首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
2.
Predator inspection behaviour at different levels of attack motivation (attack status of the predator) was investigated in European minnows Phoxinus phoxinus from a population sympatric with pike Esox lucius , during controlled laboratory experiments. Shoals of minnows performed more predator inspections and formed larger inspection group sizes shortly after an attack by a pike. After inspection, minnows returned to the safety of the main shoal, regardless of predator motivation. Minnows which inspected last-before and first-after a strike by a pike modified their behaviour after inspection; they reduced feeding, increased shoaling, flicked their dorsal and pectoral fins and skittered. This behaviour signified alarm and appeared to reflect the severity of the threat posed by the predator at the time of inspection. Fish that had inspected when the pike displayed low attack motivation did not modify their behaviour after inspection to reflect alarm. Information concerning the attack motivation of the predator is probably transferred passively throughout the shoal by changed inspector behaviour and by inspection rate. These data demonstrate that: (1) minnows modified their behaviour after inspection to reflect a predator's attack motivation; and (2) minnows which inspected immediately before a strike appeared to anticipate the future attack and modified their behaviour accordingly.  相似文献   

3.
When confronted with a live pike, Esox lucius, European minnows, Phoxinus phoxinus, showed individual differences in rate of predator inspection. Predator inspection behaviour, in which single individuals or small groups approached the predator, was ordinated with several other behavioural parameters using principal components analysis. Individual minnows showed one of two strategies. Fish with high inspection rates were bolder, skittered more frequently and fed more persistently than fish with low inspection rates. Fish with low inspection rates showed the opposite strategy. Individuals did not show habituation of predator inspection during trials or over the experimental period.  相似文献   

4.
In this study we test whether brook sticklebacks (Culaea inconstans) can acquire predator recognition through releaser-induced recognition learning, i.e. simultaneous exposure to aversive ('releasing') stimuli and neutral stimuli causing learned aversion to the neutral stimuli. We exposed wild-caught pike-naive brook sticklebacks (collected from a creek containing fathead minnows, Pimephales promelas, but not pike, Esox lucius) to chemical stimuli from pike that were mixed with brook stickleback skin extract, fathead minnow skin extract, or a control of distilled water. In subsequent tests 2 d later, when only pike stimuli were presented, sticklebacks conditioned with stickleback skin extract and fathead minnow skin extract exhibited antipredator behaviour (i.e. increased schooling and movement toward the substrate), while those conditioned with distilled water did not. Sticklebacks conditioned with stickleback skin extract responded to pike with a more intense response, in terms of movement toward the substrate, than those conditioned with fathead minnow skin extract, suggesting that conspecific skin extract may be a stronger stimulus than heterospecific skin extract for learning recognition of predators. To our knowledge this is the first study to demonstrate that an acanthopterygian fish can acquire predator recognition through the pairing of conspecific alarm pheromone with the cue of a predator. Furthermore, our results are the first to demonstrate that fish can acquire predator recognition through the pairing of a heterospecific alarm pheromone with the cue of a predator. These results suggest that brook sticklebacks will benefit by being in close proximity to fathead minnows. Acquired predator recognition has long-term consequences in mediating predator-prey interactions.  相似文献   

5.
Experiments showed that minnows, Phoxinus phoxinus, sympatric with pike, Esox lucius, responded more vigorously to alarm substance than minnows from a population with no experience of pike predation in the wild. Minnows from the pike-sympatric (Dorset) population were more likely to hide and less likely to risk feeding than their pike-allopatric (Gwynedd) counterparts. The reaction to alarm substance in the pike-sympatric population was further increased when it was presented along with the visual stimulus of a ‘stalking’ model pike. When the Dorset minnows experienced both alarm substance and the pike model together they reduced their inspection behaviour to a level below that of the Gwynedd minnows. Minnows from the Gwynedd (pike-allopatric) population displayed increased levels of shoaling in the treatments in which alarm substance was used.  相似文献   

6.
Young-of-the-year, predator-naive fathead minnows, Pimephales promelas , from a pikesympatric population did not respond to chemical stimuli from northern pike, Esox Indus , while wild-caught fish of the same age and size did. These results suggest that chemical predator recognition is a result of previous experience and not genetic factors, Wild young-of-the-year minnows responded to pike odour with a response intensity that was similar to that of older fish, demonstrating that the ability to recognize predators is learned within the first year. The intensity of response of wild minnows which had been maintained in a predator free environment for 1 year was similar to that of recently caught minnows of the same age, suggesting that reinforcement was not required for predator recognition to be retained. Naive minnows that were exposed simultaneously to chemical stimuli from pike (a neutral stimulus) and minnow alarm substance exhibited a fright response upon subsequent exposure to the pike stimulus alone. Predator-naive minnows exposed simultaneously to chemical stimuli from pike and glass-distilled water did not exhibit a fright response to the pike stimulus alone. These results demonstrate that fathead minnows can acquire predator recognition through releaserinduced recognition learning, thus confirming a known mechanism through which alarm substance may benefit the receivers of an alarm signal.  相似文献   

7.
Fathead minnows (Cyprinidae: Pimephales promelas) from a population that is sympatric with predatory northern pike (Esocidae: Esox lucius) exhibited a fright reaction to the visual stimulus of a live northern pike significantly more often than minnows from a population that is allopatric with pike. The fright response included increased use of shelter, dashing and freezing. Minnows from the pike-sympatric population also exhibited a significantly greater fright response, measured as a reduction in activity, following exposure to chemical stimuli from pike (i.e. water from a tank that had contained a pike) than did minnows from the pike-allopatric population. There was no significant change in activity by minnows from either population following exposure to chemical stimuli from nonpiscivorous peacock gudgeons (Eleotridae: Tateurndina ocellicauda), suggesting that the difference between the two populations is specific to stimuli from pike rather than a general difference in response to chemical stimuli from heterospecific fishes. Fathead minnows apparently utilize at least a two-tiered predator recognition system that incorporates both visual and chemical cues.  相似文献   

8.
Shoals composed of equal numbers of two size-classes of European minnows were observed undisturbed, feeding and after threat from a pike in a large arena tank.
The time/frequency budget and analysed sequences of behaviour of the two size-classes were very similar. Irrespective of size, for standard behaviour measures, fish in the shoal behaved similarly under the same external influences, including predator threat.
In contrast, however, the distribution of the two size-classes provided evidence of size segregation within the shoal. This was brought about by individual minnows making shoaling responses preferentially to their own size-class. After exposure to the predator, shoaling responses changed and differed between small and large minnows.
The outcomes of contests at foraging patches were governed primarily by fish size and information asymmetry rather than by occupation of a feeding site.
The experiment shows that asymmetrical pay-offs in foraging and in response to predator threat are the probable reasons for size-segregation behaviours. This conclusion supports the views of earlier workers that mechanical sorting by swimming speed is not an important factor in size segregation in shoals.  相似文献   

9.
Individuals from a natural population of approximately 20 000 fathead minnows from a pike–free pond did not respond with appropriate anti–predator behaviour upon encountering pike odour in laboratory tests. However, 14 days after 10 pike were stocked into the pond, minnows had acquired recognition of pike odour. Laboratory studies have indicated several possible mechanisms for acquiring predator recognition in fathead minnows. This study indicates that these, or similar processes, can produce major changes in predator recognition in the wild.  相似文献   

10.
Groups of fathead minnows Pimephales promelas were tested to determine if they avoided areas of a test tank labelled with the faeces of a predator (northern pike, Esox lucius ) which had recently been fed minnows, brook sticklebacks Culaea inconstans , or swordtails Xiphophorus helleri. Minnows exhibited a fright reaction upon presentation of sponges labelled with faeces, when the pike had consumed minnows or sticklebacks, but not swordtails (which lack alarm pheromones). The fright reaction was characterized by increased shoal cohesiveness and increased dashing and freezing behaviour. Minnows avoided the area of the tank containing the faeces from pike on diets of minnows or sticklebacks, but not from pike fed a diet of swordtails. These data demonstrate that: (1) minnows actively avoid the faeces of pike fed minnows or brook sticklebacks, and (2) minnows exhibit a fright reaction to the faeces of a pike fed brook sticklebacks.  相似文献   

11.
Pike-naive fathead minnows (Pimephales promelas) were fed ad libitum or deprived of food for 12, 24, or 48 h and then exposed to either conspecific alarm pheromone or distilled water and the odour of a predatory northern pike (Esox lucius). Minnows fed ad libitum or deprived for 12 h showed a stereotypic alarm response to the alarm pheromone (increased time under cover objects and increased occurrence of dashing and freezing behaviour); those deprived of food for 24 h showed a significantly reduced alarm response, while those deprived of food for 48 h did not differ significantly from the minnows exposed to a distilled water control. Upon subsequent testing in an Opto-Varimex activity meter, all groups initially exposed to alarm pheromone and pike odour exhibited an alarm response when exposed to pike odour alone. Those initially conditioned with distilled water and pike odour did nor show an alarm response to pike odour alone. These results demonstrate that there exists a significant trade-off between hunger level and predator-avoidance behaviour in fathead minnows and that minnows can learn the chemical cues of a predatory northern pike through association with alarm pheromone even in the absence of an observable alarm response.  相似文献   

12.
Synopsis Behavior of largemouth bass, Micropterus salmoides, and northern pike, Esox lucius, foraging on fathead minnows, Pimephales promelas, or bluegills, Lepomis macrochirus, was quantified in pools with 50% cover (half the pool had artificial stems at a density of 1000 stems m−2). Both predators spent most of their time in the vegetation. Largemouth bass searched for bluegills and ambushed minnows, whereas the relatively immobile northern pike ambushed all prey. Minnows were closer to predators and were captured more frequently than bluegills. Even when minnows dispersed, they moved continually and eventually wandered within striking distance of a predator. Bluegills dispersed in the cover with predators. Bass captured the few bluegills that strayed into the open and pike captured those that approached too closely in the cover. The ability of predators to capture prey while residing in habitats containing patches of dense cover may explain their residence in areas often considered to be poor ones for foraging. The unit is sponsored jointly by the United States Fish and Wildlife Service, Ohio Department of NaturalResources, The Ohio State University, and the Wildlife Management Institute  相似文献   

13.
Skov  Christian  Lousdal  Ole  Johansen  Per H.  Berg  Søren 《Hydrobiologia》2003,506(1-3):481-487

Stocking 0+ pike in shallow eutrophic lakes as an indirect way to facilitate clear water by increased phytoplankton grazing by zooplankton, has been used in several studies with varying success. Lack of piscivory could be one reason for poor impact of the pike stockings, on reducing the 0+ cyprinid fish population. In relation to this, we present data on food and feeding habits of 936 0+ pike (Esox lucius L.) (2–18 cm) sampled during five years in a small eutrophic lake undergoing biomanipulation. Overall, the food of 0+ pike followed a sequence of diet shifts including microcrustacea, insects, macrocrustacea and finally vertebrates (fish) with increase in pike length. Despite a high abundance of potential prey fish in the lake, in general less than 50% of the pike were piscivorous until a length of 10.1–13.7 cm. As piscivory increased, the principal prey fish (0+ roach) apparently displayed antipredatorial behaviour which decreased their availability for 0+ pike. We conclude that lack of piscivory caused by e.g. anti predator tactics by prey fish, may reduce the impact of 0+ pike stockings in lake restoration projects.

  相似文献   

14.
We conducted a two-part study to assets predator avoidance byreproductive male fathead minnows (Pimephales promelos) subjectedto predation threat from northern pike (Esox lucius). First,we determined if patterns of nest use by egg-guarding male minnowsin a boreal lake were related to pike densities. We samplednorthern pike and identified four areas of "high pike-density"and three areas of "low pike-density." We censused natural nestsand placed nest boards in these areas. We found eggs on naturalnests more frequently in areas with low densities of pike thanin areas with high densities of pike. However, we could notfully explain the distribution of nests by predation risk. Second,we evaluated the behavioral response of egg-guarding males toa control stimulus (a piece of wood) or a live pike in a wirecage. We used time to return to the nest after a stimulus asa measure of risk taking. Males took different amounts of riskbased on predation threat; males in the predator treatment tooklonger to return to their nests than control males. Risk takingwas not related to the number or age of the eggs but to distanceto nearest egg-guarding neighbor; males with close neighborsreturned sooner than more isolated males. Males in the predatortreatment had lower total activity and egg rubbing than controlmales after they returned to their nests. We conclude that malefathead minnows altered their reproductive behavior in waysthat reduced predation risk, but the cost of predator avoidancemight include egg predation, lost mating opportunities, or usurpationof nests  相似文献   

15.
Naive European minnows (Phoxinus phoxinus) do not show a fright reaction when they first encounter the odour of a natural predator (the pike: Esox lucius) or the odour of a non-piscivorous exotic (tilapia: Tilapia mariae). A conditioned fright response to both these odours will however develop if minnows experience them in a potentially dangerous situation, for example, in conjunction with Schreckstoff, the ostariophysian alarm pheromone. Although minnows respond to both odours the reaction to the tilapia odour is reduced. This suggests that a constraint on learning is involved. Olfactory recognition is particularly valuable for detecting predators that hunt in conditions where visibility is poor.  相似文献   

16.
We stocked 39 juvenile pike, Esox lucius, into a previously pike free pond which contained a population of approximately 78 000 fathead minnows, Pimephales promelas. Fathead minnows sampled prior to pike stocking did not show a stereotypic fright response to either visual or chemical cues from pike. After stocking pike, we sampled minnows every two days for a period of two weeks. Minnows sampled six days after stocking still did not show a fright response to the sight of a pike, but those sampled eight days after stocking did exhibit a significant fright response, indicating that acquired predator recognition based on vision occurred between six and eight days. Minnows sampled two days after stocking did not show a fright response to chemical cues of a pike. Those sampled four days after did, however, exhibit a significant fright response, indicating that acquired predator recognition based on chemical cues occurred between two and four days. These data indicate that acquired predator recognition occurs very rapidly and that the rate of learning of predator identity differs for chemical versus visual cues.  相似文献   

17.
Little is known about how food location ability of animals is affected by social information of predation risk. This question was therefore addressed in an experimental study where naïve ‘observer’ European minnows (Phoxinus phoxinus) were allowed to search for food in a maze in the presence or absence of a predator (Salmo trutta). Observer minnows were accompanied by conspecific demonstrators which had previously been trained in the same maze either in the presence or absence of the predator. Observer minnows were most likely to locate food when the predator was absent both during their trial and during the pre‐training of demonstrators. When demonstrators had been trained with predators, observer success in locating the food was halved, although they were never exposed to predation risk themselves. When observers were exposed to predation risk their probability of locating food was further reduced regardless of the experience of their demonstrators. Our results show that predation risk can affect the foraging ability of minnows both directly and indirectly through social information from conspecifics. We conclude that social information may influence and constrain individual behavioural decisions, especially in rapidly changing environments where private information is often insufficient.  相似文献   

18.
A diversity of fishes release chemical cues upon being attacked by a predator. These cues, commonly termed alarm cues, act as sources of public information warning conspecifics of predation risk. Species which are members of the same prey guild (i.e. syntopic and share predators) often respond to one another's alarm cues. The purpose of this study was to discriminate avoidance responses of fishes to conspecific alarm cues and cues of other prey guild members from responses to unknown damaged fish odours and novel odours. We used underwater video to measure avoidance responses of freshwater littoral species, namely fathead minnows (Pimephales promelas), finescale dace (Chrosomus neogaeus), and brook stickleback (Culaea inconstans), to both injured fish cues and novel non‐fish odours. The cyprinids (minnows and dace) showed significant avoidance of minnow cues over swordtail cues, morpholine, and the control of distilled water and tended to avoid fathead cues over cues of known prey guild members (stickleback). Cyprinids also significantly avoided cues of stickleback over unknown heterospecific cues (swordtail) and tended to avoid stickleback cues over morpholine and the distilled water control. Stickleback significantly avoided fathead minnow extract over the distilled water and tended to avoid stickleback and swordtail over distilled water. We conclude that fishes in their natural environment can show dramatic changes in behaviour upon exposure to alarm cues from conspecifics and prey guild members. These responses do not represent avoidance of cues of any injured fish or any novel odour.  相似文献   

19.
Numerous species, both aquatic and terrestrial, use alarm cues to mediate predation risk. These cues may be either intentionally or inadvertently released, and may be received by either conspecifics or heterospecifics. In aquatic systems, alarm cues are often chemical in nature and are released when an organism is disturbed or damaged by a predator. In some cases the recognition of alarm cues from conspecifics, or closely related heterospecifics, is innate, while the recognition of alarm cues from distantly related species must be learned. Many studies have documented the use of heterospecific alarm cues, but few have explored the manner in which these cues come to be recognized as an indication of predation. In the current study, we examined the fathead minnow (Pimephales promelas)/brook stickleback (Culaea inconstans) alarm system. We tested the effect of density on the ability of minnows to learn to recognize stickleback alarm cues as a threat. We hypothesized that the ability of minnows to learn to recognize stickleback alarm cues should increase with increasing stickleback density because there would be more opportunity for minnows to associate the heterospecific alarm cue with the threat. To test this hypothesis we stocked minnows into large outdoor pools with no stickleback, low numbers of stickleback, or high numbers of stickleback. All pools contained a predator (pike, Esox lucius) known to the minnows. Following a 14 d conditioning period, minnows were tested for a response to skin extract from stickleback, minnow, and an unknown heterospecific (swordtail, Xiphophorus helleri). Minnows from pools with large numbers of stickleback learned to respond to stickleback alarm cues while minnows from pools with low numbers of stickleback, or no stickleback, did not.  相似文献   

20.
We conducted a laboratory study to determine if male fathead minnows, Pimephales promelas, altered their territorial behaviour associated with reproduction in response to combinations of visual and chemical cues from northern pike, Esox lucius. We introduced the following stimuli to a territorial male: a brick (control), fathead minnow alarm pheromone, a pike fed brook stickleback, Culea inconstans, or a pike fed fathead minnow. The territorial behaviour of males did not change when the control was added. Male minnows experiencing threat from pike fed stickleback significantly reduced the frequency at which they performed three territorial behaviours, but, within 12 h, had returned to pre-exposure activity levels. Male minnows subjected to alarm pheromone alone and to pike fed fathead minnow significantly reduced their territorial behaviour, abandoned their nests, and did not return to pre-exposure levels of activity after 24 h. We suggest that because risk of predation triggers prolonged decreases in territorial defense, it may affect competition between nesting males and female mate choice. We conclude that fathead minnows can assess the severity of predatory threat and adjust their reproductive behaviour accordingly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号