首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
While evolution occurs when selection acts on a heritable trait, empirical studies of natural systems have frequently reported phenotypic stasis under these conditions. We performed quantitative genetic analyses of weight and hindleg length in a free-living population of Soay sheep (Ovis aries) to test whether genetic constraints can explain previously reported stasis in body size despite evidence for strong positive directional selection. Genetic, maternal and environmental covariance structures were estimated across ontogeny using random regression animal models. Heritability increased with age for weight and hindleg length, though both measures of size were highly heritable across ontogeny. Genetic correlations among ages were generally strong and uniformly positive, and the covariance structures were also highly integrated across ontogeny. Consequently, we found no constraint to the evolution of larger size itself. Rather we expect size at all ages to increase in response to positive selection acting at any age. Consistent with expectation, predicted breeding values for age-specific size traits have increased over a twenty-year period, while maternal performance for offspring size has declined. Re-examination of the phenotypic data confirmed that sheep are not getting larger, but also showed that there are significant negative trends in size at all ages. The genetic evolution is therefore cryptic, with the response to selection presumably being masked at the phenotypic level by a plastic response to changing environmental conditions. Density-dependence, coupled with systematically increasing population size, may contribute to declining body size but is insufficient to completely explain it. Our results demonstrate that an increased understanding of the genetic basis of quantitative traits, and of how plasticity and microevolution can occur simultaneously, is necessary for developing predictive models of phenotypic change in nature.  相似文献   

2.
We present heritability estimates for final size of body traits and egg size as well as phenotypic and genetic correlations between body and egg traits in a recently established population of the barnacle goose (Branta leucopsis) in the Baltic area. Body traits as well as egg size were heritable and, hence, could respond evolutionarily to phenotypic selection. Genetic correlations between body size traits were significantly positive and of similar magnitude or higher than the corresponding phenotypic correlations. Heritability estimates for tarsus length obtained from full-sib analyses were higher than those obtained from midoffspring-midparent regressions, and this indicates common environment effects on siblings. Heritabilities for tarsus length obtained from midoffspring-mother regressions were significantly higher than estimates from midoffspring-father regressions. The results suggest that this discrepancy is not caused by maternal effects through egg size, nor by extra-pair fertilizations, but by a socially inherited foraging site fidelity in females.  相似文献   

3.
Heritabilities of 11 quasi-continuous skeletal traits were estimated in randombred house mice of three separate ages (1, 3, and 5 months). Three separate methods—regression, maximum likelihood correlation, and Falconer's Method—were used to obtain heritabilities for each of the separate age groups. Significant differences in the incidences of seven of the skeletal traits were found among ages, but they did not affect the heritability estimates, these estimates being pooled over ages. Heritabilities calculated from female parents were consistently higher (by about 13%) than those from male parents, indicating the presence of maternal effects. Mid-parent estimates made by all three methods gave very similar mean levels (0.17 — 0.20). Although low, this level compared favorably with that expected on the basis of previously estimated rates of accumulation of genetic variance. Maternal effects estimated from full sib correlations averaged 0.08.  相似文献   

4.
Four external skeletal and three feather dimensions were measured on adult collared flycatchers (Ficedula albicollis) and their adult offspring. By using mid-offspring-midparent regressions, all traits were found to be heritable with an arithmetic mean heritability of 0.46. Heritability estimates from full-sib analyses were about 1.5 times higher (mean 0.67), indicating that variation in traits was affected by shared nest environment among full-sibs. The overall body size as measured by principal component one (PC1) was found to be heritable (h2 = 0.40). However, this multivariate measure of heritability was not significant in offspring-father comparison, while highly so in offspring-mother comparison (h2 = 0.60). Low offspring-father resemblance was evident also in univariate estimates of heritability. Possible causes of this (extra-pair copulations, maternal effects, sex-linked variance) are discussed. Genetic correlations among seven traits were estimated to be low (mean 0.22), and of similar magnitude or higher than phenotypic correlations (mean 0.18). All genetic correlations were positive. Genetic and phenotypic correlations as well as covariances were fairly similar to each other (r = 0.85 and r = 0.87, respectively). Environmental correlations did not follow the pattern of genetic correlations (r = 0.11), but were more similar to phenotypic correlations (r = 0.60). Given the low genetic correlations and moderate heritabilities, the overall conclusion is that the external morphology of collared flycatchers is largely under additive genetic control and that there is a strong potential for evolutionary change in morphology even under complex multivariate selection.  相似文献   

5.
Quantitative genetic theory predicts that evolution of sexual size dimorphism (SSD) will be a slow process if the genetic correlation in size between the sexes is close to unity, and the heritability of size is similar in both sexes. However, there are very few reliable estimates of genetic correlations and sex-specific heritabilities from natural populations, the reasons for this being that (1) offspring have often been sexed retrospectively, and hence, selection acting differently with respect to body size in the two sexes between measuring and sex identification can bias estimates of SSD; and (2) in many taxa, parents may be incorrectly assigned to offspring either because of assignment errors or because of extrapair paternity. We used molecular sex and paternity identification to overcome these problems and estimated sex-specific heritabilities and the genetic correlation in body size between the two sexes in the collared flycatcher, Ficedula albicollis. After exclusion of the illegitimate offspring, the genetic correlation in body size between the sexes was 1.00 (SE = 0.22), implying a severe constraint on the evolution of SSD in this species. Furthermore, sex-specific heritability estimates were very similar, indicating that neither sex will be able to evolve faster than the other. By using estimated genetic parameters, together with empirically derived estimates of sex-specific selection gradients, we further demonstrated that the predicted selection response in female tarsus length is displaced about 200% in the opposite direction from that to be expected if there were no genetic correlation between the sexes. The correspondence between the biochemically estimated rate of extrapair paternity (about 15 % of the young) and that estimated from the “heritability method” (11%) was good. However, the estimated rate of extrapair paternity with the heritability method after exclusion of the illegitimate young was 22%, adding to increasing evidence that factors other than extrapair paternity (e.g., maternal effects) may be resposible for the commonly observed higher mother-offspring than father-offspring resemblance.  相似文献   

6.
Summary Genetic and phenotypic parameters for three-, six- and eight-week body weight and for weight gain between three and six weeks of age were estimated from data collected over 14 generations in a randombred control population. Genetic parameters were also estimated for sexual dimorphism in body weight and gain. Heritability estimates were substantial for body weight at all ages and for body weight gain. Additive maternal variances were also large. Estimates of the covariance between direct and maternal genetic effects were negative and substantial for three- and six-week weights and gain. Also the covariance between maternal effects on weaning weight and direct genetic effects on six- and eight-week weights were negative. These results indicate a consistent antagonism between maternal and direct genetic effects in this population.The analysis of sexual dimorphism yielded estimates of 0.87±.09 and 0.71±.14 for the correlation between additive direct effects on males and females for six-week weight and body weight gain respectively. Corresponding heritability estimates were 0.07±.09 and 0.11±.09. Heritability estimates for sexual dimorphism in three- and eight-week weights were negative.Journal Paper No. 3687 of the North Carolina State University Agricultural Experiment Station. This investigation was supported in part by NIH Grant No. GM11546.  相似文献   

7.
Heritability of body size in two experimentally created environments, representing good and poor feeding conditions, respectively, was estimated using cross-fostered collared flycatcher Ficedula albicollis nestlings. Young raised under poor feeding conditions attained smaller body size (tarsus length) than their full-sibs raised under good feeding conditions. Parent-offspring regressions revealed lower heritability (h2) of body size under poor than under good feeding conditions. Hence, as the same set of parents were used in the estimation of h2 in both environments, this suggests environment-dependent change in additive genetic component of variance (VA), or that the genetic correlation between parental and poor offspring environment was less than that between parental and good offspring environment. However, full-sib analyses failed to find evidence for genotype-environment interactions, although the power of these tests might have been low. Full-sib heritabilities in both environments tended to be higher than estimates from parent-offspring regressions, indicating that prehatching or early posthatching common environment/maternal effects might have inflated full-sib estimates of VA. The effect of sibling competition on estimates of VA was probably small as the nestling size-hierarchy at day 2 posthatch was not generally correlated with size-hierarchy at fledging. Furthermore, there was no correlation between maternal body condition during the incubation and final size of offspring, indicating that direct maternal effects related to nutritional status were small. A review of earlier quantitative genetic studies of body size variation in birds revealed that in eight of nine cases, heritability of body size was lower in poor than in good environmental conditions. The main implication of this relationship will be a decreased evolutionary response to selection under poor environmental conditions. On the other hand, this will retard the loss of genetic variation by reducing the accuracy of selection and might help explain the moderate to high heritabilities of body-size traits under good environmental conditions.  相似文献   

8.
Maternal effects are an important source of adaptive variation, but little is known about how they vary throughout ontogeny. We estimate the contribution of maternal effects, sire genetic and environmental variation to offspring body size from birth until 1 year of age in the live-bearing fish Poecilia parae. In both the sexes, maternal effects on body size were initially high in juveniles, and then declined to zero at sexual maturity. In sons, this was accompanied by a sharp rise in sire genetic variance, consistent with the expression of Y-linked loci affecting male size. In daughters, all variance components decreased with time, consistent with compensatory growth. There were significant negative among-dam correlations between early body size and the timing of sexual maturity in both sons and daughters. However, there was no relationship between early life maternal effects and adult longevity, suggesting that maternal effects, although important early in life, may not always influence late life-history traits.  相似文献   

9.
Despite a growing interest in the evolutionary aspects of maternal effects, few studies have examined the genetic consequences of maternal effects associated with parental care. To begin to provide data on nonlaboratory or nondomestic animals, we compared the effect of presence and absence of parental care on phenotype expression of larval mass and development time at different life-history stages in the burying beetle Nicrophorus pustulatus. This beetle has facultative care; parents can feed their larvae through regurgitation of digested carrion or offspring can feed by themselves from previously prepared carrion. To investigate larval responses to these two levels of care, including estimates of additive genetic effects, maternal effects, and genotype-by-environment interactions, we used a half-sibling split-family breeding experiment-raising half of the offspring of a family in the presence of their mother and the other half without their mother present. Larvae reared with their mother present were on average heavier and developed faster, although some of the differences in development decreased or were eliminated by the adult stage. These results suggest that presence or absence of post-hatching maternal care plays an important role in phenotype expression early in life, whereas later the phenotype of the offspring is determined mainly by the genotype and/or unshared environmental effects. Our study also permitted us to examine the differences in genetic effects between the two care environments. Heritabilities, maternal/common environment effect, and most genetic correlations did not differ between the care treatments. Genetic analyses revealed substantial additive genetic effects for development time but small effects for measures of body mass. Maternal plus common environment effects were high for measures of mass but low for development time, suggesting that indirect genetic effects of maternal and/or common environment are less important for the evolution of development time than for mass. Estimates of genetic correlations revealed a trade-off between the duration of the two development stages after the offspring left the carrion. There was also a negative genetic correlation between the time spent on carrion and the mass at 72 h, when mothers usually stop feeding. The analysis of genotype-by-environment interactions indicates substantial variation among maternal families in response to care. Presence or absence of parental care may therefore contribute to the additive genetic variance through its interaction with the maternal component of the additive genetic variance. The presence of this interaction further suggests that parents may vary in care strategies, with some parents dispersing after preparation of the carrion and some parents staying with the larvae. This interaction may help maintain genetic variation in growth, development time, and parental care behavior. Additional work is needed, however, to quantify indirect genetic effects and genetic variation in parental care behavior itself.  相似文献   

10.
Summary Effects of truncation selection of a primary trait upon genetic correlation with a secondary trait were examined over 30 generations in genetic populations simulated by computer. Populations were 24 males and 24 females mated randomly with replacement; number of offspring was determined by intensity of selection. Each trait was controlled by 48 loci segregating independently, effects were equal at every locus, and gene frequency was arbitrarily set at 0.5 at each locus in the initial generation. All combinations of three genetic correlations, three intensities of selection, and three environmental variances were simulated. Gene action was additive. Genetic correlation was set by number of loci which affected both traits and was measured each generation as the product-moment correlation of genotypic values and estimated by two methods of combining phenotypic covariances between parent and offspring.Genetic correlations in each offspring generation remained consistently near initial correlations for all environmental variances when fraction of offspring saved as parents was as large as one-half. When the fraction of offspring saved was as small as one-fifth, genetic correlations decreased but most rapidly with heritability high and after the 15th generation of selection. Truncation selection caused genetic correlation to decrease in those offspring selected to become parents of the next generation. Amount of reduction depended on heritability of the selected trait rather than on degree of truncation selection. Estimates of genetic correlation from phenotypic covariances between parent and offspring fluctuated markedly from real correlations in the small populations simulated.Michigan Agricultural Experiment Station Journal Article 4836. Part of North Central Regional Project NC-2.  相似文献   

11.
Herein we describe a general multivariate quantitative genetic model that incorporates two potentially important developmental phenomena, maternal effects and epigenetic effects. Maternal and epigenetic effects are defined as partial regression coefficients and phenotypic variances are derived in terms of age-specific genetic and environmental variances. As a starting point, the traditional quantitative genetic model of additive gene effects and random environmental effects is cast in a developmental time framework. From this framework, we first extend a maternal effects model to include multiple developmental ages for the occurrence of maternal effects. An example of maternal effects occurring at multiple developmental ages is prenatal and postnatal maternal effects in mammals. Subsequently, a model of intrinsic and epigenetic effects in the absence of maternal effects is described. It is shown that genetic correlations can arise through epigenetic effects, and in the absence of other developmental effects, epigenetic effects are in general confounded with age-specific intrinsic genetic effects. Finally, the two effects are incorporated into the basic quantitative genetic model. For this more biologically realistic model combining maternal and epigenetic effects, it is shown that the phenotypic regressions of offspring on mother and offspring on father can be used in some cases to estimate simultaneously maternal effects and epigenetic effects.  相似文献   

12.
A Genetic Analysis of Targeted Growth in Mice   总被引:9,自引:5,他引:4       下载免费PDF全文
Effects of normal growth regulation on components of phenotypic variance and covariance of body weight were examined in a cross-fostering study of growth between 2 and 10 wk of age in ICR randombred mice. Different early growth rates caused genetic, postnatal maternal and residual environmental variances to increase, but these variances were subsequently reduced by negative autocorrelation between early and later growth. Postnatal maternal variance continued to increase for about 1 wk after weaning but then decreased substantially. Genetic variance caused by preweaning growth followed a pattern of increase and decrease very similar to that of postnatal maternal variance, but this pattern was masked by new genetic variance. Normal growth regulation affects the magnitudes of genetic variances and serial autocorrelations. The timing of these changes suggests that regulation of cell numbers reduces variance near the end of exponential growth, but this may be obscured by subsequent increase in cell size. In contrast with earlier studies, we find that targeted growth reduces both genetically and environmentally determined differences among early growth trajectories. Final size may be determined by an antagonistic balance between early growth rate and age at initiation of puberty.  相似文献   

13.
The mosaic model of brain evolution postulates that different brain regions are relatively free to evolve independently from each other. Such independent evolution is possible only if genetic correlations among the different brain regions are less than unity. We estimated heritabilities, evolvabilities and genetic correlations of relative size of the brain, and its different regions in the three-spined stickleback (Gasterosteus aculeatus). We found that heritabilities were low (average h2 = 0.24), suggesting a large plastic component to brain architecture. However, evolvabilities of different brain parts were moderate, suggesting the presence of additive genetic variance to sustain a response to selection in the long term. Genetic correlations among different brain regions were low (average rG = 0.40) and significantly less than unity. These results, along with those from analyses of phenotypic and genetic integration, indicate a high degree of independence between different brain regions, suggesting that responses to selection are unlikely to be severely constrained by genetic and phenotypic correlations. Hence, the results give strong support for the mosaic model of brain evolution. However, the genetic correlation between brain and body size was high (rG = 0.89), suggesting a constraint for independent evolution of brain and body size in sticklebacks.  相似文献   

14.
Genetic and environmental sources of egg size, fecundity and body size (forewing length) were examined in the butterfly, Parnara guttata guttata. Phenotypic and genetic correlation and heritability were estimated for these traits under different day-length and temperature conditions. Egg size and fecundity had relatively high heritabilities, and body sizes in males and females had moderate and high heritability, respectively. Negative phenotypic and genetic correlations between egg size and fecundity were estimated in treatments corresponding to the natural conditions during larval development of the first and second generations. Phenotypic and genetic correlations between body size and egg size differed considerably between insects reared under long and short day-lengths. Next, genotype–environment interactions were estimated by comparing reaction norms to day-length or temperature of these traits among families. ANOVA analysis revealed significant genotype–environment interactions in egg size and forewing length in both sexes for day-length and temperature. These results suggested that a large additive genetic variance for egg size might have been maintained by a genetic trade-off and/or by genotype–environment interactions in P. g. guttata.  相似文献   

15.
Genetic parameters for growth, mortality and reproductive performances of Markhoz goats were estimated from data collected during 1993–2010 at Markhoz goat Performance Testing Station in Sanandaj, Iran. For kid performance traits 3763 records were available for birth weight (BW), 2931 for weaning weight (WW), average daily gain (ADG) and Kleiber ratio (KR) (approximated as ADW/WW0.75) and 3032 for pre-weaning mortality (PWM). For doe reproductive performance traits there were 2920 records available for litter size at birth (LSB), litter size at weaning (LSW), total litter weight at birth (TLWB) and litter mean weight per kid born (LMWKB), and 2182 for total litter weight at weaned (TLWW) and litter mean weight per kid weaned (LMWKW). Genetic parameters were estimated with univariate and bivariate models using restricted maximum likelihood (REML) procedures. Random effects were explored by fitting additive direct genetic effects, maternal additive genetic effects, maternal permanent environmental effects, the covariance between direct and maternal genetic effects, and common litter effects in different models for pre-weaning traits of kids. Also, in addition to an animal model, sire and threshold models, using a logit link function, were used for analyses of PWM. Models for LSB, LSW, TLWB, TLWW, LMWKB, and LMWKW included direct additive genetic effects, permanent environmental effects due to the animal as well as service sire effects. Estimated direct heritabilities were moderate for pre-weaning traits (0.22 for BW, 0.16 for WW, 0.21 for ADG, and 0.27 for KR and 0.29 for PWM), and low for reproduction traits (0.01 for LSB, 0.01 for LSW, 0.02 for TLWB, 0.03 for TLWW, 0.07 for LMWKB, and 0.06 for LMWKW). The estimates for the maternal additive genetic variance ratios were lower than direct heritability for BW (0.07) and KR (0.04). The estimate for the maternal permanent environmental variance ratios (c2) varied from 0.01 for KR to 0.07 for WW and ADG. The magnitude of common litter variance ratios (l2) was more substantial for BW (0.46) than the PWM (0.19) and KR (0.16). The estimate for the permanent environmental variance due to the animal (c2) ranged from 0.03 for LMWKB to 0.07 for TLWB and LMWKW, whereas service sire effects (s2) ranged from 0.02 to 0.04. The correlation between direct and maternal genetic effects were negative and high for BW (?0.51) and KR (?0.62). The genetic correlations between pre-weaning growth traits were positive and moderate to strong, as were genetic correlations between reproductive traits. Between BW and PWM the correlation was ?0.35. Phenotypic and environmental correlations for all traits were generally lower than genetic correlations.  相似文献   

16.
Understanding the magnitude and causes of genetic and phenotypic resemblance among relatives is key to understanding evolutionary processes. Contrary to basic expectation, individual coefficients of inbreeding ( f) were recently hypothesized to be intrinsically correlated across parents and offspring in structured populations, potentially creating an additional source of phenotypic resemblance in traits that show inbreeding depression. To test this hypothesis, we used individual‐based simulations to quantify the parent–offspring correlations in f arising under random mating in populations of different size, immigration rate, and mating system. Parent–offspring correlations in f were typically positive (median r≈ 0.2–0.4) in relatively small and isolated populations. Relatively inbred parents therefore produced relatively inbred offspring on average, although the magnitude of this effect varied considerably among replicate populations. Correlations were higher given more generations of random mating, greater variance in reproductive success, polygynous rather than monogamous mating, and for midparent–offspring rather than parent–offspring relationships. Furthermore, f was also positively correlated across half‐siblings, and closer relatives had more similar inbreeding coefficients across entire generations. Such intrinsic resemblance in f among relatives could provide an additional genetic benefit of mate choice and bias quantitative genetic analyses that do not account for correlated inbreeding depression.  相似文献   

17.
Body size is an important determinant of fitness in many organisms. While size will typically change over the lifetime of an individual, heritable components of phenotypic variance may also show ontogenetic variation. We estimated genetic (additive and maternal) and environmental covariance structures for a size trait (June weight) measured over the first 5 years of life in a natural population of bighorn sheep Ovis canadensis. We also assessed the utility of random regression models for estimating these structures. Additive genetic variance was found for June weight, with heritability increasing over ontogeny because of declining environmental variance. This pattern, mirrored at the phenotypic level, likely reflects viability selection acting on early size traits. Maternal genetic effects were significant at ages 0 and 1, having important evolutionary implications for early weight, but declined with age being negligible by age 2. Strong positive genetic correlations between age-specific traits suggest that selection on June weight at any age will likely induce positively correlated responses across ontogeny. Random regression modeling yielded similar results to traditional methods. However, by facilitating more efficient data use where phenotypic sampling is incomplete, random regression should allow better estimation of genetic (co)variances for size and growth traits in natural populations.  相似文献   

18.
The objective of this study was to estimate variance components and genetic parameters for secondary sex ratio (SSR) in Iranian buffaloes. Calving records from April 1995 to June 2010 comprising 15,207 calving events from the first three lactations of 1066 buffalo herds of Iran were analyzed using linear and threshold animal models to estimate variance components, heritabilities and genetic correlations between direct and maternal genetic effects for SSR. Linear and threshold animal models included direct and maternal genetic effects with covariance between them and maternal permanent environmental effects were implemented by Gibbs sampling methodology. Posterior means of direct and maternal heritabilities and repeatability for SSR obtained from linear animal model were 0.15, 0.10, and 0.17, respectively. Threshold estimates of direct and maternal heritabilities and repeatability for SSR were 0.48, 0.27, and 0.52, respectively. The results showed that the correlations between direct and maternal genetic effects of SSR were negative and high in both models. In addition, the ratios of maternal permanent environmental variance were low. Exploitable genetic variation in SSR can take advantage of sexual dimorphism for economically important traits which may facilitate greater selection intensity and thus greater response to selection, as well as reducing the replacement costs. Threshold animal model may be applied in selection programs where animals are to be genetically ranked for female rate.  相似文献   

19.
《Small Ruminant Research》2007,73(2-3):87-91
In this study, heritabilities and (co)variance components for body weight at 100 days (BW), muscle depth (MD) and fat depth (FD) were estimated for Suffolk, the most common sheep breed in the Czech Republic. Data from 1996 to 2004 were extracted from the sheep recording database of the Czech Sheep and Goat Breeding Association. Genetic parameters were estimated using multivariate animal models, including both direct and maternal genetic effects and permanent environmental effects. Average values for BW, MD and FD were 27.91 kg, 25.5 mm and 3.3 mm, respectively. Direct and maternal heritability for BW were 0.17 and 0.08, respectively, and direct heritabilities were 0.16 for MD and 0.08 for FD. Maternal heritability estimates for ultrasonic measurements were generally low. Direct genetic correlations between BW and MD and maternal genetic correlations between BW and MD were positive and favourable. Both direct genetic correlations between BW and FD and maternal genetic correlations between BW and FD were negative, but not significantly different from zero. The favourable genetic correlations between BW and MD make ultrasound measurements a valuable tool in breeding programs focusing on growth and carcass characteristics.  相似文献   

20.
In breeding programs, robustness of animals and uniformity of end product can be improved by exploiting genetic variation in residual variance. Residual variance can be defined as environmental variance after accounting for all identifiable effects. The aims of this study were to estimate genetic variance in residual variance of body weight, and to estimate genetic correlations between body weight itself and its residual variance and between female and male residual variance for broilers. The data sets comprised 26 972 female and 24 407 male body weight records. Variance components were estimated with ASREML. Estimates of the heritability of residual variance were in the range 0.029 (s.e. = 0.003) to 0.047 (s.e. = 0.004). The genetic coefficients of variation were high, between 0.35 and 0.57. Heritabilities were higher in females than in males. Accounting for heterogeneous residual variance increased the heritabilities for body weight as well. Genetic correlations between body weight and its residual variance were -0.41 (s.e. = 0.032) and -0.45 (s.e. = 0.040), respectively, in females and males. The genetic correlation between female and male residual variance was 0.11 (s.e. = 0.089), indicating that female and male residual variance are different traits. Results indicate good opportunities to simultaneously increase the mean and improve uniformity of body weight of broilers by selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号