首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Previous results from this laboratory indicated that, in Escherichia coli K12, a new class of missense suppressors, which read the lysine codons AAA and AAG, may be misacylated lysine transfer RNAs. We therefore isolated and determined the nucleotide sequence of the lysine tRNA from two of the suppressor strains. In each case, we found both wild-type and mutant species of lysine tRNA, a result consistent with evidence that there are two genes for lysine tRNA in the E coli genome. The wild-type sequence was essentially identical to that reported for lysine tRNA from E. coli B. The mutant species isolated from each suppressor strain had a U for C70 nucleotide substitution, demonstrating that the AAG suppressor is a mutant lysine tRNA. The nucleotide substitution in the amino acid acceptor stem is consistent with the in vivo evidence that the suppressor corrects AAA and AAG missense mutations by inserting an amino acid other than lysine during polypeptide synthesis. This report represents the first verification of missense suppression caused by misacylation of a mutant tRNA.  相似文献   

3.
Escherichia coli K-12 possesses two active transport systems for arginine, two for ornithine, and two for lysine. In each case there is a low- and a high-affinity transport system. They have been characterized kinetically and by response to competitive inhibition by arginine, lysine, ornithine and other structurally related amino acids. Competitors inhibit the high-affinity systems of the three amino acids, whereas the low-affinity systems are not inhibited. On the basis of kinetic evidence and competition studies, it is concluded that there is a common high-affinity transport system for arginine, ornithine, and lysine, and three low-affinity specific ones. Repression studies have shown that arginine and ornithine repress each other's specific transport systems in addition to the repression of their own specific systems, whereas lysine represses its own specific transport system. The common transport system was found to be repressible only by lysine. A mutant was studied in which the uptake of arginine, ornithine, and lysine is reduced. The mutation was found to affect both the common and the specific transport systems.  相似文献   

4.
Hydantoinases are industrial enzymes with varying degree of activities on variable substrates to form different products. Although, few of the hydantoinase structures were known recently, the functional details and active site mechanism were not clearly understood yet. In a structure determination effort we reported that Bacillus sp. AR9 hydantoinase contains uncarboxylated lysine in the active site, whereas all the other hydantoinases have a carboxylated active site lysine. Here we describe the importance of carboxylated lysine for differential activities by making lysine mutations as well as carboxylating the lysine in a D-hydantoinase from Bacillus sp. AR9. The lysine to alanine and lysine to arginine mutations showed reduced activities whereas carboxylation of the lysine has enhanced the activity. Theoretical studies involving the calculation of electrostatic potentials for the hydroxide ion between the two metal ions present in the active site suggest that the presence of carboxylated lysine increases the nucleophilicity of the hydroxide.  相似文献   

5.
The lysine isoacceptor tRNAs differ in two aspects from the majority of the other mammalian tRNA species: they do not contain ribosylthymine (T) in loop IV, and a 'new' lysine tRNA, which is practically absent in non-dividing tissue, appears at elevated levels in proliferating cells. We have therefore purified the three major isoaccepting lysine tRNAs from rabbit liver and the 'new' lysine tRNA isolated from SV40-transformed mouse fibroblasts, and determined their nucleotide sequences. Our basic findings are as follows. a) The three major lysine tRNAs (species 1, 2 and 3) from rabbit liver contain 2'-O-methylribosylthymine (Tm) in place of T. tRNA1Lys and tRNA2Lys differ only by a single base pair in the middle of the anticodon stem; the anticodon sequence C-U-U is followed by N-threonyl-adenosine (t6A). TRNA3Lys has the anticodon S-U-U and contains two highly modified thionucleosides, S (shown to be 2-thio-5-carboxymethyl-uridine methyl ester) and a further modified derivative of t6 A (2-methyl-thio-N6-threonyl-adenosine) on the 3' side of the anticodon. tRNA3Lys differs in 14 and 16 positions, respectively, from the other two isoacceptors. b) Protein synthesis in vitro, using synthetic polynucleotides of defined sequence, showed that tRNA2Lys with anticodon C-U-U recognized A-A-G only, whereas tRNA3Lys, which contains thio-nucleotides in and next to the anticodon, decodes both lysine codons A-A-G and A-A-A, but with a preference for A-A-A. In a globin-mRNA-translating cell-free system from ascites cells, both lysine tRNAs donated lysine into globin. The rate and extent of lysine incorporation, however, was higher with tRNA2Lys than with tRNA3Lys, in agreement with the fact that alpha-globin and beta-globin mRNAs contain more A-A-G than A-A-A- codons for lysine. c) A comparison of the nucleotide sequences of lysine tRNA species 1, 2 and 3 from rabbit liver, with that of the 'new' tRNA4Lys from transformed and rapidly dividing cells showed that this tRNA is not the product of a new gene or group of genes, but is an undermodified tRNA derived exclusively from tRNA2Lys. Of the two dihydrouridines present in tRNA2Lys, one is found as U in tRNA4Lys; the purine next to the anticodon is as yet unidentified but is known not be t6 A. In addition we have found U, T and psi besides Tm as the first nucleoside in loop IV.  相似文献   

6.
Abstract Threonine and lysine are two of the economically most important essential amino acids. They are produced industrially by species of the genera Corynebacterium and Brevibacterium . The branched biosynthetic pathway of these amino acids in corynebacteria is unusual in gene organization and in the control of key enzymatic steps with respect to other microorganisms. This article reviews the molecular control mechanisms of the biosynthetic pathways leading to threonine and lysine in corynebacteria, and their implications in the production of these amino acids. Carbon flux can be redirected at branch points by gene disruption of the competing pathways for lysine or threonine. Removal of bottlenecks has been achieved by amplification of genes which encode feedback resistant aspartokinase and homoserine dehydrogenase (obtained by in vitro directed mutagenesis).  相似文献   

7.
Post-translational lysine methylation and acetylation are two major modifications of lysine residues. They play critical roles in various biological processes, especially in gene regulation. Identification of protein methylation and acetylation sites would be a foundation for understanding their modification dynamics and molecular mechanism. This work presents a method called PLMLA that incorporates protein sequence information, secondary structure and amino acid properties to predict methylation and acetylation of lysine residues in whole protein sequences. We apply an encoding scheme based on grouped weight and position weight amino acid composition to extract sequence information and physicochemical properties around lysine sites. The prediction accuracy for methyllysine and acetyllysine are 83.02% and 83.08%, respectively. Feature analysis reveals that methyllysine is likely to occur at the coil region and acetyllysine prefers to occur at the helix region of protein. The upstream residues away from the central site may be close to methylated lysine in three-dimensional structure and have a significant influence on methyllysine, while the positively charged residues may have a significant influence on acetyllysine. The online service is available at http://bioinfo.ncu.edu.cn/inquiries_PLMLA.aspx.  相似文献   

8.
The covalent attachment of ubiquitin (Ub) to short-lived or damaged proteins is believed to be the signal that initiates their selective degradation. In several cases, it has been shown that the proteolytic signal takes the form of a multi-Ub chain in which successive Ub molecules are linked tandemly at lysine 48 (K-48). Here we show that Ub molecules can be linked together in vivo at two other lysine positions, lysine 29 (K-29) and lysine 63 (K-63). The formation of these alternative linkages is strongly dependent on the presence of the stress-related Ub conjugating enzymes UBC4 and UBC5. Furthermore, expression of Ub carrying a K-63 to arginine 63 substitution in a strain of Saccharomyces cerevisiae that is missing the poly-Ub gene, UBI4, fails to compensate for the stress defects associated with these cells. Taken together, these results suggest that the formation of multi-Ub chains involving K-63 linkages plays an important role in the yeast stress response. In broader terms, these results also suggest that Ub is a versatile signal in which different Ub chain configurations are used for different functions.  相似文献   

9.
Further studies on the expression of the two aspartokinase activities in Bacillus bovis are presented. Aspartokinase I (previously shown to be inhibited and repressed by lysine) was found to be repressed by diaminopimelate in the wild-type strain. However, in a mutant unable to convert diaminopimelate to lysine, starvation for lysine resulted in an increase in aspartokinase I activity. Thus, lysine itself or an immediate metabolite was the true effector of repression. Aspartokinase II (previously shown to be inhibited by lysine plus threonine) was repressed by threonine. Studies with the parent strain and auxotrophs inidicated that only threonine or an immediate metabolite of threonine was involved in this repression. Methionine and isoleucine were not effectors of any of the detected aspartokinase activities. Apart from inhibition and repression controls, a third as yet undefined regulatory mechanism operated to decrease the levels of both aspartokinases as growth declined, even in mutants in which repression control was absent. In thiosine-resistant, lysine-excreting mutants with elevated levels of aspartokinase, the increase in activity could always be attributed to one enzyme or the other, never both. The existence of separate structural genes for each aspartokinase is therefore suggested.  相似文献   

10.
Role of lysine methylation in the activities of elongation factor 1 alpha   总被引:3,自引:0,他引:3  
Previous work in our laboratory has demonstrated that 19% of the lysine residues in the protein synthesis elongation factor (EF-1 alpha) are methylated when the factor is purified from the mycelial form of the fungus Mucor racemosus. However, the same factor, when purified from spores of M. racemosus, is largely unmethylated. Despite its wide-spread occurrence in a great number of basic proteins, the functional significance of lysine N-methylation remains poorly understood. Spore and mycelial forms of EF-1 alpha were therefore compared in a series of assays to determine their relative affinities for various substrates and cofactors known to interact with the factor during the elongation cycle. The results suggested that hypomethylated and fully methylated EF-1 alpha had equal affinities for GTP, aminoacyl-tRNA, and ribosomes. Also, methylation did not appear to affect the accuracy of translation in an in vitro system. However, experiments did suggest that methylation may affect the ability of the factor to form complexes with other subunits (EF-1 beta gamma) which are known to enhance the overall rate of protein synthesis.  相似文献   

11.
12.
Ahn JY  Choi S  Cho SW 《Biochimie》1999,81(12):1123-1129
Incubation of two types of glutamate dehydrogenase (GDH) isoproteins from bovine brain with o-phthalaldehyde resulted in a time-dependent loss of enzyme activity. The inactivation was partially prevented by preincubation of the GDH isoproteins with 2-oxoglutarate or NADH. Spectrophotometric studies indicated that the inactivation of GDH isoproteins with o-phthalaldehyde resulted in isoindole derivatives characterized by typical fluorescence emission spectra with a stoichiometry of one isoindole derivative per molecule of enzyme subunit. There were no differences between the two GDH isoproteins in sensitivities to inactivation by o-phthalaldehyde indicating that the microenvironmental structures of the GDH isoproteins are very similar to each other. Tryptic peptides of the isoproteins, modified with and without protection, identified a selective modification of one lysine as in the region containing the sequence L-Q-H-G-S-I-L-G-F-P-X-A-K for both GDH isoproteins. The symbol X indicates a position for which no phenylthiohydantoin-amino acid could be assigned. The missing residue, however, can be designated as an o-phthalaldehyde-labeled lysine since the sequences including the lysine residue in question have a complete identity with those of the other mammalian GDHs. Also, trypsin was unable to cleave the labeled peptide at this site. Both amino acid sequencing and compositional analysis identified Lys-306 as the site of o-phthalaldehyde binding within the brain GDH isoproteins.  相似文献   

13.
Recently, we revealed that the cloverleaf structure of some eukaryotic tRNAs is not always stable in vitro, and the denatured structures of these tRNAs are sometimes detected in bacterial RNase P reactions. We have designated the unusual internal cleavage reaction of these tRNAs as hyperprocessing. We have developed this hyperprocessing strategy as a useful tool for examining the stability of the tRNA cloverleaf structure. There are some common features in such unstable, hyperprocessible tRNAs, and the criteria for the hyperprocessing reaction of tRNA are extracted. Metazoan initiator methionine tRNAs and lysine tRNAs commonly fit the criteria, and are predicted to be hyperprocessible. The RNase P reactions of two metazoan lysine tRNAs from Homo sapiens and Caenorhabditis elegans, which fit the criteria, resulted in resistance to the internal cleavage reaction, while one bacterial lysine tRNA from Acholeplasma laidlawii, which also fits the criteria, was internally cleaved by the RNase P. The results showed that the metazoan lysine tRNAs examined are very stable without base modifications even under in vitro conditions. We also examined the 3'-half short construct of the human lysine tRNA, and the results showed that this RNA was internally cleaved by the enzyme. The results indicated that the human lysine tRNA has the ability to be hyperprocessed but is structurally stabilized in spite of lacking base modifications. A comparative study suggested, moreover, that the acceptor-stem bases should take part in the stabilization of metazoan lysine tRNAs. Our data strongly suggest that the cloverleaf shape of other metazoan lysine tRNAs should also be stabilized by means of similar strategies to in the case of human tRNA(Lys3).  相似文献   

14.
Sundlass NK  Raines RT 《Biochemistry》2011,50(47):10293-10299
Onconase is an amphibian member of the pancreatic ribonuclease family of enzymes that is in clinical trials for the treatment of cancer. Onconase, which has an abundance of lysine residues, is internalized by cancer cells through endocytosis in a mechanism similar to that of cell-penetrating peptides. Here, we compare the effect of lysine versus arginine residues on the biochemical attributes necessary for Onconase to elicit its cytotoxic activity. In the variant R-Onconase, 10 of the 12 lysine residues in Onconase are replaced with arginine, leaving only the two active-site lysines intact. Cytometric assays quantifying internalization showed a 3-fold increase in the internalization of R-Onconase compared with Onconase. R-Onconase also showed greater affinity for heparin and a 2-fold increase in ribonucleolytic activity. Nonetheless, arginine substitution endowed only a slight increase in toxicity toward human cancer cells. Analysis of denaturation induced with guanidine-HCl showed that R-Onconase has less conformational stability than does the wild-type enzyme; moreover, R-Onconase is more susceptible to proteolytic degradation. These data indicate that arginine residues are more effective than lysine in eliciting cellular internalization but can compromise other aspects of protein structure and function.  相似文献   

15.
Yeast mutants resistant to a toxic lysine analog, thialysine were obtained by a method described in the literature. A strain excreting the maximum amount of lysine (0.45 g/l) was selected from these mutants. The intracellular content of lysine was also increased by 30%. The genetic nature of lysine overproduction was studied in this strain. An increase in the amount of excreted lysine was shown to be determined by at least two genes, one of which carries a mutation of thialysine resistance manifesting the pleiotropic effect of lysine overproduction (Th1R) and the other is involved in the regulation of lysine production (PRL). Linkage groups of these genes were determined: the first gene was mapped to the IV chromosome and the second, to the XV chromosome. Both genetic characters were introduced into industrial baker's yeast strains via a series of backcrosses. The stabilization of the genome in the newly derived strains was confirmed by electrokaryotyping.  相似文献   

16.
Lysine, threonine, methionine and isoleucine are synthesized through the aspartate metabolic pathway. The concentrations of soluble lysine and threonine in cereal seeds are very low. Coix lacryma-jobi (coix) is a maize-related grass and the enzymological aspects of the aspartate metabolic pathway are completely unknown. In order to obtain information on lysine metabolism in this plant species, two enzymes involved in the biosynthesis of these amino acids (aspartate kinase 〚AK, EC 2.7.2.4〛 and homoserine dehydrogenase 〚HSDH, EC 1.1.1.3〛) and two enzymes involved in lysine degradation (lysine 2-oxoglutarate reductase 〚LOR, EC 1.5.1.8〛 and saccharopine dehydrogenase 〚SDH, EC 1.5.1.9〛) were isolated and partially characterized in coix seeds. AK activity was inhibited by threonine and lysine separately, suggesting the presence of two isoenzymes, one sensitive to lysine and the other sensitive to threonine, with the latter corresponding to approximately 60% of the total AK activity. In contrast to previous results from other plant species, the threonine-sensitive AK eluted from an ion exchange chromatography column at higher KCl concentration than the lysine-sensitive form. The HSDH activity extracted from the seeds was partially inhibited by threonine, indicating the presence of threonine-sensitive and threonine-resistant isoenzymes. LOR and SDH activities were detected only in the endosperm tissue and co-purified on an anion exchange chromatography column, suggesting that the two activities may be linked on a single bifunctional polypeptide, as observed for other plant species. One single SDH activity band was observed on non-denaturing PAGE gels. The Km for saccharopine of SDH was determined as 0.143 mM and the Km for NAD as 0.531 mM. Although SDH activity was shown to be stable, LOR, AK and HSDH were extremely unstable, under all buffer systems tested.  相似文献   

17.
In order to study the conformation of the side chain of lysine substrates bound to the active center of trypsin, two lysine analogs, cis- and trans-2,6-diamino-4-hexenoic acids (4,5-dehydrolysines) were synthesized and kinetic parameters for the hydrolysis of benzoyl methyl esters and phenylthiazolones of these analogs by this enzyme were compared with those of the corresponding lysine derivatives. The derivatives of cis-4,5-dehydrolysine were hydrolyzed much more slowly than those of lysine, owing largely to the small kcat values for the former. On the other hand, the derivatives of the trans-isomer were hydrolyzed at about the same rates as those of lysine and the values of both Km and kcat of the former are also similar to those of the latter. These results indicate that the conformation of the side chain of the lysine derivatives hydrolyzed by trypsin is such that the beta- and epsilon-carbons are in a trans-like conformation, as suggested by X-ray crystallographic studies of inhibitor-trypsin complex.  相似文献   

18.
The basic metabolic pathways of lysine biosynthesis in Brevibacterium flavum, a strain which excretes excessive amounts of L-lysine, have been followed by using two 13C-labeled precursors. 13C- and 1H-NMR spectroscopies in conjunction with gas chromatography mass spectrometry (GC-MS) have revealed the various metabolic pathways leading to L-[13C]lysine. Discrete metabolic pathways give rise to distinct labeling patterns. L-Lysine resulting from [1-13C]glucose fermentation is relatively specifically labeled: L-[3,5-13C]lysine is the main product. Experimental and theoretical approaches based on the 13C-enrichment values of intracellular glutamate, a major intermediate metabolite, allowed us to assess the relative contribution of the major metabolic pathways forming lysine. The labeling pattern of glutamate reflects the isotope distribution in 2-oxoglutarate. When [2-13C]acetate is used as the sole carbon source in the culture, the energy-producing steps of the Krebs cycle are essential. The higher activity of the Krebs cycle, when endogenous carbohydrates are exhausted from the culture, is indicated by the increased 13C enrichment in C-1 of lysine and reveal a high content of isotopomers of four, five and six 13C atoms in the lysine molecule, pointing out that the four-carbon intermediates of the cycle are being derived from the glyoxylate shunt pathway. Such a phenomenon does not occur in glucose fermentation. GC-MS analyses of 13C enrichments and isotopomer distributions in metabolites and end products are in good agreement with the predicted contribution of each metabolic pathway. This new methodological approach of combined NMR and GC-MS has been demonstrated to be applicable to various other metabolic studies.  相似文献   

19.
Lysine and methionine are two essential amino acids whose levels affect the nutritional quality of cereals and legume plants. Both amino acids are synthesized through the aspartate family biosynthesis pathway. Within this family, lysine and methionine are produced by two different branches, the lysine branch and the threonine-methionine branch, which compete for the same carbon/amino substrate. To elucidate the relationship between these biosynthetic branches, we crossed two lines of transgenic tobacco plants: one that overexpresses the feedback-insensitive bacterial enzyme dihydrodipicolinate synthase (DHPS) and contains a significantly higher level of lysine, and a second that overexpresses Arabidopsis cystathionine gamma-synthase (AtCGS), the first unique enzyme of methionine biosynthesis. Significantly higher levels of methionine and its metabolite, S-methylmethionine (SMM), accumulated in the newly produced plants compared with plants overexpressing AtCGS alone, while the level of lysine remained the same as in those overexpressing DHPS alone. The increased levels of methionine and SMM were correlated with increases in the mRNA and protein levels of AtCGS and a reduced mRNA level for the genes encoding S-adnosylmethionine (SAM) synthase, which converts methionine to SAM. Reduction in SAMS expression level leads most probably to the reduction of SAM found in plants that feed with lysine. As SAM is a negative regulator of CGS, this reduction leads to higher expression of CGS and consequently to an increased level of methionine. Elucidating the relationship between lysine and methionine synthesis may lead to new ways of producing transgenic crop plants containing increased methionine and lysine levels, thus improving their nutritional quality.  相似文献   

20.
L-Valyl-L-lysine hydrochloride, C11N3O3H23 HCl, crystallizes in the monoclinic space group P2(1) with a = 5.438(5), b = 14.188(5), c = 9.521(5) A, beta = 95.38(2) degrees and Z = 2. The crystal structure, solved by direct methods, refined to R = 0.036, using full matrix least-squares method. The peptide exists in a zwitterionic form, with the N atom of the lysine side-chain protonated. The two gamma-carbons of the valine side-chain have positional disorder, giving rise to two conformations, chi 1(11) = -67.3 and 65.9 degrees, one of which (65.9 degrees) is sterically less favourable and has been found to be less popular amongst residues branching at beta-C. The lysine side-chain has the geometry of g- tgt, not seen in crystal structures of the dipeptides reported so far. Interestingly, chi 2(3) (63.6 degrees) of lysine side-chain has a gauche+ conformation unlike in most of the other structures, where it is trans. The neighbouring peptide molecules are hydrogen bonded in a head-to-tail fashion, a rather uncommon interaction in lysine peptide structures. The structure shows considerable similarity with that of L-Lys-L-Val HCl in conformational angles and H-bond interactions [4].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号