首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Felids are the unique definitive host of Toxoplasma gondii. The intestine of felid is the only site for initiating Toxoplasma gondii sexual reproduction. T. gondii excretes millions of infectious oocysts from the intestine, which are the primary source of infection. There are many difficulties in developing vaccines and drugs to control oocyst excretion due to the lack of an appropriate experimental model. Here, we established an in vitro feline intestinal epithelial cell (IEC) infection system and an efficient animal model of T. gondii Chinese 1 genotype, Wh6 strain (TgCtwh6). The Kunming mice brain tissues containing TgCtwh6 cysts were harvested 42-day post-infection. The bradyzoites were co-cultured with cat IECs in vitro at a ratio of 1:10. Five 3-month-old domestic cats were orally inoculated with 600 cysts each. The oocysts were detected by daily observation of cat feces by microscopy and polymerase chain reaction. We found that the parasite adhered and invaded cat IECs in vitro, transformed into tachyzoites, and then divided to form rose-like structures. These parasites eventually destroyed host cells, escaped, and finished the asexual reproduction process. Schizonts associated with sexual reproduction have not been observed during development in vitro cultured cells. However, schizonts were detected in all infected cat intestinal epithelial cells, and oocysts were presented in all cat feces. Our study provides a feasible cell model and an efficient infection system for the following studies of T. gondii sexual reproduction, and also lays a foundation to develop drugs and vaccines for blocking excretion and transmission of oocysts.  相似文献   

2.
SYNOPSIS. The effects of age and sex of the cat on oocyst shedding, multiplication of Toxoplasma gondii in tissues of cats, and acquisition of immunity were investigated after oral inoculation of cats with Toxoplasma cysts. Twenty-five cats varying in age from 1 week to 39 months were killed 7-97 days after inoculation with T. gondii. Homogenates of brain, heart, mesenteric lymph nodes, retina, and blood from these cats were inoculated into mice to test for Toxoplasma infectivity. Toxoplasma was isolated more frequently and in higher titers in mice receiving inocula from cats of the youngest age group (1 week old). Toxoplasma gondii was isolated from tissues of only 2 of 21 cats older than 2 months (at the time of inoculation), although all of the animals shed oocysts within 1 week after ingesting the parasites. The number of oocysts shed varied among littermates of the same sex and between sexes. Generally, cats younger than 12 months shed more oocysts than older cats. The number of oocysts shed by older cats varied considerably; males generally shed more oocysts than the females. However, the numbers of cats examined were too small for statistical comparison. Nevertheless, the observations suggest that cats older than 12 months should not be used in experiments where numbers of oocysts shed is critical.  相似文献   

3.
SYNOPSIS. After reviewing reports of the hosts, structure and life cycle of Toxoplasma, the genus is placed in the apicomplexan family Eimeriidae and the following 7 species are recognized: Toxoplasma gondii (Nicolle & Manceaux) (type species) from about 200 species of mammals and birds, with oocysts in felids; Toxoplasma alencari (Da Costa & Pereira) from the frog Leptodactylus ocellatus; Toxoplasma brumpti Coutelen from the iguana Iguana tuberculata; Toxoplasma colubri Tibaldi from the snakes Coluber melanoleucus and Coluber viridiflavus; Toxoplasma hammondi (Frenkel & Dubey) (a new combination for Hammondia hammondi) from the house mouse with oocysts in the domestic cat; Toxoplasma ranae Levine & Nye from the leopard frog Rana pipiens; and Toxoplasma serpai Scorza, Dagert & Iturriza Arocha from the toad Bufo marinus.  相似文献   

4.
Toxoplasmosis, a most common zoonosis, is caused by the protozoan parasite Toxoplasma gondii. However, there is little epidemiological information on T. gondii infections in humans and livestock animals in Russia. Therefore, in this study, the seroprevalence of T. gondii in goats in Russia was investigated. A total of 216 goats from 32 farms were investigated and 95 of them were seropositive for T. gondii. The difference in seroprevalence between the examined regions was not statistically significant. We next collected serum samples from 99 cats and 181 humans in Kazan city, the state capital of the Republic of Tatarstan, Russia, and examined their T. gondii seroprevalences. Thirty-nine of the 99 cat samples and 56 of the 181 human samples showed seropositivity. Logistical regression analysis revealed that the cat breeding history of the human subjects, but not their sex or age is a significant risk factor for T. gondii seropositivity. These findings suggest that the natural environment in Russia may be widely polluted with T. gondii oocysts shed by cats, and ingestion of these oocysts provides a major route for human infection with this parasite.  相似文献   

5.
Male rats (Rattus novergicus) infected with protozoan Toxoplasma gondii relinquish their innate aversion to the cat odours. This behavioural change is postulated to increase transmission of the parasite to its definitive felid hosts. Here, we show that the Toxoplasma gondii infection institutes an epigenetic change in the DNA methylation of the arginine vasopressin promoter in the medial amygdala of male rats. Infected animals exhibit hypomethylation of arginine vasopressin promoter, leading to greater expression of this nonapeptide. The infection also results in the greater activation of the vasopressinergic neurons after exposure to the cat odour. Furthermore, we show that loss of fear in the infected animals can be rescued by the systemic hypermethylation and recapitulated by directed hypomethylation in the medial amygdala. These results demonstrate an epigenetic proximate mechanism underlying the extended phenotype in the Rattus novergicus–Toxoplasma gondii association.  相似文献   

6.
The physical properties that govern the waterborne transmission of Toxoplasma gondii oocysts from land to sea were evaluated and compared to the properties of carboxylated microspheres, which could serve as surrogates for T. gondii oocysts in transport and water treatment studies. The electrophoretic mobilities of T. gondii oocysts, lightly carboxylated Dragon Green microspheres, and heavily carboxylated Glacial Blue microspheres were determined in ultrapure water, artificial freshwater with and without dissolved organic carbon, artificial estuarine water, and artificial seawater. The surface wettabilities of oocysts and microspheres were determined using a water contact angle approach. Toxoplasma gondii oocysts and microspheres were negatively charged in freshwater solutions, but their charges were neutralized in estuarine water and seawater. Oocysts, Glacial Blue microspheres, and unwashed Dragon Green microspheres had low contact angles, indicating that they were hydrophilic; however, once washed, Dragon Green microspheres became markedly hydrophobic. The hydrophilic nature and negative charge of T. gondii oocysts in freshwater could facilitate widespread contamination of waterways. The loss of charge observed in saline waters may lead to flocculation and subsequent accumulation of T. gondii oocysts in locations where freshwater and marine water mix, indicating a high risk of exposure for humans and wildlife in estuarine habitats with this zoonotic pathogen. While microspheres did not have surface properties identical to those of T. gondii, similar properties shared between each microsphere type and oocysts suggest that their joint application in transport and fate studies could provide a range of transport potentials in which oocysts are likely to behave.  相似文献   

7.
Waterborne transmission of the oocyst stage of Toxoplasma gondii can cause outbreaks of clinical toxoplasmosis in humans and infection of marine mammals. In water-related environments and soil, free-living amoebae are considered potential carriers of various pathogens, but knowledge on interactions with parasitic protozoa remains elusive. In the present study, we assessed whether the free-living Acanthamoebacastellanii, due to its phagocytic activity, can interact with T. gondii oocysts. We report that amoebae can internalize T. gondii oocysts by active uptake. Intracellular oocysts in amoebae rarely underwent phagocytic lysis, retained viability and established infection in mice. Interaction of T. gondii with amoebae did not reduce the infectivity and pathogenicity of oocysts even after prolonged co-cultivation. Our results show that uptake of oocysts by A. castellanii does not restrain the transmission of T. gondii in a murine infection model.  相似文献   

8.
SYNOPSIS. The effect of pretreatment with Isospora felis and bacillus Calmette-Guérin (BCG) on the reexcretion of Toxoplasma gondii occysts was studied in 16 coccidia-free cats. The following conclusions were drawn: (A) Chronically T. gondii-infected cats reexcreted T. gondii oocysts after superinfection with I. felis, and this reexcretion was prevented in cats infected with I. felis before T. gondii infection. (B) Administration of BCG before Toxoplasma infection had no apparent effect on the outcome of the infection.  相似文献   

9.
Two studies, of a natural infection and an experimental infection, were performed in order to study congenital transmission of Toxoplasma gondii in cattle. In the first study, 50 fetuses were harvested from gestating cows that were eutanasied at a municipal slaughterhouse in Jaboticabal, São Paulo state, Brazil. In the second study, 11 gestating cows were divided into four groups for inoculation with T. gondii: GI consisted of three cows inoculated with 1.0 × 105 oocysts during their first trimester of gestation; GII consisted of three cows inoculated with 1.0 × 105 oocysts during their second trimester of gestation; GIII consisted of three cows inoculated with 1.0 × 105 oocysts during their last trimester of gestation; and GIV consisted of two control cows, one during its first and the other during its second trimester of gestation. In both studies, the presence of T. gondii was confirmed both indirectly by immunofluorescence assay (IFAT). In the natural infection experiment, 18% (9/50) of the gestating cows were confirmed to have specific antibodies (IFAT – 1:64) against T. gondii. The bioassay was able to diagnose the presence of T. gondii in the tissue samples from three calves. In the second experiment, the nine cows from groups I, II and III presented with specific antibodies (IFAT) against T. gondii. In contrast, T. gondii could not be detected by IFAT, histopathological examination or the bioassay in any of the nine calves born to cows experimentally infected with T. gondii oocysts. Based on the results from both studies, we conclude that congenital infection of T. gondii in cattle, while infrequent, does occur naturally. The pathogenicity of the strain of T. gondii may influence the likelihood of this route of transmission.  相似文献   

10.
The objective was to test immune protection against the formation of Toxoplasma gondii tissue cysts in rats. It has been previously shown that 50 T. gondii tissue cysts of strain Me49 are not pathogenic for CF-1 mice, whereas 1 T. gondii tissue cyst of strain M-7741, can be lethal for mice 11-13 days after subcutaneous or oral administration. In the present study, ten rats were fed T. gondii oocysts of strain Me49 and after a further 30 days they were each orally challenged with T. gondii oocysts of strain M-7741. Thirty days after this, they were euthanased and brain and muscle samples inoculated subcutaneously or orally dosed, respectively, to mice for bioassay. None of the mice died, whereas all the mice that were inoculated with brain homogenates or were fed muscle samples from four non-immunized rats that had been inoculated with T. gondii oocysts of strain M-7741, died. These results encourage further research towards achieving vaccinal protection against the formation of T. gondii tissue cysts in meat animals and people.  相似文献   

11.
The protozoan parasite Toxoplasma gondii enhances the sexual attractiveness of infected male rats and attenuates the innate fear of cat odour in infected individuals. These behavioural changes plausibly lead to greater transmission of parasites through sexual and trophic routes, respectively. Testosterone, a testicular steroid, is known to reduce fear and enhance sexual attractiveness in males. Here, we show that Toxoplasma gondii infection enhances expression of genes involved in facilitating synthesis of testosterone, resulting in greater testicular testosterone production in male rats. In several species, testosterone mediates trade‐offs between sexually selected traits and life history decisions. Augmentation of testosterone synthesis by Toxoplasma gondii suggests that parasites may manipulate these trade‐offs in rats.  相似文献   

12.
SYNOPSIS. The excystation of sporozoites from intact Toxoplasma gondii oocysts or mechanically released sporocysts was studied by light and electron microscopy. Both intact oocysts and free sporocysts excysted in 5% bovine bile in 0.9% NaCl solution after 30–60 min incubation at 37 C. Sporozoites were first activated in either intact sporocysts or oocysts within 2–12 min of incubation in bile. Sporozoites escaped from sporocysts through 4 plate-like sutures in the sporocyst wall, and from the oocyst as the oocyst wall ruptured at one or more points.  相似文献   

13.
Toxoplasma gondii infects virtually all warm‐blooded hosts worldwide. Recently, attention has been focused on the genetic diversity of the parasite to explain its pathogenicity in different hosts. It has been hypothesized that interaction between feral and domestic cycles of T. gondii may increase unusual genotypes in domestic cats and facilitate transmission of potentially more pathogenic genotypes to humans, domestic animals, and wildlife. In the present study, we tested black bear (Ursus americanus), bobcat (Lynx rufus), and feral cat (Felis catus) from the state of Pennsylvania for T. gondii infection. Antibodies to T. gondii were found in 32 (84.2%) of 38 bears, both bobcats, and 2 of 3 feral cats tested by the modified agglutination test (cut off titer 1:25). Hearts from seropositive animals were bioassayed in mice, and viable T. gondii was isolated from 3 of 32 bears, 2 of 2 bobcats, and 2 of 3 feral cats. DNA isolated from culture‐derived tachyzoites of these isolates was characterized using multilocus PCR‐RFLP markers. Three genotypes were revealed, including ToxoDB PCR‐RFLP genotype #1 or #3 (Type II, 1 isolate), #5 (Type 12, 3 isolates), and #216 (3 isolates), adding to the evidence of genetic diversity of T. gondii in wildlife in Pennsylvania. Pathogenicity of 3 T. gondii isolates (all #216, 1 from bear, and 2 from feral cat) was determined in outbred Swiss Webster mice; all three were virulent causing 100% mortality. Results indicated that highly mouse pathogenic strains of T. gondii are circulating in wildlife, and these strains may pose risk to infect human through consuming of game meat.  相似文献   

14.
Inactivation of Toxoplasma gondii oocysts occurred with exposure to pulsed and continuous UV radiation, as evidenced by mouse bioassay. Even at doses of ≥500 mJ/cm2, some oocysts retained their viability.  相似文献   

15.
We present a set of data on human and chicken Toxoplasma gondii seroprevalence that was investigated and analysed in light of groundwater vulnerability information in an area endemic for waterborne toxoplasmosis in Brazil. Hydrogeological assessment was undertaken to select sites for water collection from wells for T. gondii oocyst testing and for collecting blood from free-range chickens and humans for anti-T. gondii serologic testing. Serologic testing of human specimens was done using conventional commercial tests and a sporozoite-specific embryogenesis-related protein (TgERP), which is able to differentiate whether infection resulted from tissue cysts or oocysts. Water specimens were negative for the presence of viable T. gondii oocysts. However, seroprevalence in free-range chickens was significantly associated with vulnerability of groundwater to surface contamination (p < 0.0001; odds ratio: 4.73, 95% confidence interval: 2.18-10.2). Surprisingly, a high prevalence of antibodies against TgERP was detected in human specimens, suggesting the possibility of a continuous contamination of drinking water with T. gondii oocysts in this endemic setting. These findings and the new proposed approach to investigate and analyse endemic toxoplasmosis in light of groundwater vulnerability information associated with prevalence in humans estimated by oocyst antigens recognition have implications for the potential role of hydrogeological assessment in researching waterborne toxoplasmosis at a global scale.  相似文献   

16.
Little is known of the epidemiology of toxoplasmosis in Minnesota. Here, we evaluated Toxoplasma gondii infection in 50 wild bobcats (Lynx rufus) and 75 other animals on/near 10 cattle farms. Antibodies to T. gondii were assayed in serum samples or tissue fluids by the modified agglutination test (MAT, cut‐off 1:25). Twenty nine of 50 bobcats and 15 of 41 wildlife trapped on the vicinity of 10 farms and nine of 16 adult domestic cats (Felis catus) and six of 14 domestic dogs resident on farms were seropositive. Toxoplasma gondii oocysts were not found in feces of any felid. Tissues of all seropositive wild animals trapped on the farm were bioassayed in mice and viable T. gondii was isolated from two badgers (Taxidea taxus), two raccoons (Procyon lotor), one coyote (Canis latrans), and one opossum (Didelphis virginiana). All six T. gondii isolates were further propagated in cell culture. Multi‐locus PCR‐RFLP genotyping using 10 markers (SAG1, SAG2 (5′‐3′SAG2, and alt.SAG2), SAG3, BTUB, GRA6, c22‐8, c29‐2, L358, PK1, and Apico), and DNA from cell culture derived tachyzoites revealed three genotypes; #5 ToxoDataBase (1 coyote, 1 raccoon), #1 (1 badger, 1 raccoon, 1 opossum), and #2 (1 badger). This is the first report of T. gondii prevalence in domestic cats and in bobcats from Minnesota, and the first isolation of viable T. gondii from badger.  相似文献   

17.
Little is known about the prevalence of the parasite Toxoplasma gondii in the arctic marine food chain of Svalbard, Norway. In this study, plasma samples were analyzed for T. gondii antibodies using a direct agglutination test. Antibody prevalence was 45.6% among polar bears (Ursus maritimus), 18.7% among ringed seals (Pusa hispida) and 66.7% among adult bearded seals (Erignathus barbatus) from Svalbard, but no sign of antibodies were found in bearded seal pups, harbour seals (Phoca vitulina), white whales (Delphinapterus leucas) or narwhals (Monodon monoceros) from the same area. Prevalence was significantly higher in male polar bears (52.3%) compared with females (39.3%), likely due to dietary differences between the sexes. Compared to an earlier study, T. gondii prevalence in polar bears has doubled in the past decade. Consistently, an earlier study on ringed seals did not detect T. gondii. The high recent prevalence in polar bears, ringed seals and bearded seals could be caused by an increase in the number or survivorship of oocysts being transported via the North Atlantic Current to Svalbard from southern latitudes. Warmer water temperatures have led to influxes of temperate marine invertebrate filter-feeders that could be vectors for oocysts and warmer water is also likely to favour higher survivorship of oocycts. However, a more diverse than normal array of migratory birds in the Archipelago recently, as well as a marked increase in cruise-ship and other human traffic are also potential sources of T. gondii.  相似文献   

18.
SYNOPSIS. Toxoplasma gondii, passed from mouse to mouse in the tachyzoite stage for 30–35 generations, developed cysts, which, when fed to cats, failed to produce oocysts. Besnoitia jellisoni, passed similarly for 20 generations, lost the capacity to form cysts. These phenomena are explained by a loss of genomes or gene products during the rapid passage selecting for tachyzoites.  相似文献   

19.
ABSTRACT. In this paper the history of Toxoplasma gondii and toxoplasmosis is reviewed. This protozoan parasite was first discovered in 1908 and named a year later. Its medical importance remained unknown until 1939 when T. gondii was identified in tissues of a congenitally infected infant, and veterinary importance became known when it was found to cause abortion storms in sheep in 1957. The discovery of a T. gondii specific antibody test, Sabin–Feldman dye test in 1948 led to the recognition that T. gondii is a common parasite of warm‐blooded hosts with a worldwide distribution. Its life cycle was not discovered until 1970 when it was found that felids are its definitive host and an environmentally resistant stage (oocyst) is excreted in feces of infected cats. The recent discovery of its common infection in certain marine wildlife (sea otters) indicates contamination of our seas with T. gondii oocysts washed from land. Hygeine remains the best preventive measure because currently there is no vaccine to prevent toxoplasmosis in humans.  相似文献   

20.
Waterborne toxoplasmosis - Recent developments   总被引:2,自引:0,他引:2  
Humans become infected with Toxoplasma gondii mainly by ingesting uncooked meat containing viable tissue cysts or by ingesting food or water contaminated with oocysts from the feces of infected cats. Circumstantial evidence suggests that oocyst-induced infections in humans are clinically more severe than tissue cyst-acquired infections. Until recently, waterborne transmission of T. gondii was considered uncommon, but a large human outbreak linked to contamination of a municipal water reservoir in Canada by wild felids and the widespread infection of marine mammals in the USA provided reasons to question this view. The present paper examines the possible importance of T. gondii transmission by water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号