首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tintinnid ciliates have traditionally been described and classified exclusively based on their lorica features. Although information on the cell characters is urgently needed for a natural classification, more molecular than cytological data has been accumulated over recent years. Apparently, the tintinnids developed in the marine environment and entered freshwater several times independently. Typical freshwater tintinnids belong to the genera Tintinnidium and Membranicola. The species are comparatively well‐known regarding their morphology and characterised by two unusual de novo originating ciliary rows, the ventral organelles. In contrast, the cell features in the marine/brackish Tintinnidium species, specifically their somatic ciliary patterns, are insufficiently known or not known at all. Therefore, the morphology of a common marine/brackish representative, Tintinnidium mucicola, is redescribed based on live observation and protargol‐stained material. Furthermore, biogeographical and autecological data of the species are compiled from literature and own records. The phylogenetic relationships of T. mucicola are inferred and the diversity of the family Tintinnidiidae is assessed from 18S rDNA sequences. The study shows that T. mucicola is not only molecularly distinct, but also characterised by many plesiomorphic features, for instance, it does not possess a verifiable homologue to the ventral organelles. Hence, a new genus, Antetintinnidium nov. gen., is established for T. mucicola. The new insights into the diversity of Tintinnidiidae shed light on the early evolution of tintinnids and might provide clues on their adaptions to freshwater.  相似文献   

2.
3.
4.
Aspects of the phylogeny of the marine Tubificidae   总被引:3,自引:3,他引:0  
A tentative phylogeny of the oligochaete family Tubificidae, with emphasis on the marine representatives, is presented. The scheme is based on the morphology and arrangements of prostate glands and the setal patterns. The rhyacodriline, more or less diffuse prostates are regarded as a primitive stage in prostate evolution, preceded only by the aprostate condition assumed for the ancestor of the family. An early split of the subfamily Rhyacodrilinae supposedly led to (1) a marine branch, from which evolved the highly diverse, exclusively marine subfamilies Phallodrilinae and Limnodriloidinae, and (2) a freshwater branch, which later divided into the Telmatodrilinae, Tubificinae and Aulodrilinae. The marine subfamilies invariably lack hair setae, whereas about half of the species within the other, freshwater subfamilies possess such setae in their dorsal bundles. Some marine genera, such as Monopylephorus (Rhyacodrilinae), Tubificoides and Clitellio (both Tubificinae) are regarded as recent off-shoots from the main freshwater stock.The families Naididae and Opistocystidae are considered likely to have evolved from rhyacodriline Tubificidae, whereas Phreodrilidae, the fourth family within the suborder Tubificina, is regarded as a sister group to the Tubificidae.  相似文献   

5.
The genus Nais is a group of oligochaetous clitellates, common in eutrophic freshwater habitats. About 30 species are described. Species identification is based primarily on chaetal characters, which are often subtle, inconsistent, and even overlapping between nominal species. We investigated the correlation between genetic variation and chaetal morphology in this genus. Eighty‐one individuals from Europe, North America, and China were included in the study. Seventy‐five of these were preserved as vouchers. They were scrutinized with regard to chaetal morphology, and ten different morphotypes were identified. Three molecular markers, two mitochondrial (the COI gene and 16S rDNA) and one nuclear (the ITS region), were used to establish the genetic lineages in the material. Genetic variation was found to be largely congruent with chaetal character patterns. However, at least nine separately evolving lineages (all supported by mitochondrial as well as nuclear data) correspond to at most six nominal species. Four morphotypes/lineages are recognized as Nais barbata, Nais christinae, Nais elinguis, and Nais stolci, respectively, whereas five, or possibly more, lineages represent a morphological continuum covering the variation of the Nais communis/variabilis complex. Thus, cryptic speciation is revealed. Our results indicate that a taxonomic revision of the genus will be needed in the future.  相似文献   

6.
The morphology, infraciliature and SSU rDNA sequence of a new freshwater hymenostomatid ciliate, Anteglaucoma harbinensis gen. nov., spec. nov., collected from a farmland pond in Harbin, China, were investigated. The new genus Anteglaucoma is characterized as follows: small to medium‐sized Glaucomidae with oral apparatus in anterior one‐third of cell; paroral membrane composed of almost longitudinally arranged dikinetids; three adoral membranelles nearly equal in length and arranged almost longitudinally in parallel; silverline pattern tetrahymenid. The improved diagnosis of family Glaucomidae Corliss 1971 is provided based on the previous and present work. The type species Anteglaucoma harbinensis spec. nov. is defined by having 32–35 somatic kineties; four or five postoral kineties; membranelle 1 and membranelle 2 having five or six kinetosomal rows, membranelle 3 having three kinetosomal rows; single macronuclear nodule; contractile vacuole on average 15% from posterior body end; locomotion characterized by crawling with a rather hectic jerking motion; freshwater habitat. Phylogenetic analyses show that Anteglaucoma clusters in the family Glaucomidae and groups with the genera Glaucoma. The molecular and morphological data indicate that Glaucomidae is related to the family Bromeliophryidae in the phylogenetic trees.  相似文献   

7.
The evolutionary history of Axiokebuita and Speleobregma, two poorly known lineages of annelids exclusive from deep‐sea or marine caves but always from crevicular habitats, is explored here. Speleobregma lanzaroteum Bertelsen, 1986, and Axiokebuita cavernicola sp. n. are described from anchialine and marine caves of the Canary Islands using light and electron microscopy. Speleobregma lanzaroteum is previously known only from a single specimen from the water column of an anchialine cave in Lanzarote. Emended diagnosis, details on the ciliary patterns and behavioural observations are provided based on newly collected material and in situ observations. Axiokebuita cavernicola sp. n. is found in Pleistocene gravel deposits in a shallow water marine cave in Tenerife (Canary Islands). The new species is characterized by the presence of dorsal ciliary bands and short knob‐like neuropodial cirri from segment two. The porosity and permeability of the gravelly environment of Acavernicola sp. n. are shown to be equivalent to the water column or crevices of Speleobregma and other Axiokebuita spp. Phylogenetic analyses of five gene fragments and 44 terminals using maximum‐likelihood and Bayesian methods support a derived position of A. cavernicola sp. n. within Axiokebuita and confirm a sister‐group relationship of Axiokebuita with Speleobregma with high nodal support. The Axiokebuita–Speleobregma clade is morphologically characterized by a globular pygidium with adhesive glands and ventral ungrooved ciliated palps. Our results support two independent cave colonization events, favoured by the preadaptation of the members of Axiokebuita–Speleobregma lineage to crevicular habitats.  相似文献   

8.
Chaetonotidae is the most diverse and widely distributed family of the order Chaetonotida (Gastrotricha) and includes both marine and freshwater species. Although the family is regarded as a sister taxon to the exclusively marine Xenotrichulidae, the type of environment, marine or freshwater, where Chaetonotidae originated is still not known. Here, we reconstructed the phylogeny of the family based on molecular sequence data and mapped both morphological and ecological characters to determine the ancestral environment of the first members of the family. Our results revealed that the freshwater genus Bifidochaetus is the earliest branching lineage in the paraphyletic Chaetonotidae (encompassing Dasydytidae and Neogosseidae). Moreover, we reconstructed Lepidochaetus-Cephalionotus clade as a monophyletic sister group to the remaining chaetonotids, which supports Kisielewski's morphological based hypothesis concerning undifferentiated type of body scales as a most primary character in Chaetonotidae. We also found that reversals to marine habitats occurred independently in different Chaetonotidae lineages, thus marine species in the genera Heterolepidoderma, Halichaetonotus, Aspidiophorus and subgenera Chaetonotus (Schizochaetonotus) or Chaetonotus (Marinochaetus) should be assumed as having secondarily invaded the marine environment. Character mapping revealed a series of synapomorphies that define the clade that includes Chaetonotidae (with Dasydytidae and Neogosseidae), the most important of which may be those linked to reproduction.  相似文献   

9.
Kånneby, T., Todaro, M. A., Jondelius, U. (2012). Phylogeny of Chaetonotidae and other Paucitubulatina (Gastrotricha: Chaetonotida) and the colonization of aquatic ecosystems. —Zoologica Scripta, 42, 88–105. Chaetonotidae is the largest family within Gastrotricha with almost 400 nominal species represented in both freshwater and marine habitats. The group is probably non‐monophyletic and suffers from a troubled taxonomy. Current classification is to a great extent based on shape and distribution of cuticular structures, characters that are highly variable. We present the most densely sampled molecular study so far where 17 of the 31 genera belonging to Chaetonotida are represented. Bayesian and maximum likelihood approaches based on 18S rDNA, 28S rDNA and COI mtDNA are used to reconstruct relationships within Chaetonotidae. The use of cuticular structures for supra‐specific classification within the group is evaluated and the question of dispersal between marine and freshwater habitats is addressed. Moreover, the subgeneric classification of Chaetonotus is tested in a phylogenetic context. Our results show high support for a clade containing Dasydytidae nested within Chaetonotidae. Within this clade, only three genera are monophyletic following current classification. Genera containing both marine and freshwater species never form monophyletic clades and group with other species according to habitat. Marine members of Aspidiophorus appear to be the sister group of all other Chaetonotidae and Dasydytidae, indicating a marine origin of the clade. Halichaetonotus and marine Heterolepidoderma form a monophyletic group in a sister group relationship to freshwater species, pointing towards a secondary invasion of marine environments of these taxa. Our study highlights the problems of current classification based on cuticular structures, characters that show homoplasy for deeper relationships.  相似文献   

10.
Conspecifics inhabiting divergent environments frequently differ in morphology, physiology, and performance, but the interrelationships amongst traits and with Darwinian fitness remains poorly understood. We investigated population differentiation in morphology, metabolic rate, and swimming performance in three‐spined sticklebacks (Gasterosteus aculeatus L.), contrasting a marine/ancestral population with two distinct freshwater morphotypes derived from it: the “typical” low‐plated morph, and a unique “small‐plated” morph. We test the hypothesis that similar to plate loss in other freshwater populations, reduction in lateral plate size also evolved in response to selection. Additionally, we test how morphology, physiology, and performance have evolved in concert as a response to differences in selection between marine and freshwater environments. We raised pure‐bred second‐generation fish originating from three populations and quantified their lateral plate coverage, burst‐ and critical swimming speeds, as well as standard and active metabolic rates. Using a multivariate QSTFST framework, we detected signals of directional selection on metabolic physiology and lateral plate coverage, notably demonstrating that selection is responsible for the reduction in lateral plate coverage in a small‐plated stickleback population. We also uncovered signals of multivariate selection amongst all bivariate trait combinations except the two metrics of swimming performance. Divergence between the freshwater and marine populations exceeded neutral expectation in morphology and in most physiological and performance traits, indicating that adaptation to freshwater habitats has occurred, but through different combinations of traits in different populations. These results highlight both the complex interplay between morphology, physiology and performance in local adaptation, and a framework for their investigation.  相似文献   

11.
A boron requirement has been shown for 12 species of marine pennate diatoms, 4 species of marine centric diatoms, and S freshwater diatom species. It can be concluded that boron is essential for the growth of most, probably all, diatoms. It is much easier to demonstrate a requirement for the marine species than for the freshwater species. Some species of marine algal flagellates also require boron for growth; others apparently do not.  相似文献   

12.
The existence of two species of the genus Macroramphosus Lacepède 1803, has been discussed based on morphometric characters, diet composition and depth distribution. Another species, the boarfish Capros aper (Linnaeus 1758), caugth along the Portuguese coast, shows two different morphotypes, one type with smaller eyes and a deeper body than the other, occurring with intermediate forms. In both snipefish and boarfish no sexual dimorphism was found with respect to shape and length relationships. However, females in both genera were on average bigger than males. A multidimensional scaling analysis was performed using Procrustes distances, in order to check if shape geometry was effective in distinguishing the species of snipefish as well as the morphotypes of boarfish. A multivariate discriminant analysis using morphometric characters of snipefish and boarfish was carried out to validate the visual criteria for a distinction of species and morphotypes, respectively. Morphometric characters revealed a great discriminatory power to distinguish morphotypes. Both snipefish and boarfish are very abundant in Portuguese waters, showing two well-defined morphologies and intermediate forms. This study suggests that there may be two different species in each genus and that further studies on these fish should be carried out to investigate if there is reproductive isolation between the morphotypes of boarfish and to validate the species of snipefish.  相似文献   

13.
The freshwater fish assemblage in most estuaries is not as species rich as the marine assemblage in the same systems. Coupled with this differential richness is an apparent inability by most freshwater fish species to penetrate estuarine zones that are mesohaline (salinity: 5·0–17·9), polyhaline (salinity: 18·0–29·9) or euhaline (salinity: 30·0–39·9). The reason why mesohaline waters are avoided by most freshwater fishes is difficult to explain from a physiological perspective as many of these species would be isosmotic within this salinity range. Perhaps, a key to the poor penetration of estuarine waters by freshwater taxa is an inability to develop chloride cells in gill filament epithelia, as well as a lack of other osmoregulatory adaptations present in euryhaline fishes. Only a few freshwater fish species, especially some of those belonging to the family Cichlidae, have become fully euryhaline and have successfully occupied a wide range of estuaries, sometimes even dominating in hyperhaline systems (salinity 40+). Indeed, this review found that there are few fish species that can be termed holohaline (i.e. capable of occupying waters with a salinity range of 0–100+) and, of these taxa, there is a disproportionally high number of freshwater species (e.g. Cyprinodon variegatus, Oreochromis mossambicus and Sarotherodon melanotheron). Factors such as increased competition for food and higher predation rates by piscivorous fishes and birds may also play an important role in the low species richness and abundance of freshwater taxa in estuaries. Added to this is the relatively low species richness of freshwater fishes in river catchments when compared with the normally higher diversity of marine fish species for potential estuarine colonization from the adjacent coastal waters. The almost complete absence of freshwater fish larvae from the estuarine ichthyoplankton further reinforces the poor representation of this guild within these systems. An explanation as to why more freshwater fish species have not become euryhaline and occupied a wide range of estuaries similar to their marine counterparts is probably due to a combination of the above described factors, with physiological restrictions pertaining to limited salinity tolerances probably playing the most important role.  相似文献   

14.
In this study, the competing hypotheses of single vs. double colonisation events for freshwater Pachyurinae (Sciaenidae) in South America is tested and the historical biogeography of the expansion of this clade within the continent is reconstructed based on phylogenetic analysis. Parsimony and Bayesian inference (BI) for 19 marine and freshwater species assigned to Sciaenidae, Haemulidae and Polypteridae were determined based on partial sequences of the mitochondrial 16S and cytochrome b genes and fragments of the nuclear Tmo‐4C4 and rhodopsin genes. A parsimonious ancestral character reconstruction of euryhalinity was performed on a clade of families of closely related fishes to evaluate the role of ecological fitting in the colonisation of freshwater by a marine sciaenid. The parsimony and BI phylogenetic hypotheses for the concatenated sequences supported the monophyly of the freshwater Sciaenidae. Divergence of the two freshwater clades of Sciaenidae, Pachyurinae and Plagioscion, occurred within the Amazon Basin. Within Pachyurinae, two clades were recovered: one composed of species from the Amazon and the Paraná Basin and a second with representatives from the São Francisco and south‐eastern Atlantic basins. The results were compatible with the hypothesis of a single colonisation event of South American freshwater habitats by a marine lineage. The hypothesis of gradual adaptation to freshwater was rejected in favour of the hypothesis of ecological fitting. Sciaenidae, or a subordinate lineage within the family, is ancestrally capable of withstanding exposure to low‐salinity habitats, which putatively facilitated the colonisation of freshwater habitats. The subsequent diversification and expansion of Pachyurinae across South America followed this colonisation and replicated the general pattern of the area relationships of South American river basins for several other fish groups.  相似文献   

15.
Rivers and lake systems in the southern cone of South America have been widely influenced by historical glaciations, carrying important implications for the evolution of aquatic organisms, including prompting transitions between marine and freshwater habitats and by triggering hybridization among incipient species via waterway connectivity and stream capture events. Silverside fishes (Odontesthes) in the region comprise a radiation of 19 marine and freshwater species that have been hypothesized on the basis of morphological or mitochondrial DNA data to have either transitioned repeatedly into continental waters from the sea or colonized marine habitats following freshwater diversification. New double digest restriction‐site associated DNA data presented here provide a robust framework to investigate the biogeographical history of and habitat transitions in Odontesthes. We show that Odontesthes silversides originally diversified in the Pacific but independently colonized the Atlantic three times, producing three independent marine‐to‐freshwater transitions. Our results also indicate recent introgression of marine mitochondrial haplotypes into two freshwater clades, with more recurring instances of hybridization among Atlantic‐ versus Pacific‐slope species. In Pacific freshwater drainages, hybridization with a marine species appears to be geographically isolated and may be related to glaciation events. Substantial structural differences of estuarine gradients between these two geographical areas may have influenced the frequency, intensity and evolutionary effects of hybridization events.  相似文献   

16.
The dinophyceaen genus Gymnodinium was established with the freshwater species G. fuscum as type. According to Thessen et al. (2012), there are 268 species, with the majority marine species. In recently published molecular phylogenies based on ribosomal DNA sequences, Gymnodinium is polyphyletic. Here, a new freshwater Gymnodinium species, G. plasticum, is described from Plastic Lake, Ontario, Canada. Two strains were established by incubating single cysts, and their morphology was examined with light microscopy and scanning electron microscopy. The cyst had a rounded epicyst and hypocyst with a wide cingulum and smooth surface. Vegetative cells were characterized by an elongated nucleus running vertically and a deep sulcal intrusion. The apical structure complex was horseshoe‐shaped and consisted of two pronounced ridges with a deep internal groove, encircling 80% of the apex. Small subunit ribosomal DNA (SSU rDNA), large subunit ribosomal DNA (LSU rDNA) and internal transcribed spacer (ITS) sequences were obtained from cultured strains. Molecular phylogeny based on concatenated SSU, LSU and ITS sequences supports the monophyly of the Gymnodiniales sensu stricto clade but our results suggest that many Gymnodinium species might need reclassification. Gymnodinium plasticum is closest to Dissodinium pseudolunula in our phylogeny but distant from the type species G. fuscum, as are the other gymnodiniacean taxa.  相似文献   

17.
Fungal biodiversity in freshwater, brackish and marine habitats was estimated based on reports in the literature. The taxonomic groups treated were those with species commonly found on submerged substrates in aquatic habitats: Ascomycetes (exclusive of yeasts), Basidiomycetes, Chytridiomycetes, and the non-fungal Saprolegniales in the Class Oomycetes. Based on presence/absence data for a large number and variety of aquatic habitats, about 3,000 fungal species and 138 saprolegnialean species have been reported from aquatic habitats. The greatest number of taxa comprise the Ascomycetes, including mitosporic taxa, and Chytridiomycetes. Taxa of Basidiomycetes are, for the most part, excluded from aquatic habitats. The greatest biodiversity for all groups occurs in temperate areas, followed by Asian tropical areas. This pattern may be an artifact of the location of most of the sampling effort. The least sampled geographic areas include Africa, Australia, China, South America and boreal and tropical regions worldwide. Some species overlap occurs among terrestrial and freshwater taxa but little species overlap occurs among freshwater and marine taxa. We predict that many species remain to be discovered in aquatic habitats given the few taxonomic specialists studying these fungi, the few substrate types studied intensively, and the vast geographical area not yet sampled.  相似文献   

18.
ABSTRACT. Described herein are the morphology and certain morphogenetic stages of a new freshwater ciliate species, Deviata polycirrata n. sp., and of Deviata bacilliformis recorded in the soil of a dried temporary pond from Argentina. Ciliates were studied alive and after silver impregnation with Protargol. Deviata polycirrata n. sp. measures 130–180 × 45–70 μm in vivo. The species possesses 8–9 long cirral rows on the right and 9–13 on the left of the oral zone, and 3 dorsal rows of dikinetids. The adoral zone is composed of 39–48 membranelles. There are four macronuclear nodules and usually two micronuclei. A single contractile vacuole is located equatorially on the left body margin. This new species mainly differs from its congeners in having a higher number of cirral rows, the three long dorsal rows of dikinetids (vs. usually one to two dorsal rows of dikinetids), and a higher number of adoral membranelles. The other species reported here, D. bacilliformis, is recorded for the first time in Argentina. Unlike previous observations on this species, on the dorsal surface there are cirral rows that are preceded by cilia (combined cirral rows), and stomatogenesis begins with the proliferation of non‐ciliferous basal bodies some distance posterior to the buccal vertex.  相似文献   

19.
Development of cilia in embryos of the turbellarian Macrostomum   总被引:3,自引:3,他引:0  
Seth Tyler 《Hydrobiologia》1981,84(1):231-239
Electron microscopy of Macrostomum hystricinum raised in culture shows that ciliogenesis in the worm's epidermal blastomeres begins in embryos 39–41 h old with kinetosomal and de novo genesis of presumptive basal bodies, which are morphologically distinguishable from centrioles of the mitotic apparatus, and proceeds by the migration of basal bodies to the apical plasma membrane of the cells and their production there of ciliary axonemes by an age of 51–53 h when the bastomeres emerge between yolk cells on the embryo's surface. Ciliogenesis continues throughout development with the addition of cilia virtually one by one to the expanding epidermal cells' surfaces. At no time in ciliogenesis are stages seen that might show derivation of these multiciliated cells from the primitive monociliated cell type presumably present in the ancestors of the Turbellaria.  相似文献   

20.
The cell wall polysaccharides of two species of red algae, which are adapted to both freshwater and marine environments, were analysed to determine the effect of these widely different environments on their commercially important agarocolloids and to investigate the possible role of the cell wall in environmental adaptation. Cell wall polymers of freshwater isolates of Bangia atropurpurea (Roth) C. Agardh and cultured freshwater and marine Bostrychia moritziana (Sonder ex Kützing) J. Agardh were isolated and the polysaccharides chemically fractionated and characterized. Wall polysaccharides of freshwater B. atropurpurea were similar to those previously reported for marine isolates with repeating disac-charide units of agarose and porphyran predominant in the hot water extracts. In the insoluble residues, 3-iinked galactosyl and 4-linked mannosyl residues were predominant. Bostrychia moritziana wall polysaccharides included agarocolloids with various patterns of methyl ether substitution similar to those previously described for other Ceramiales. Differences in the position of methyl ether substituents were detected in the hot water extracts of the freshwater and marine specimens. Polymers of freshwater ß. moritziana cultures were composed of a complex mixture of repeating disaccharide units including 2′-O-methyl agarose, 6-O-methyI agarose and 2′-O-methyl porphyran. Polymers of marine isolates of ß. moritziana differ in that they contain only trace amounts of 2-O-methyl saccharides and increased amounts of 6-O-amethyl saccharides. The hot water insoluble residues of both freshwater and marine isolates of ß. moritziana contain a mixture of 3-linked galactosyl and 4-linked glucosyl residues. These results indicate that the adaptive response of B. moritziana to changing osmotic and ionic conditions may include changes in cell wall chemistry: notably, the pattern of methyl ether substitution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号