首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To investigate the effects of nitrate enrichment, phosphate enrichment, and light availability on benthic algae, nutrient-diffusing clay flowerpots were colonized with algae at two sites in a Hawaiian stream during spring and autumn 2002 using a randomized factorial design. The algal assemblage that developed under the experimental conditions was investigated by determining biomass (ash-free dry mass and chlorophyll a concentrations) and composition of the diatom assemblage. In situ pulse amplitude-modulated fluorometry was also used to model photosynthetic rate of the algal assemblage. Algal biomass and maximum photosynthetic rate were significantly higher at the unshaded site than at the shaded site. These parameters were higher at the unshaded site with either nitrate, or to a lesser degree, nitrate plus phosphate enrichment. Analysis of similarity of diatom assemblages showed significant differences between shaded and unshaded sites, as well as between spring and autumn experiments, but not between nutrient treatments. However, several individual species of diatoms responded significantly to nitrate enrichment. These results demonstrate that light availability (shaded vs. unshaded) is the primary limiting factor to algal growth in this stream, with nitrogen as a secondary limiting factor.  相似文献   

2.
The longitudinal distribution and seasonal fluctuation of phytoplankton communities was studied along the middle to lower part of a regulated river system (Nakdong River, Korea). Phytoplankton biomass decreased sharply in the middle part of the river (182 km upward the estuary dam), and then increased downstream reaching a maximum at the last sampling station (27 km upward the estuary dam). In contrast, there was little downstream fluctuation in species composition, irrespective of pronounced differences in nutrient concentrations (TN, TP, NO3, NH4, PO4) as well as in algal biomass. In the main river channel, small centric diatoms (Stephanodiscus hantzschii, Cyclotella meneghiniana) and pennate diatoms (Synedra, Fragilaria, Nitzschia) were dominant from winter to early spring (November–April). A mixed community of cryptomonads, centric and pennate diatoms, and coenobial greens (Pediastrum, Scenedesmus) was dominant in late spring (May–June). Blue-green algae (Anabaena, Microcystis, Oscillatoria) were dominant in the summer (July–September). A mid-summer Microcystis bloom occurred at all study sites during the dry season, when discharge was low, though the nutrient concentration varied in each study site. Nutrients appeared everywhere to be in excess of algal requirement and apparently did not influence markedly the downstream and seasonal phytoplankton compositional differences in this river.  相似文献   

3.
  • 1 Benthic‐algal distributions in the upper Illinois River basin, IL, U.S.A., were examined in relation to geology, land use, water chemistry and stream habitat using (detrended) (canonical) correspondence analysis, autecological metrics and indicator‐species analysis in order to identify the major environmental gradients influencing community variation.
  • 2 Ionic composition and major nutrient [i.e. nitrogen (N) and phosphorus (P)] concentration of surface waters, salinity (Na‐Cl type), substratum type and physiognomic form of dominant species were primary factors contributing to variation in benthic‐algal assemblages of the basin. Basin geology was a significant contributing factor, but the explained variance associated with this factor was less than that related to land use.
  • 3 Proportions of algal biomass consisting of cyanophytes, filamentous chlorophytes, halophilic diatoms and diatoms which utilize nitrogen heterotrophically were greater in eutrophic river segments than in less nutrient‐enriched segments. Composition of the benthic flora indicated meso‐eutrophic or eutrophic conditions throughout the basin; there were few diatoms indicative of hypertrophic waters. Shifts in diatom‐assemblage structure in response to nutrient loading provided an incomplete representation of the community‐response curve.
  • 4 A weighted‐averages regression model based on total P and benthic‐algal abundances (all divisions included) yielded a highly significant correlation (r2 = 0.83) between species‐inferred [WA(tol)] and observed total P, with systematic bias (increased deviation of residuals) occurring only at concentrations greater than ~ 1.0 mg L?1 total P. This result indicates that total P regression and calibration models can be predictable for a river basin receiving excessive loadings of phosphorus.
  相似文献   

4.
The spring development of phytoplankton and the phosphorus content were monitored intensively in Laken Erken during the springs of 1979 and 1980. The dominant species were dinoflagellates, mainly Woloszynskia ordinata and Peridinium aciculiferum, during the entire spring of 1979. The long period of ice-cover (21 weeks) favoured the motile species, which were able to utilize the available light immediately below the ice. A considerable vertical migration was noticed in March 1979. These large and slow-growing algae were able to store luxury phosphorus, and surplus phosphorus concentrations up to 12 μg P/l were measured, which corresponded to an algal content of 10 μg P/mg C. These values were more than twice as high as those recorded earlier in Lake Erken. Although a spring outburst of diatoms did not occur in 1979 and 1980, the algae were phosphorus-limited in May, as indicated by high alkaline phosphatase activity, low algal surplus phosphorus content and high inorganic N : P ratios.  相似文献   

5.
1. We used artificial substrata in forested and open streams in South-East Queensland, Australia, to determine the relative importance of shading from riparian vegetation and of nutrients on periphyton growth, and whether nitrogen and/or phosphorus limited algal productivity.
2. Nutrient-diffusing substrata consisting of agar enriched with N, P and N + P, and controls without nutrients, were deployed in duplicate at 15 sites in headwater streams with riparian canopy cover ranging from 0 to 88%.
3. Shading was the over-riding factor controlling periphyton biomass accrual on the artificial substrata, with nutrients playing a relatively minor role. Microscopic examination of periphyton scrapings taken after 7 weeks revealed that diatoms dominated on the artificial substrata in shaded streams, whereas filamentous green algae dominated the algal assemblage in the more open canopy streams.
4. Whilst nutrients had little effect on the accrual of algal biomass compared with riparian shading, there was evidence that nitrogen, and not phosphorus, stimulated periphyton production in streams with sufficient light.  相似文献   

6.
Temporal changes in fatty acid composition and δ15N, δ13C stable isotope values of the phytobenthos growing on artificial clay substrates under natural conditions over a 28-day period at an upstream and a downstream site in the Kowie River near Grahamstown were investigated in 2012. High concentrations of diatom markers 16:1ω7 and 20:5ω3 fatty acids were recorded, especially at the downstream site, reflecting the importance of diatoms in contributing to the phytobenthos communities at that station. After day 7 at the downstream site the average δ15N value of the phytobenthos was lighter, gradually increasing by ~2‰ and ~5‰ overall to heavier values on day 28. At the upstream site there were no significant changes (<1‰ increase) in δ15N values of the phytobenthos over time. Stable nitrogen (δ15N) and carbon (δ13C) signatures in the phytobenthos communities were significantly different between sites (one-way ANOVA; p < 0.001). The stable isotope values and fatty acid concentrations of phytobenthos at the downstream site were different to those of the phytobenthos at the upstream site, and they changed concurrently with changes in the phytobenthos community structure. At the downstream site there was a strong correlation of the δ15N of phytobenthos with nitrates (R = 0.56) and time (weeks; R = 0.81). However, the fatty acids were not specific enough to characterise the composition of phytobenthos communities. Other biomarker methods, such as stable isotopes and microscopic examination of the communities, were found to be useful. The results from this relatively small-scale tile experiment indicate the complexity of changes in fatty acid composition and δ15N, δ13C stable isotope values of a phytobenthos community. Stable isotope and fatty acid composition can be successfully used to map changes in phytobenthos composition and carbon and nitrogen flow patterns along a river continuum.  相似文献   

7.
Zooplankton community along a stretch of Upper Victoria Nile was investigated at selected sites between Kalange and Namasagali during April, August and October 2000 as part of a wider ecological study to generate biological baseline data prior to construction of a hydropower plant at Dumbbell Island. The study provided an opportunity to investigate a riverine zooplankton community for comparison with the more studied lake communities. Field sampling was made with a plankton net of 25 cm mouth opening and 60 μm nitex mesh; fitted with sandbags for ease of operation in water currents. Zooplankton subsamples were examined under an inverted microscope at ×100 magnification. The 27 species encountered belong to three broad taxonomic groups: Copepoda, Cladocera and Rotifera. Rotifers had the highest number of species (sixteen) followed by copepods (six). Species richness and total numerical abundance were high at the two upstream sites and decreased significantly downstream. High zooplankton densities at upstream sites during April plummeted to much lower levels in August and October. By comparison, species richness and numerical abundance were much lower than those of Lake Victoria; the ultimate source of the Upper Victoria Nile water. This may be due to differences between lotic and lentic habitats as both physical and biological processes are known to be limited under flowing water conditions. The high species richness and numerical abundance at the two upstream sites may be due to positioning of sampling points downstream of islands and/or rock outcrops for ease of net sampling as well as a richer food environment observed in a parallel study of algal biomass. The type and level of impacts of the proposed hydropower station on biological communities will be determined by site location: either upstream or downstream of the plant. Monitoring surveys of both environment and biological parameters during and after construction of the power plant will be necessary to keep track of ecosystem changes and their implications.  相似文献   

8.
9.
10.
The epilithic algae distribution along a pH gradient and the relationship between the chemical gradient and biomass development were studied in Río Agrio, a naturally acidic river located in Patagonia (Argentina). The epilithic community was monitored during the summer of three consecutive years in sites located above and below the entrance of tributaries. The epilithic community showed differences between sites based on the chemical composition of the water and the precipitates that appear on the streambed of the river. The lowest biomass, diversity, and number of species were found at the most extreme part of the river in terms of pH (ca. 2) and element concentrations. Euglena mutabilis was the dominant species in this section of the river. As pH increased (ca. 3), the community changed to be dominated by filamentous green algae (Ulothrix spp., Mougeotia sp., Klebsormidium sp.) showing luxuriant growths in terms of biomass. With the inflow of a neutral tributary, the pH of Río Agrio increased above 3, and the precipitates of orange-red iron hydroxides appeared. The algal community was not affected by these precipitates or the low P concentrations, along the next 30 km of river downstream from this site. The apparent physical stress that the precipitates impose on algae is in fact a dynamic reservoir of P because diel cycle of Fe could be promoting precipitation and redissolution processes that binds and releases P from these precipitates. Where the pH increased above 6, precipitates of aluminum hydroxides appeared. At this site, the epilithic biomass and density decreased, some algae species changed, but the diversity and the number of species in general remained consistent with the upstream values. The physical stress of the Al precipitates on the algae is added to the chemical stress that represents the sequestering of P in these precipitates that are not redissolved, resulting P a limiting nutrient for algae growth.  相似文献   

11.
Liu H  Zhou Y  Xiao W  Ji L  Cao X  Song C 《Microbiological research》2012,167(5):292-298
The impacts of different nutrient additions (N + P, N + P + C, 4N + P, 4N + P + C, N + 2P) on the growth of algae and bacteria were studied in a microcosm experiment. Since alkaline phosphatase activity (APA) provides an indication of phosphorus deficiency, the higher value for algal APA in the treatments with excess nitrogen and for bacterial APA in the treatments with excess carbon suggested that, algal and bacterial phosphorus-limited status were induced by abundant nitrogen and carbon input, respectively. Bacterial phosphorus-limited status was weakened due to higher bacterial competition for phosphorus, compared to algae. In comparison with the bacterial and specific bacterial APA, higher values of algal and specific algal APA were found, which showed a gradual increase that coincided with the increase of chlorophyll a concentration. This fact indicated not only a stronger phosphorus demand by algae than by bacteria, but also a complementary relationship for phosphorus demand between algae and bacteria. However, this commensalism could be interfered by glucose input resulting in the decline of chlorophyll a concentration. Furthermore, the correlation between bacterial numbers and chlorophyll a concentration was positive in treatments without carbon and blurry in treatments with carbon. These observations validate a hypothesis that carbon addition can stimulate bacterial growth justifying bacterial nutrient demand, which decreases the availability of nutrients to algae and affects nutrient relationship between algae and bacteria. However, this interference would terminate after algal and bacterial adaption to carbon input.  相似文献   

12.
Kitner  Miloslav  Poulícková  Aloisie 《Hydrobiologia》2003,506(1-3):519-524

The littoral zone of shallow water bodies in the Czech Republic has been studied quite consistently at several fishponds. The use of algae, especially diatoms, for the monitoring of the state of lotic freshwater also has a long tradition. The main objective of the presented paper is to validate the feasibility of the use of littoral periphyton comunities for the biomonitoring of standing waters. At the investigated sites, littoral periphytic diatoms were studied together with selected enviromental variables (pH, conductivity, nutrients – especially total phosphorus) on three types of natural substrates (epilithon, epiphyton, epipelon). The evaluation of the diatom community was performed on the basis of the checklists of algal indicator species published by authors from the Czech Republic, Austria and the Netherlands. The data were subjected to statistical software NCCS 2000 (GLM Anova and ``Ward's minimum'' variance cluster analysis). Littoral periphytic diatoms appear to be good indicators of the fishpond water quality. The selected substrates show non-significant differences therefore the average values from all substrates were used. The best indicatory system for evaluation of Czech fishponds was van Dam's index.

  相似文献   

13.
14.
15.
A field experiment was employed in Florida Bay investigating the response of seagrass epiphyte communities to nitrogen (N) and phosphorus (P) additions. While most of the variability in epiphyte community structure was related to uncontrolled temporal and spatial environmental heterogeneity, P additions increased the relative abundance of the red algae–cyanobacterial complex and green algae, with a concomitant decrease in diatoms. When N was added along with P, the observed changes to the diatoms and the red algae–cyanobacterial complex were in the same direction as P‐only treatments, but the responses were decreased in magnitude. Within the diatom community, species relative abundances, species richness, and diversity responded weakly to nutrient addition. P additions produced changes in diatom community structure that were limited to summer and were stronger in eastern Florida Bay than in the western bay. These changes were consistent with well‐established temporal and spatial patterns of P limitation. Despite the significant change in community structure resulting from P addition, diatom communities from the same site and time, regardless of nutrient treatment, remained more similar to one another than to the diatom communities subject to identical nutrient treatments from different sites and times. Overall, epiphyte communities exhibited responses to P addition that were most evident at the division level.  相似文献   

16.
The relationship between surface sediment diatoms and summer water quality was investigated at 49 lakes in the middle and lower reaches of the Yangtze River. Lakes ranging from oligomesotrophic to hypereutrophic were examined, providing an obvious nutrient gradient. With the shift from mesotrophic to eutrophic levels, diatom multi-ecotypes dominated by epiphytic and facultative planktonic taxa were replaced by nutrient-tolerant planktonic taxa, such as Cyclotella meneghiniana Skvortzow, C. atomus Hustedt,Cyclostephanos Round, and Stephanodiscus Ehrenberg etc., reflecting the nutrient changes in the lake.The relationship between diatoms and summer water quality indices was explored further using numeric analysis. Canonical correspondence analysis (CCA) with forward selection and a Monte Carlo permutation test revealed that of all 25 summer water environmental variables, total phosphorus (TP), chlorophyll a (Chzl a), Secchi depth (SD), dissolved inorganic phosphorus, C1-, SO42-, Mg2 , CO32-, and water depth were significant variables (P<0.05) in explaining diatom distributions. Of these, TP, Chl a, SD, and C1-, were the most important variables. The result of the correlation analysis also showed that a significant correlation exists among these variables, implying that these indices are either interconnected or independent in explaining the diatom data. For phosphorus-limited sites, TP was the most significant variable affecting the diatoms, also affecting changes in Chl a, SD, and iron concentrations. The independence of Chl a may be related to algal competition induced by lake eutrophication, resulting in the feedback to diatom community.In addition to TP, SD can be related to sediment disturbance by wave action and the growth of macrophytes in large shallow lakes. These relationships between diatom ecotypes and water quality provide the basis for a future quantitative reconstruction of historic lake nutrient evolution in the study area and will also provide a wealth of modern ecological knowledge that can be used to interpret fossil diatom records.  相似文献   

17.
The relationship between surface sediment diatoms and summer water quality was investigated at 49 lakes in the middle and lower reaches of the Yangtze River. Lakes ranging from oligomesotrophic to hypereutrophic were examined, providing an obvious nutrient gradient. With the shift from mesotrophic to eutrophic levels, diatom multi-ecotypes dominated by epiphytic and facultative planktonic taxa were replaced by nutrient-tolerant planktonic taxa, such as Cyclotella meneghiniana Skvortzow, C. atomus Hustedt, Cyclostephanos Round, and Stephanodiscus Ehrenberg etc., reflecting the nutrient changes in the lake. The relationship between diatoms and summer water quality indices was explored further using numeric analysis. Canonical correspondence analysis (CCA) with forward selection and a Monte Carlo permutation test revealed that of all 25 summer water environmental variables, total phosphorus (TP), chlorophyll a (Chl a), Secchi depth (SD), dissolved inorganic phosphorus, Cl–, SO42–, Mg2+, CO32–, and water depth were significant variables (P<0.05) in explaining diatom distributions. Of these, TP, Chl a, SD, and Cl–, were the most important variables. The result of the correlation analysis also showed that a significant correlation exists among these variables, implying that these indices are either interconnected or independent in explaining the diatom data. For phosphorus-limited sites, TP was the most significant variable affecting the diatoms, also affecting changes in Chl a, SD, and iron concentrations. The independence of Chl a may be related to algal competition induced by lake eutrophication, resulting in the feedback to diatom community. In addition to TP, SD can be related to sediment disturbance by wave action and the growth of macrophytes in large shallow lakes. These relationships between diatom ecotypes and water quality provide the basis for a future quantitative reconstruction of historic lake nutrient evolution in the study area and will also provide a wealth of modern ecological knowledge that can be used to interpret fossil diatom records.  相似文献   

18.
19.
Nutrients, algae and grazers in some British streams of contrasting pH   总被引:1,自引:0,他引:1  
1. The relationship between algal biomass accumulation, invertebrate colonization, and stream-water pH was investigated in seven streams in three regions of England and Wales. Possible nutrient limitation of algal production at all sites was examined with diffusion substrata. 2. Periphyton assemblages on experimental substrata after 30 days were dominated by diatoms, notably Eunotia spp., at all sites. Algal pigment concentration (chlorophyll a and phaeopigments) was not correlated with stream-water pH, and mean concentrations on control (unenriched) substrata ranged from 0.08 to 1.94 μg cm?2. 3. The growth response of periphyton to nutrient additions was site specific. Algal production was stimulated by nutrient additions at sites in the English Lake District and Llyn Brianne (south-west Wales), but not in the Ashdown Forest (southern England). 4. Larval Chironomidae were the main invertebrates retrieved from substrata at all sites. Within all three regions, larval abundance was positively related to algal pigment concentration (biomass). Abundance of the stonefly Nemurella pictetii was also positively correlated with algal biomass at the one site where it occurred. 5. Our results indicate that epilithic algal production in small, oligotrophic streams is unlikely to be determined primarily by pH. Neither do they support the view that an absence of grazers from acid streams is necessarily due to an inadequate food supply.  相似文献   

20.
Invertebrate food webs along a stream resource gradient   总被引:6,自引:0,他引:6  
1. The flow of energy through food webs with similar species can vary with both space and time. The river continuum concept (RCC) provides a useful framework for predicting variability in the biota and food availability along streams. We estimated the flow of organic matter (g m?2 year?1) through food webs, arrayed along a stream, that had different resource inputs. Four sites were sampled along the Little Tennessee River, North Carolina, U.S.A.: two fifth order sites, one sixth and one seventh order site. The dominant resource is leaf detritus in the upstream reach (the upstream fifth order site), algae in the mid‐reaches (the downstream fifth and sixth order sites), and suspended material downstream (seventh order site). 2. Eleven genera, contributing from 50 to 66% of the total macroinvertebrate secondary production of each site, were studied. We estimated organic matter flow from resource to consumer by combining previously measured rates of invertebrate secondary production with gut content analyses and assimilation efficiencies. 3. Organic matter flow through food webs increased in a downstream direction, while the structure of the food webs remained constant. The total food consumed by the taxa analysed increased from 34 g m?2 year?1 at the upstream site to 730 g m?2 year?1 at the most downstream site. We estimate that the organic matter consumed by the entire macroinvertebrate community ranged from 66 to 1164 g m?2 year?1. These results indicate that there is variation in the magnitude of organic matter flow through the food webs along this river continuum. 4. The dominant food resource consumed also changed along the gradient. Leaf detritus consumption decreased from 58% of the total consumption upstream to 6% downstream, whereas consumption of amorphous detritus increased from 18 to 64%. The proportion of animal material consumed also increased from 3 to 27%. The total consumption of autochthonous resources (diatoms and filamentous algae) increased along the continuum (from 6.41 to 34.05 g m?2 year?1). We conclude that these results are related to variation in resource availability, dietary shifts and invertebrate secondary production. These results link resource availability to energy flow, a relationship originally suggested by the RCC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号