首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The sources of nitrogen for phytoplankton were determined for a bloom‐prone lake as a means of assessing the hypothesis that cyanobacteria dominate in eutrophic lakes because of their ability to fix nitrogen when the nitrogen : phosphorous (N : P) supply ratio is low and nitrogen a limiting resource. 2. Nitrogen fixation rates, estimated through acetylene reduction with 15N calibration, were compared with 15N‐tracer estimates of ammonium and nitrate uptake monthly during the ice‐free season of 1999. In addition, the natural N stable isotope composition of phytoplankton, nitrate and ammonium were measured biweekly and the contribution of N2 to the phytoplankton signature estimated with a mixing model. 3. Although cyanobacteria made up 81–98% of phytoplankton biomass during summer and autumn, both assays suggested minimal N acquisition through fixation (<9% for the in‐situ incubations; <2% for stable isotope analysis). Phytoplankton acquired N primarily as ammonium (82–98%), and secondarily as nitrate (15–18% in spring and autumn, but <5% in summer). Heterocyst densities of <3 per 100 fixer cells confirmed low reliance on fixation. 4. The lake showed symptoms of both light and nitrogen limitation. Cyanobacteria may have dominated by monopolizing benthic sources of ammonium, or by forming surface scums that shaded other algae.  相似文献   

2.
We measured maximum ammonium uptake rates of the green alga Scenedesmus quadricauda (Turpin) Brébisson and the blue-green alga Microcystis novacekii (Kom.) Comp. grown in nitrogen (ammonium)–limited chemostats. Maximum uptake rates per cellular carbon were larger in S. quadricauda than in M. novacekii. These rates increased with increased specific growth rates. Maximum uptake rates per cellular nitrogen were also larger in S. quadricauda than in M. novacekii. The maximum uptake rates per cellular nitrogen were nearly constant against increased cellular N:C ratios under nitrogen-limited conditions. The higher maximum uptake rates indicate that S. quadricauda had higher uptake abilities for ammonium than M. novacekii when grown under nitrogen limitation. We examined the competition between both species under two distinct nutrient supply modes, using measured maximum uptake values and computer simulations. Microcystis novacekii prevailed in the small-pulse, high-frequency nutrient supply mode, whereas S. quadricauda became competitively superior in the large-pulse, low-frequency nutrient supply mode. These results indicate that we could control nuisance blooms of blue-green algae in lakes and reservoirs by changing the nutrient supply modes.  相似文献   

3.
1. The importance of various forms of nitrogen to the nitrogen supply of phytoplankton has been investigated in the mesotrophic eastern and eutrophic western basin of Lake Balaton.
2. Uptake rates of ammonium, urea, nitrate and carbon were measured simultaneously. The uptake rates were determined using N and C methodologies, and N2‐fixation was measured using the acetylene‐reduction method. The light dependence of uptake was described with an exponential saturation equation and used to calculate surface‐related (areal) daily uptake.
3. The contribution of ammonium, urea and nitrate to the daily nitrogen supply of phytoplankton varied between 11 and 80%, 17 and 73% and 1 and 15%, respectively. N2‐fixation was negligible in the eastern basin and varied between 5 and 30% in the western region of the lake. The annual external nitrogen load was only 10% of that utilized by algae.
4. The predominant process supplying nitrogen to the phytoplankton in the lake is the rapid recycling of ammonium and urea in the water column. The importance of the internal nutrient loading is emphasized.  相似文献   

4.
The biomass production of wetland vegetation can be limited by nitrogen or phosphorus. Some species are most abundant in N-limited vegetation, and others in P-limited vegetation, possibly because growth-related traits of these species respond differently to N versus P supply. Two growth experiments were carried out to examine how various morphological and physiological traits respond to the relative supply of N and P, and whether species from sites with contrasting nutrient availability respond differently. In experiment 1, four Carex species were grown in nutrient solutions at five N:P supply ratios (1.7, 5, 15, 45, 135) combined with two levels of supply (geometric means of N and P supply). In experiment 2, two Carex and two grass species were grown in sand at the same .ve N:P supply ratios combined with three levels of supply and two light intensities (45% or 5% daylight). After 12-13 weeks of growth, plant biomass, allocation, leaf area, tissue nutrient concentrations and rates and nutrient uptake depended signi.cantly on the N:P supply ratio, but the type and strength of the responses differed among these traits. The P concentration and the N:P ratio of shoots and roots as well as the rates of N and P uptake were mainly determined by the N:P supply ratio; they showed little or no dependence on the supply level and relatively small interspeci.c variation. By contrast, the N concentration, root mass ratio, leaf dry matter content and speci.c leaf area were only weakly related to the N:P supply ratio; they mainly depended on plant species and light, and partly on overall nutrient supply. Plant biomass was determined by all factors together. Within a level of light and nutrient supply, biomass was generally maximal (i.e. co-limited by N and P) at a N:P supply ratio of 15 or 45. All species responded in a similar way to the N:P supply ratio. In particular, the grass species Phalaris arundinacea and Molinia caerulea showed no differences in response that could clearly explain why P. arundinacea tends to invade P-rich (N-limited) sites, and M. caerulea P-limited sites. This may be due to the short duration of the experiments, which investigated growth and nutrient acquisition but not nutrient con­servation.  相似文献   

5.
In batch cultures of four Mediterranean strains (from France, Italy, and Spain) of Alexandrium catenella (Whedon et Kof.) Balech growing on a daily light cycle, ammonium and urea uptake were estimated by the 15N tracer technique. Ammonium uptake could be described by Michaelis–Menten kinetics along a substrate gradient of 0.1–10 μgat N · L?1 for the four strains, while two different patterns were observed for urea uptake with Michaelis–Menten kinetics for one strain and linear kinetics for the others. In all cases, an increase in uptake rates with time was noted over the daylight period. This trend led to a net increase in the maximum uptake rate (Vmax; for saturable kinetics) and in the initial slope α. For ammonium, Vmax increased by a factor of 2–10 depending on the strain, and, for urea, the maximal uptake rates measured increased by a factor of 2–18. Temporal variations of half‐saturation constants (Ks) for both nutrients did not show a clear trend. Increases in Vmax and α showed an acclimation of the cells’ uptake system over time to a N pulse, which may be explained by the light periodicity. For two strains, extensive ammonium release was observed during urea assimilation. This mechanism removes urea from the medium, so it is no longer available to other potential competitors, but supplies N back to the medium in the form of ammonium. From a methodological point of view, the phenomenon leads to considerable underestimates of the contribution of urea to phytoplankton growth.  相似文献   

6.
Plant tolerance to Al toxicity has been associated with differential nitrate and ammonium uptake and solution pH changes. Sorghum [Sorghum bicolor (L.) Moench] genotypes with tolerance (SC283) and sensitivity (ICA-Nataima) to Al toxicity were grown with different nitrate/ammonium ratios (39:1, 9:1, and 3:1) at 0 and 300 μM Al to determine genotypic differences in nitrate and ammonium uptake, changes in nutrient solution pH, and relationships of these traits to Al toxicity tolerance in the genotypes. ICA-Nataima had greater reductions in nitrate and ammonium uptake than SC283 when plants were grown with Al, but SC283 had higher nitrate and ICA-Nataima had higher ammonium uptake when plants were grown without Al. Differences in nitrate and ammonium uptake were associated with changes in solution pH; pH decreased as long as ammonium was in solution and increased when ammonium was depleted from solution. Greater changes in solution pH occurred when plants were grown with 39:1 compared to 9:1 and 3:1 nitrate/ammonium ratios. Solution pH values were lower when plants were grown with than without Al. The genotypes maintained their relative differences in Al toxicity tolerance when plants were grown separately or together in the same container with Al and with different nitrate/ammonium ratios.  相似文献   

7.
Nitrogen uptake rates were measured as a function of time following saturating additions (15 μMg-at N·?1) of 15N-labelid ammonium, urea, and nitrate to N-starved cultures of the picoflagellate Micromonas pusilla Butcher. Uptake rates were estimated from both the accumulation of 15N into the cells and the disappearance of nitrogen from the medium. Transient elevated (surge) uptake rates of NH4+ and urea were observed after enrichment. During the first 5 min the initial urea and NH4+ uptake rates were 2- and 4-fold greater than the maximum growth rate (μMmax)observed prior to No3? depletion in the cultures. The elevated urea uptake rates declined quickly to a relatively constant value, whereas the initial rates of NH4+ uptake declined rapidly but were followed by a subsequent increase prior to remaining roughly constant. Nitrate was not taken up as readily by N-starved M. pusilla as the reduced N forms. Although NO3+ uptake commenced immediately after enrichment (i.e. no lag period) the N-Specific rate over the next 6 h averaged half the μMmax observed during NO3? replete conditions.  相似文献   

8.
Three species of phytoplankton, Rhodomonas sp., Phaeodactylum tricornutum Bohlin, and Isochrysis galbana Parke, were cultivated in semicontinuous culture to analyze the response of carbon (C):nitrogen (N):phosphorus (P) stoichiometry to the interactive effect of five N:P supply ratios and four growth rates (dilution rates). The relationship between cellular N and P quotas and growth rates fits well to both the Droop and Ågren’s functions for all species. We observed excess uptake of both N and P in the three species. N:P biomass ratios showed a significant positive relationship with N:P supply ratios across the entire range of growth rates, and N:P biomass ratios converged to an intermediate value independent of N:P supply ratios at higher growth rates. The effect of growth rates on N:P biomass ratios was positive at lower N:P supply ratios, but negative at higher N:P supply ratios for both Rhodomonas sp. and I. galbana, while for P. tricornutum this effect was negative at all N:P supply ratios. A significant interactive effect of N:P supply ratios and growth rates on N:P biomass ratios was found in both Rhodomonas sp. and P. tricornutum, but not in I. galbana. Our results suggest that Ågren’s functions may explain the underlying biochemical principle for the Droop model. The parameters in the Droop and Ågren’s functions can be useful indications of algal succession in the phytoplankton community in changing oceans.  相似文献   

9.
  • K326 and HD represent major tobacco cultivars in China, which required large N fertiliser input but at different application rates. To understand primary components affecting tobacco N use physiology, we adopted these two varieties as valuable genetic material to assess their growth response to N nutrition.
  • We established a hydroponic culture system to grow plants supplied with different N regimes. Plant biomass, N, ammonium, nitrate, arginine, GS and NR activity, N transfer and use efficiency as well as root uptake were examined.
  • Our data revealed the preference of K326 and HD to utilise nitrate or ammonium nitrate but not ammonium alone, with 2 mm N supply probably sufficient and economical to achieve good biomass production at the vegetative stage. Moreover, both varieties were very sensitive to ammonium, perhaps due to lack of or abnormal signalling related to nitrate and/or arginine rather than impairment of N acquisition and initial assimilation; this was supported by measurements of the plant content of N, ammonium and activities of GS and NR. Notably, short‐term 15N root influx studies identified differential uptake kinetics of K326 and HD, with distinct affinities and transport rates for ammonium and nitrate.
  • The data suggest that the growth adaptation of K326 or HD to higher or lower N may be ascribed to different competences for effective N uptake/translocation and assimilation. Thus, our work provides valuable information to prompt deeper investigation of the molecular basis controlling plant N use efficiency.
  相似文献   

10.
Rates of inorganic nitrogen uptake by three Northeast US and three Asian species of Porphyra were compared in short-term incubations to evaluate potential for longer term and larger scale examination of bioremediation of nutrient-loaded effluents from finfish aquaculture facilities. The effects of nitrogen (N) species and concentration, temperature, acclimation history, and irradiance were investigated. Uptake rates increased ca. nine-fold from 20 to 150 μM N. Nitrate and ammonium uptake occurred at similar rates. Irradiance had a strong effect, with uptake at 40 μmol photons m−2 s−1only 55% of uptake at 150 μmol photons m−2 s−1. N-replete tissue took up inorganic nitrogen at rates that averaged only 60% of nutrient-deprived tissue. Although there were species (P. amplissima > (P. purpurea = P. umbilicalis)) and temperature effects (10 °C>5 °C>15 °C), interactions among factors indicated that individual species be considered separately. Overall, P. amplissima was the best Northeast US candidate. It took up ammonium at faster rates than other local species at 10 and 15 °C, two temperatures that fall within the expected range of industrial conditions for finfish operations.  相似文献   

11.
Two species of marine diatoms, Skeletonema costatum (Grev.) Cleve and Phaeodactylum tricornutum Bohlin were grown in batch and continuous cultures on four different nitrogen compounds (nitrate, nitrite, ammonium, urea). Carbon and nitrogen uptake were measured simultaneously with the stable isotopes 13C and 15N. Nitrogen uptake generally increased with N concentration in the medium, but no clear difference existed between the N sources. Carbon fixation was decreased for up to 5 h following the addition of the N compound. Nitrite generally had the greatest inhibitory effect on C uptake. Carbon-to-nitrogen uptake ratios decreased with increasing dissolved N concentration, becoming lower than one in nutrient-limited cultures. In contrast, batch cultures exhibited C:N uptake ratios greater than one. These effects are essentially short-term and differ from long-term influences of the N source on the cellular chemical composition.  相似文献   

12.
Methylamine uptake in nitrogen-starved Chlorella pyrenoidosa Beij. follows Michaelis-Menten kinetics: maximum uptake is about 1.6 nmol μl?1· cells · min?1, half-saturation occurs at 4 μM methylamine, and the slope in the range where uptake is proportional to concentration is 0.4 nmol μl?1· min?1·μM?1. In cells grown in the presence of a non-limiting nitrogen concentration, methylamine uptake is directly proportional to concentration up to at least 0.5 mM, and the slope is 1/500 that for starved cells. Similar uptake kinetics have been reported for Penicillium chrysogenum and attributed to an inducible “ammonium permease.” Apparently, a similar permease occurs in algae.  相似文献   

13.
Phosphate uptake by P-replete and P-depleted Pyrocystis noctiluca (Murray) Schütt grown at different ambient N:P ratios was multiphasic between 0.1 and 100 μM PO43-. Within each of the kinetic phases, the saturated uptake rate (Vmax), but not the half saturation constant (Km) was affected by the cellular-P status and light. Uptake rates in the dark were ca. 50% of that in the light and respiratory activity accounted for the observed basal uptake. The combination of multiphasic uptake, and the uncoupling of short term transient uptake from growth resulting in maximum specific uptake rates of 50 h?1 may help explain the abundance of P. noctiluca in oligotrophic regions.  相似文献   

14.
Changes in the size of intracellular nitrogen pools and the potential feedback by these pools on maximum N uptake (NH4+ and NO3?) rates were determined for Chaetomorpha linum (Müller) Kützing grown sequentially under nutrient-saturating and nutrient-limiting conditions. The size of individual pools in N-sufficient algae could be ranked as residual organic N (RON) comprised mainly of amino acids and amino compounds > protein N > NO3? > NH4+ > chlorophyll N. When the external N supply was removed, growth rates remained high and individual N pools were depleted at exponential rates that reflected both dilution of existing pools by the addition of new biomass from growth and movement between the pools. Calculated fluxes between the tissue N pools showed that the protein pool increased throughout the N depletion period and thus did not serve a storage function. RON was the largest storage reserve; nitrate was the second largest, but more temporary, storage pool that was depleted within 10 days. Upon N resupply, the RON pool increased 3 × faster than either the inorganic or protein pools, suggesting that protein synthesis was the rate-limiting step in N assimilation and caused a buildup of intermediate storage compounds. Maximum uptake rates for both NH4+ and NO3? varied inversely with macroalgal N status and appeared to be controlled by changes in small intracellular N pools. Uptake of NO3? showed an initial lag phase, but the initial uptake of NH4+ was enhanced and was present only when the intracellular NH4+ pool was depleted in the absence of an external N supply. A strong negative correlation between the RON pool size and maximum assimilation uptake rates for both NH4+ and NO3? suggested a feedback control on assimilation uptake by the buildup and depletion of organic compounds. Enhanced uptake and the accumulation of N as simple organic compounds or nitrate both provide a temporary mechanism to buffer against the asynchrony of N supply and demand in C. linum.  相似文献   

15.
Marine phytoplankton and macroalgae acquire important resources, such as inorganic nitrogen, from the surrounding seawater by uptake across their entire surface area. Rates of ammonium and nitrate uptake per unit surface area were remarkably similar for both marine phytoplankton and macroalgae at low external concentrations. At an external concentration of 1 μM, the mean rate of nitrogen uptake was 10±2 nmol·cm?2·h?1 (n=36). There was a strong negative relationship between log surface area:volume (SA:V) quotient and log nitrogen content per cm2 of surface (slope=?0.77), but a positive relationship between log SA:V and log maximum specific growth rate (μmax; slope=0.46). There was a strong negative relationship between log SA:V and log measured rate of ammonium assimilation per cm2 of surface, but the slope (?0.49) was steeper than that required to sustain μmax (?0.31). Calculated rates of ammonium assimilation required to sustain growth rates measured in natural populations were similar for both marine phytoplankton and macroalgae with an overall mean of 6.2±1.4 nmol·cm?2·h?1 (n=15). These values were similar to maximum rates of ammonium assimilation in phytoplankton with high SA:V, but the values for algae with low SA:V were substantially less than the maximum rate of ammonium assimilation. This suggests that the growth rates of both marine phytoplankton and macroalgae in nature are often constrained by rates of uptake and assimilation of nutrients per cm2 surface area.  相似文献   

16.
Uptake and assimilation kinetics of nitrate and ammonium were investigated along with inhibition of nitrate uptake by ammonium in the harmful dinoflagellate Alexandrium minutum Halim at different nitrogen (N)–limited growth rates. Alexandrium minutum had a strong affinity for nitrate and ammonium (Ks=0.26±0.03 and 0.31±0.04 μmol·L?1, respectively) whatever the degree of N deficiency of the cells. Ammonium was always the preferred form of nitrogen taken up (=0.42–0.50). In the presence of both forms, nitrate uptake was inhibited by ammonium, and inhibition was particularly marked in N‐sufficient cells (Imax~0.9 and Ki=0.31–0.56 μmol·L?1). In the case of N assimilation, ammonium was also the preferred form in N‐deficient cells (=0.54–0.72), whereas in N‐sufficient cells, both N sources were equally preferred (=0.90–1.00). The comparison of uptake and assimilation rates highlighted the ability of A. minutum to significantly store in 1 h nitrate and ammonium in amounts sufficient to supply twice the daily N requirements of the slowest‐growing N‐deficient cells. Nitrogen uptake kinetic parameters of A. minutum and their ecological implications are discussed.  相似文献   

17.
Non-linear time courses of ammonium (NH4+) depletion from the medium and internal accumulation of soluble nitrogen (N) in macroalgae imply that the rate-limiting step for ammonium uptake changes over time. We tested this hypothesis by measuring the time course of N accumulation in N-limited Ulva rigida C. Agardh. Total uptake was measured as removal of NH4+ from medium. Rates for the component processes (transport of NH4+ across the membrane = Rv assimilation of tissure NH4+ into soluble N compounds = Ra, assimilation of tissue NH4+ into soluble N compounds = Ra and incorporation of soluble N compounds into macromolecules = R1) were determined by measuring the rate of labelling of the major tissue N pools after the addition of 15N-ammonium. The results indicate that nitrogen-specific rates (mass N taken up / mass N present / unit time) are ranked in the order of Rt < Ra < R1 Absolute uptake rates (μmol N. mg dry wt?1. h?1) showed a different relationship. Membrane transport appears to be inhibited when NH4+ accumulates in the tissue. Maximum uptake rates occur when assimilation of NH4+ into soluble N compounds begins. Assimilation of NH4+ into soluble N compounds was initially faster than incorporation of soluble N compounds into macromolecules. Implications of rate limitations caused by differences in maximal rates and maximal pool sizes are discussed.  相似文献   

18.
Cadmium and copper inhibition of nutrient uptake by the green alga Scenedesmus quadricauda is highly pH dependent in an inorganic medium; both metals are less toxic at low pH. The alga was grown in chemostats with both N and P approaching limiting levels; it was then possible to study metal toxicity to the nitrate, ammonium, and phosphate uptake systems of algae in an identical physiological state. When the logarithm of the Cd concentration causing 25% inhibition of nitrate, ammonium, and phosphate uptake was regressed against pH almost perfect linear relationships were obtained. This was also true at the 50% inhibition level, except for a smaller than predicted increase in Cd toxicity to ammonium uptake at pH 8, which may be due to the beginning of Cd precipitation at this pH. Cu2+ toxicity was linearly related to pH for ammonium and phosphate uptake and although, its toxicity for nitrate uptake also increased with pH, the increase was not perfectly linear. The toxicity of total Cu showed no linear relationship to pH. Cd2+ and Cu2+ toxicity increased by up to four orders of magnitude from pH 5 to 8. Competition between free metal and hydrogen ions for uptake sites on the cell surface is suggested as a mechanism increasing the toxicity of free metal, ions as the hydrogen ion content decreases (i.e. at higher pH).  相似文献   

19.
《Plant and Soil》2000,220(1-2):175-187
Several studies have previously shown that shoot removal of forage species, either by cutting or herbivore grazing, results in a large decline in N uptake (60%) and/or N2 fixation (80%). The source of N used for initial shoot growth following defoliation relies mainly on mobilisation of N reserves from tissues remaining after defoliation. To date, most studies investigating N-mobilisation have been conducted, with isolated plants grown in controlled conditions. The objectives of this study were for Lolium perenne L., grown in a dense canopy in field conditions, to determine: 1) the contribution of N-mobilisation, NH4 + uptake and NO3 - uptake to growing shoots after defoliation, and 2) the contribution of the high (HATS) and low (LATS) affinity transport systems to the total plant uptake of NH4 + and NO3 -. During the first seven days following defoliation, decreases in biomass and N-content of roots (34% and 47%, respectively) and to a lesser extent stubble (18% and 43%, respectively) were observed, concomitant with mobilisation of N to shoots. The proportion and origin of N used by shoots (derived from reserves or uptake) was similar to data reported for isolated plants. Both HATS and LATS contributed to the total root uptake of NH4 + and NO3 -. The Vmax of both the NH4 + and NO3 - HATS increased as a function of time after defoliation, and both HATS systems were saturated by substrate concentrations in the soil at all times. The capacity of the LATS was reduced as soil NO3 - and NH4 + concentrations decreased following defoliation. Data from 15N uptake by field-grown plants, and uptake rates of NH4 + and NO3 - estimated by excised root bioassays, were significantly correlated, though uptake was over-estimated by the later method. The results are discussed in terms of putative mechanisms for regulating N uptake following severe defoliation. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
The uptake of 15N-labelled alanine, ammonium and nitrate was studied in ectomycorrhizal morphotypes of intact Pinus sylvestris seedlings. PCR-RFLP analysis of the ITS-region of fungal rDNA was used to identify the morphotypes. Seedlings were grown in forest soil collected at an experimental site in southern Sweden. The treatments compared were a control, N fertilisation (600 kg N ha-1 as urea), sulfur application (1200 kg S ha-1) and lime application (6000 kg CaCO3 ha-1). The forest, which had been dominated by Picea abies, was clear-cut two years before the forest soil was sampled. Soil was also collected from an adjacent standing forest. The aim of the present study was to detect changes in the ectomycorrhizal communities in forest soils and relate these changes to the functional parameter of uptake of nitrogen from organic (alanine and protein) and inorganic (ammonium and nitrate) sources.Liming resulted in the detection of a morphotype not found in other samples, and one morphotype was only found in samples from the standing forest (the fungi in these two morphotypes could not be identified). All mycorrhizal root tips showed a higher 15N concentration after exposure to different nitrogen forms than non-mycorrhizal long roots. Uptake of15 N from a labelled solution of alanine or ammonium was higher (about tenfold) than uptake from a 15N-labelled solution of nitrate. Uptake of ammonium and alanine varied between 0.2 and 0.5 mg N g-1 h-1 and between 0.1 and 0.33 mg N g-1 h-1, respectively, among the different morphotypes.In seedlings grown in the control soil and in soil from standing forest, alanine and ammonium were taken up to a similar degree from a supply solution by all morphotypes, whereas ammonium uptake was higher than alanine uptake in seedlings grown in lime-treated soil (about twofold) and, to a lesser extent, in the nitrogen- and sulfur-treated soils. The higher ammonium uptake by morphotypes from the limed soil was confirmed in pure culture studies. In cases where ammonium was used as the N source, an isolate of the S. variegatus morphotype collected in the limed soil produced more biomass compared with isolates of S. variegatus collected in nitrogen- or sulphur-treated soil. One isolate of a silvery white morphotype produced about equal amounts of biomass on alanine and ammonium, whereas all S. variegatus isolated performed better with ammonium as their N source. Based on the results it is hypothesised that liming can induce a shift in the ectomycorrhizal community, favouring individuals that mainly utilise inorganic nitrogen over those that primarily utilise organic nitrogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号