely to a large extent on the anion channel activity of autonomously regulated stomatal guard cells.  相似文献   

12.
Two summer annual C4 grasses with different trampling susceptibilities were grown as potted plants, and diurnal leaf gas exchange and leaf water potential in each grass were compared. The maximum net photosynthetic rate, leaf conductance and transpiration rate were higher in the trampling-tolerant Eleusine indica (L.) Gaertn. than in trampling sensitive Digitaria adscendens (H. B. K.) Henr. Leaf water potential was much lower in E. indica than in D. adscendens. There were no differences in soil-to-leaf hydraulic conductance and leaf osmotic potential at full turgor as obtained by pressure–volume analysis. However, the bulk modulus of elasticity in cell walls was higher in E. indica leaves than in D. adscendens leaves. This shows that the leaves of E. indica are less elastic. Therefore, the rigid cell walls of E. indica leaves reduced leaf water potential rapidly by decreasing the leaf water content, supporting a high transpiration rate with high leaf conductance. In trampled habitats, such lowering of leaf water potential in E. indica might play a role in water absorption from the compacted soil. In contrast, the ability of D. adscendens to colonize dry habitats such as coastal sand dunes appears to be due to its lower transpiration rate and its higher leaf water potential which is not strongly affected by decreasing leaf water content.  相似文献   

13.
A dual-surface leaf chamber was used to investigate the responsesof net photosynthesis and leaf conductance to independent changesin the humidity environments of the upper and lower surfacesof leaves of sunflower and soybean. In sunflower decreasingthe humidity around the upper leaf surface while maintainingthat of the lower surface constant and high reduced both thephotosynthetic rate and the conductance of the lower surface.These reductions could not be attributed to changes in bulkleaf water potential since the transpiration rate of the wholeleaf remained constant. Similarly, the reductions were not relatedto localized water deficits in the lower epidermis or lowermesophyll since the transpiration rate of the lower surfacewas reduced. Possible mechanisms whereby the gas exchange characteristicsof the lower leaf surface of sunflower respond to the humidityenvironment of the upper surface are discussed. In contrastto sunflower, the photosynthetic rate of the lower surface ofsoybean was insensitive to the humidity environment of the uppersurface. In leaves of sunflower grown under a moderate temperature anda medium light level, simultaneous decreases of humidity atboth leaf surfaces reduced the photosynthetic rate of the wholeleaf without affecting the substomatal partial pressure of CO2.In contrast, with leaves developed under a cool temperatureand a high light level, both the photosynthetic rate and thesubstomatal partial pressure of CO2 were reduced. Evidently,the occurrence in sunflower of the response pattern suggestinga non-stomatal inhibition of photosynthesis by low humiditydepends upon the environment during growth. The possibilitythat this non-stomatal inhibition may be an artifact due toan error in the assumption of water vapour saturation withinthe leaf airspace is considered. Key words: Vapour pressure deficit, photosynthesis, conductance, non-stomatal inhibition, Helianthus annuus, Glycine max  相似文献   

14.
Two ventilated porometers (diffusion and steady-state) were compared on four broadleaf and five coniferous species. The diffusion porometer gave consistently lower conductance values for both types of species, reflecting a direct stomatal response to low chamber humidity. At high conductance values, the porometers produced a linear and nearly equal response, but the diffusion porometer was less sensitive at low conductance values. This was due to lower air flow (20% of the velocity in the steady-state porometer) and water vapor sorption (by its acrylic plastic chamber). The broadleaf species had less variation (R2 = 0.81) than did the coniferous species (R2 = 0.61), but, with the latter, there was better correspondence between the two porometers, possibly due to sampling technique. Conductance values were clustered by species.  相似文献   

15.
刘英  雷少刚  程林森  程伟  卞正富 《生态学报》2018,38(9):3069-3077
采煤塌陷引起的土壤环境因子的变化对矿区植物生长的影响越来越受到人们的关注,气孔导度、蒸腾与光合作用作为环境变化响应的敏感因子,研究植物气孔导度、蒸腾与光合作用的变化是揭示荒漠矿区自然环境变化及其规律的重要手段之一。研究采煤塌陷条件下植物光合生理的变化是探究煤炭开采对植物叶片水分蒸腾散失和CO_2同化速率影响的关键环节,是探讨采煤塌陷影响下植物能量与水分交换动态的基础,而采煤矿区植物叶片气孔导度、蒸腾与光合作用速率对采煤塌陷影响下土壤含水量变化的响应如何尚不清楚。选取神东煤田大柳塔矿区52302工作面为实验场地,以生态修复物种柠条为研究对象,对采煤塌陷区和对照区柠条叶片气孔导度、蒸腾和光合作用速率以及土壤体积含水量进行监测,分析了采煤塌陷条件下土壤含水量的变化以及其对柠条叶片气孔导度、蒸腾与光合作用速率的影响。结果显示:(1)煤炭井工开采在地表形成大量裂缝,破坏了土体结构,潜水位埋深降低,土壤含水量均低于沉陷初期,相对于对照区,硬梁和风沙塌陷区土壤含水量分别降低了18.61%、21.12%;(2)柠条叶片气孔导度、蒸腾和光合作用速率均与土壤含水量呈正相关关系;煤炭开采沉陷增加了地表水分散失,加剧了土壤水分胁迫程度,为了减少蒸腾导致的水分散失,柠条叶片气孔阻力增加,从而气孔导度降低,阻碍了光合作用CO_2的供应,从而导致柠条叶片光合作用速率的降低,蒸腾速率也显著降低。  相似文献   

16.
胡杨叶片气孔导度特征及其对环境因子的响应   总被引:19,自引:2,他引:17  
依据2005年对极端干旱区荒漠河岸林胡杨的观测资料,对胡杨气孔运动进行了分析研究以揭示胡杨的水分利用特征与抗旱机理。结果表明:(1)胡杨叶片气孔导度日变化呈现为周期波动曲线,其波动周期为2 h,傍晚(20:00)波动消失;净光合速率和蒸腾速率与气孔导度的波动相对应而呈现同步周期波动。(2)胡杨的阳生叶气孔导度高于阴生叶,且不同季节气孔导度值不同,阳生叶气孔导度的季节变幅大于阴生叶。(3)胡杨气孔导度与气温、相对湿度和叶水势有显著相关关系,当CO2浓度较小时,胡杨气孔导度随CO2浓度的增加而增加,当CO2浓度达到一定值后气孔导度不再增加,反而随CO2浓度的增加大幅度降低。(4)胡杨适应极端干旱区生境的气孔调节机制为反馈式反应,即由于叶水势降低导致气孔导度减小,从而减少蒸腾耗水,达到节约用水、适应干旱的目的,表明胡杨的水分利用效率随气孔限制值的增大而减小,二者呈显著负相关。  相似文献   

17.
Among grain legumes, faba bean is becoming increasingly popular in European agriculture due to recent economic and environmental interests. Faba bean can be a highly productive crop, but it is sensitive to drought stress and yields can vary considerably from season to season. Understanding the physiological basis of drought tolerance would indicate traits that can be used as indirect selection criteria for the development of cultivars adapted to drought conditions. To assess genotypic variation in physiological traits associated with drought tolerance in faba bean and to determine relationships among these attributes, two pot experiments were established in a growth chamber using genetic materials that had previously been screened for drought response in the field. Nine inbred lines of diverse genetic backgrounds were tested under adequate water supply and limited water conditions. The genotypes showed substantial variation in shoot dry matter, water use, stomatal conductance, leaf temperature, transpiration efficiency, carbon isotope discrimination (Δ13C), relative water content (RWC) and osmotic potential, determined at pre-flowering vegetative stage. Moisture deficits decreased water usage and consequently shoot dry matter production. RWC, osmotic potential, stomatal conductance and Δ13C were lower, whereas leaf temperature and transpiration efficiency were higher in stressed plants, probably due to restricted transpirational cooling induced by stomatal closure. Furthermore, differences in stomatal conductance, leaf temperature, Δ13C and transpiration efficiency characterized genotypes that were physiologically more adapted to water deficit conditions. Correlation analysis also showed relatively strong relationships among these variables under well watered conditions. The drought tolerant genotypes, ILB-938/2 and Melodie showed lower stomatal conductance associated with warmer leaves, whereas higher stomatal conductance and cooler leaves were observed in sensitive lines (332/2/91/015/1 and Aurora/1). The lower value of Δ13C coupled with higher transpiration efficiency in ILB-938/2, relative to sensitive lines (Aurora/1 and Condor/3), is indeed a desirable characteristic for water-limited environments. Finally, the results showed that stomatal conductance, leaf temperature and Δ13C are promising physiological indicators for drought tolerance in faba bean. These variables could be measured in pot-grown plants at adequate water supply and may serve as indirect selection criteria to pre-screen genotypes.  相似文献   

18.
Ward, D. A. and Bunce, J. A. 1986. Novel evidence for a lackof water vapour saturation within the intercellular airspaceof turgid leaves of mesophytic species—J. exp. Bot. 37:504– By utilizing a dual-surface leaf chamber evidence was obtainedsuggesting that the water vapour pressure within the intercellularairspace of turgid leaves of mesophytic species can deviatesignificantly from the saturation vapour pressure at the leaftemperature. When the water vapour pressure of the air surroundingthe lower leaf surface of sunflower was maintained constantand high, suddenly exposing the upper leaf surface to air witha low water vapour content caused the lower leaf surface toexhibit a negative rate of transpiration (i.e. an apparent uptakeof water vapour). Since the vapour pressure of the air surroundingthe lower (moist) surface was less than the saturation vapourpressure at the leaf temperature, the occurrence of negativetranspiration indicated that the vapour pressure of the leafairspace deviated from saturation under the conditions of measurementused. For both soybean and sunflower it was also found that if thehumidity around the upper surface was maintained high and constant,a stepwise decrease in lower surface humidity caused substantialreductions in the transpiration rate and apparent conductanceof the upper surface without any concomitant change in its photosyntheticrate. In contrast, both the photosynthetic rate and conductanceof the lower surface were greatly reduced. The relative reductionsof photosynthetic rate and conductance at the lower surfacewere the same. These responses are most easily explained interms of a deviation from water vapour saturation within theintercellular airspace, which gives rise to spurious valuesof conductance. Key words: Intercellular space, water vapour pressure, turgid, leaves, mesophyte  相似文献   

19.
In most plant species, a decrease in atmospheric humidity at the leaf surface triggers a decrease in stomatal conductance. While guard cells appear to respond to humidity‐induced changes in transpiration rate, as opposed to relative humidity or vapour pressure difference, the underlying cellular mechanisms for this response remain unknown. In the present set of experiments, abscisic acid (ABA)‐deficient (aba1) and ABA‐insensitive (abi1‐1 and abi2‐1) mutants of Arabidopsis thaliana were used to test the hypothesis that the humidity signal is transduced by changes in the flux or concentration of ABA delivered to the stomatal complex in the transpiration stream. In gas exchange experiments, stomatal conductance was as sensitive to changes in vapour pressure difference in aba1, abi1‐1 and abi2‐1 mutant plants as in wild‐type plants. These experiments appear to rule out an obligate role for either the concentration or flux of ABA or ABA conjugates as mediators of the guard cell response to atmospheric water potential. The results stand in contrast to the well‐established role of ABA in mediating guard cell responses to decreases in soil water potential.  相似文献   

20.
庐山山地上的鹅掌楸幼苗,在夏季晴天土壤供水充足的条件下,其叶片蒸腾速率的日变化为午后高峰型,日蒸腾量为7092molH2Om^2d^1,最大蒸腾速率达3.9mmolH2Om^-2s^-1,叶/敢温度差,敢孔导率,相对湿度等对蒸腾速度的影响最显著;鹅掌楸地的水分利用率日平均为4.142mmolCO23mol^-1H2O最高可达11.8mmolCO2mol^-1H2O。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号