首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Overhunting in tropical forests reduces populations of vertebrate seed dispersers. If reduced seed dispersal has a negative impact on tree population viability, overhunting could lead to altered forest structure and dynamics, including decreased biodiversity. However, empirical data showing decreased animal-dispersed tree abundance in overhunted forests contradict demographic models which predict minimal sensitivity of tree population growth rate to early life stages. One resolution to this discrepancy is that seed dispersal determines spatial aggregation, which could have demographic consequences for all life stages. We tested the impact of dispersal loss on population viability of a tropical tree species, Miliusa horsfieldii, currently dispersed by an intact community of large mammals in a Thai forest. We evaluated the effect of spatial aggregation for all tree life stages, from seeds to adult trees, and constructed simulation models to compare population viability with and without animal-mediated seed dispersal. In simulated populations, disperser loss increased spatial aggregation by fourfold, leading to increased negative density dependence across the life cycle and a 10-fold increase in the probability of extinction. Given that the majority of tree species in tropical forests are animal-dispersed, overhunting will potentially result in forests that are fundamentally different from those existing now.  相似文献   

2.
Niche‐driven effects on demographic processes generated in response to habitat heterogeneity partly shape local distributions of species. Thus, tree distributions are commonly studied in relation to habitat conditions to understand how niche differentiation contributes to species coexistence in forest communities. Many such studies implicitly assume that local abundance reflects habitat suitability, and that abundance is relatively stable over time. We compared models based on abundance with those based on demographic performance for making inferences about habitat association for 287 tree species from three large dynamic plots located in tropical, subtropical and temperate forests. The correlation between the predictions of the abundance‐based models and the demography‐based models varied widely, with correlation coefficients ranging nearly from ?1 to 1.This suggests that the two types of models capture different information about species–habitat associations. Demography‐based models evaluate habitat quality by focusing on population processes and thus should be preferred for understanding responses of tree species to habitat conditions, especially when habitat conditions are changing and species–habitat interactions cannot be considered to be at equilibrium.  相似文献   

3.
Aim Tropical savanna ecosystems are uniquely characterized by the co‐dominance of both trees and grasses. An operational understanding of the ecological processes involved in maintaining this condition is essential for understanding both the functioning of savanna systems as well as their potential response to environmental change. A simple model is presented to explore the potential for a demographic mechanism of long‐term tree persistence and temporal physiognomic stability in the Brazilian cerrado. Location The model is developed based on data from the humid cerrado of Brazil. Methods In contrast to many existing models of tree–grass dynamics a model is presented which is based on data from the humid cerrado of Brazil, which is both qualitatively and quantitatively different from many of the more arid savannas of the palaeotropics. The model focuses on the dynamics of a synthetic tree population, with particular attention given to reproduction, seedling establishment and fire effects; with separate sub‐models for grass production, fire and rainfall. Results The model successfully predicts coexistence across the full range of observed vegetation physiognomies, but only under limited conditions. Under coexistence conditions, the dynamics of the tree population are characterized by long periods of gradual decline, punctuated by occasional bursts of growth. However, in agreement with earlier studies, the model consistently over‐predicts domination by the tree component. Fire is identified as an overriding factor in determining model behaviour, and the response of reproduction and sapling recruitment to variance in the frequency of fire ignition is identified to be of potential importance in the functioning of the Brazilian cerrado. The key dynamics of the model which promote tree–grass coexistence are consistent with a number of established determinants of ecological resilience in savanna systems. Main conclusions The model identifies the importance of the effective exploitation of rare opportunities for favourable recruitment (e.g. exclusion from fire) by the tree population, in promoting coexistence within a predominantly adverse environment. Support is provided for an alternative demographic mechanism of tree–grass coexistence in the cerrado (the storage effect), which is not based on the limiting assumption of niche partitioning through differences in rooting depth. The results are consistent with those presented by recent modelling work based on the more arid savannas of southern Africa. The model presented here differs in the emphasis given to particular environmental and life‐history attributes which are critical in determining the tree–grass balance, but provides further general support for the potential role of demographic mechanisms (such as the storage effect) in determining the structure of tropical savannas. Despite having clear limitations, models can serve as valuable heuristic tools to aid the integration and exploration of existing data sets as well as our present understanding of key ecological processes.  相似文献   

4.
Over the last decade the field of tropical dendroecology has developed rapidly and major achievements have been made. We reviewed the advances in three main themes within the field. First, long chronologies for tropical tree species were constructed which allowed climate reconstructions, revealed sources of climatic variation and clarified climate–growth relations. Other studies combined tree-ring data and stable isotope (13C and 18O) measurements to evaluate the response of tropical trees to climatic variation and changes. A second set of studies assessed long-term growth patterns of individual trees throughout their life. These studies enhanced the understanding of growth trajectories to the canopy, quantified autocorrelated tree growth and yielded new estimates of tree ages. Such studies were also used to reconstruct the disturbance history of tropical forests. The last set of studies applied tree-ring data to growth models. Tree-ring data can replace diameter measurements from research plots, provide additional information to construct population models, improve timber yield models and validate model output. Based on our review, we propose two main directions for future research. (1) An evaluation of the causes and consequences of growth variation within and among trees and their relation to environmental variation. Studies evaluating this directly contribute to improved understanding of tropical tree ecology. (2) The simultaneous measurement of widths and stable isotope fractions in tree rings offers the potential to study responses of trees to climatic change. Given the major role of tropical forests in the global carbon cycle, knowing these responses is of high priority.  相似文献   

5.
Hunting affects a considerably greater area of the tropical forest biome than deforestation and logging combined. Often even large remote protected areas are depleted of a substantial proportion of their vertebrate fauna. However, understanding of the long‐term ecological consequences of defaunation in tropical forests remains poor. Using tree census data from a large‐scale plot monitored over a 15‐year period since the approximate onset of intense hunting, we provide a comprehensive assessment of the immediate consequences of defaunation for a tropical tree community. Our data strongly suggest that over‐hunting has engendered pervasive changes in tree population spatial structure and dynamics, leading to a consistent decline in local tree diversity over time. However, we do not find any support for suggestions that over‐hunting reduces above‐ground biomass or biomass accumulation rate in this forest. To maintain critical ecosystem processes in tropical forests increased efforts are required to protect and restore wildlife populations.  相似文献   

6.
Simulating Stationary Size Distribution of Trees in Rain Forests   总被引:5,自引:0,他引:5  
KOHYAMA  T. 《Annals of botany》1991,68(2):173-180
A simple dynamic model of the distribution of tree size (trunkdiameter) in natural rain forests is presented. Based on dataof permanent plot measurements in a tropical rain forest anda warm-temperate rain forest, the cumulative basal area densityof trees larger than a given tree, at any particular time, isused to express the effect of suppression, or one-sided competition,on the growth rate of that tree. It also shows that increasingthe basal area density of all trees in the stand depresses therate of recruitment from the pool of seedlings. Mortality istreated as independent of the cumulative basal area. Simulationwith the model, applying the one-dimensional drift-diffusionequation, reproduces the observed course of reforestation afterclear-felling and leads to convergence to a unique stationarysize distribution by 200 years. This concuts with the size distributionobserved in primary forest stands. The present model representsan extension of density-dependent population growth models tosize-structured tree populations. Competition, cumulative basal area, density dependence, equilibrium, population, simulation, size distribution, tropical rain forest, warm—temperate rain forest  相似文献   

7.
The Janzen–Connell hypothesis proposes that specialized herbivores maintain high numbers of tree species in tropical forests by restricting adult recruitment so that host populations remain at low densities. We tested this prediction for the large timber tree species, Swietenia macrophylla, whose seeds and seedlings are preyed upon by small mammals and a host‐specific moth caterpillar Steniscadia poliophaea, respectively. At a primary forest site, experimental seed additions to gaps – canopy‐disturbed areas that enhance seedling growth into saplings – over three years revealed lower survival and seedling recruitment closer to conspecific trees and in higher basal area neighborhoods, as well as reduced subsequent seedling survival and height growth. When we included these Janzen–Connell effects in a spatially explicit individual‐based population model, the caterpillar's impact was critical to limiting Swietenia's adult tree density, with a > 10‐fold reduction estimated at 300 years. Our research demonstrates the crucial but oft‐ignored linkage between Janzen–Connell effects on offspring and population‐level consequences for a long‐lived, potentially dominant tree species.  相似文献   

8.
Top predators can suppress mesopredators both by killing them and by motivating changes in their behavior, and there are numerous examples of mesopredator release caused by declines in top predator populations. Demonstrated cases of invasive species triggering such releases among vertebrate trophic linkages (indirect facilitation), however, are rare. The invasive cane toad, Bufo marinus, has caused severe population-level declines in some Australian predators via lethal toxic ingestion. During a long-term study of the direct impacts of cane toads on predatory monitor lizards in tropical Australia, we documented significant, marked increases in annual counts of a mesopredator, the common tree snake (Dendrelaphis punctulatus). Mean snake counts during surveys of 70-km river transects at two sites increased from <1 individual per survey during 2001–2006, to 8–18 per survey in 2007. These increases occurred approximately 3 years following the arrival of cane toads, and 1–3 years after 71–96 % population declines in three species of predatory monitor lizards (Varanus panoptes, V. mertensi, and V. mitchelli). These data suggest a mesopredator release: the dramatic reduction of predatory monitor lizards caused increases in the tree snake by decreasing predation risk. The increases in tree snake counts were not attributable to either abiotic factors, or a trophic subsidy. The severe declines of predatory monitor lizards, coupled with recent evidence of cascading effects on their prey, suggest that cane toads are re-shaping riparian communities in tropical Australia through both direct negative effects and indirect facilitation.  相似文献   

9.
Light is of primary importance in structuring tropical tree communities. Light exposure at seedling and adult stages has been used to characterize the ecological profile of tropical trees, with many implications in forest management and restoration ecology. Most shade‐tolerance classification systems have been proposed based on empirical observations in a specific area and thus result in contradictions among categories assigned to a given species. In this study, we aimed to quantify the light requirements for seedling growth of a Central African timber tree, Lophira alata (Ochnaceae), taking into account effects of population origin. In two controlled experiments: a light response experiment and a comparative population experiment, conducted in southwestern Cameroon, using seeds collected from four populations (three from Cameroon and one from Gabon), we examined the quantitative responses to irradiance of seedlings. After 2 years, mortality was very low (<3%), even in extremely low irradiance. Growth and biomass allocation patterns varied in response to light, with intermediate irradiance (24–43%) providing optimal conditions. Light response differed between populations. The Boumba population in the northeastern edge of the species' distribution exhibited the highest light requirements, suggesting a local adaptation. As a result of positive growth at low irradiance and maximum growth at intermediate irradiance, we concluded that L. alata exhibits characteristics of both non‐pioneer and pioneer species. Implications of our results to propose an objective way to assign the light requirement for tropical tree species are discussed.  相似文献   

10.
The adaptive value of mate retention has been studied in several socially monogamous birds but evidence of reproductive benefits for short-lived species is inconclusive. Most studies come from northern latitudes but more research on tropical birds is needed, as these species typically show higher survival rates and longer pair bonds than those from temperate regions. We gathered data on the reproductive biology of a subtropical, isolated population of Thorn-tailed Rayadito Aphrastura spinicaudaduring 2008–2017 to evaluate the reproductive consequences of mate retention. We examined data from 243 breeding attempts made by 159 breeding pairs. We found that ~30% of all breeding pairs bred together during at least two consecutive years, and some were mated for 6 years. The main cause of pair dissolution was mate loss, not divorce. Mixed-effects models provided moderate evidence for positive effects of mate retention and successive remating on reproductive success. Newly formed pairs laid eggs later and had slightly smaller clutches than remated pairs. Furthermore, clutch size seemed to increase with successive remating. Overall, our results suggest that newly formed pairs are less efficient in reproduction and that minor yearly reproductive benefits of mate retention might accumulate for birds that are able to breed with the same partner over many years. Because breeding habitat is limited in our study population, Thorn-tailed Rayaditos could benefit from remating if the number of individuals that can breed exceeds the number of available breeding positions. Profitable long-term pair bonds might be more frequent in tropical birds and therefore more studies are needed to assess the prevalence of remating-mediated effects on reproduction in relatively short-lived monogamous species breeding in tropical regions.  相似文献   

11.
Seed dispersal is a critical but poorly understood life-history stage of plants. Here we use a genetic approach to describe seed dispersal patterns accurately in a natural population of the Neotropical tree species Jacaranda copaia (Bignoniaceae). We used microsatellite genotypes from maternally derived tissue on the diaspore to identify which individual of all possible adult trees in the population was the true source of a given seed collected after it dispersed. Wind-dispersed seeds were captured in two different years in a large array of seed traps in an 84-ha mapped area of tropical forest on Barro Colorado Island, Panama. We were particularly interested in the proportion of seeds that traveled long distances and whether there was evidence for direct dispersal into gaps, which are required for successful recruitment of this pioneer tree species. Maximum likelihood procedures were used to fit single- and multiple-component dispersal kernels to the distance data. Mixture models, with separate distributions near and far, best fit the observed dispersal distances, albeit with considerable uncertainty in the tail. We discuss the results in light of different mechanisms responsible for separate distributions near the adult source and in the tail of the curve.  相似文献   

12.
Despite research demonstrating that water and nutrient availability exert strong effects on multiple ecosystem processes in tropical forests, little is known about the effect of these factors on the demography and population dynamics of tropical trees. Over the course of 5 years, we monitored two common Amazonian secondary forest species—Lacistema pubescens and Myrcia sylvatica—in dry-season irrigation, litter-removal and control plots. We then evaluated the effects of altered water and nutrient availability on population demography and dynamics using matrix models and life table response experiments. Our results show that despite prolonged experimental manipulation of water and nutrient availability, there were nearly no consistent and unidirectional treatment effects on the demography of either species. The patterns and significance of observed treatment effects were largely dependent on cross-year variability not related to rainfall patterns, and disappeared once we pooled data across years. Furthermore, most of these transient treatment effects had little effect on population growth rates. Our results suggest that despite major experimental manipulations of water and nutrient availability—factors considered critical to the ecology of tropical pioneer tree species—autogenic light limitation appears to be the primary regulator of tree demography at early/mid successional stages. Indeed, the effects of light availability may completely override those of other factors thought to influence the successional development of Amazonian secondary forests.  相似文献   

13.
Tree vigor is often used as a covariate when tree mortality is predicted from tree growth in tropical forest dynamic models, but it is rarely explicitly accounted for in a coherent modeling framework. We quantify tree vigor at the individual tree level, based on the difference between expected and observed growth. The available methods to join nonlinear tree growth and mortality processes are not commonly used by forest ecologists so that we develop an inference methodology based on an MCMC approach, allowing us to sample the parameters of the growth and mortality model according to their posterior distribution using the joint model likelihood. We apply our framework to a set of data on the 20‐year dynamics of a forest in Paracou, French Guiana, taking advantage of functional trait‐based growth and mortality models already developed independently. Our results showed that growth and mortality are intimately linked and that the vigor estimator is an essential predictor of mortality, highlighting that trees growing more than expected have a far lower probability of dying. Our joint model methodology is sufficiently generic to be used to join two longitudinal and punctual linked processes and thus may be applied to a wide range of growth and mortality models. In the context of global changes, such joint models are urgently needed in tropical forests to analyze, and then predict, the effects of the ongoing changes on the tree dynamics in hyperdiverse tropical forests.  相似文献   

14.
野生龙眼是龙眼(Dimocarpus longan)的野生群体,是龙眼进行品种改良与创新的重要基因库。该研究对海南省东方市的野生龙眼资源进行实地调查,并从种群径级结构、静态生命表、存活曲线等方面进行了分析。结果表明:(1)东方市的野生龙眼所处群落的植被类型可以分为季雨林、热带雨林以及季雨林与热带雨林过渡带。(2)三种植被类型下野生龙眼种群大小依次为热带雨林过渡带季雨林。(3)三种植被类型下野生龙眼的存活曲线均趋于Deevey-Ⅱ型,种群各径级的死亡率基本接近。(4)数量变化动态指数表明季雨林、热带雨林区的野生龙眼种群为稳定型;过渡带的野生龙眼种群为增长型且趋于稳定。(5)时间序列预测分析表明,在未来的2、4个龄级后,季雨林下的野生龙眼种群从Ⅴ龄级之后的个体数呈现出增加的趋势,而热带雨林和过渡带是在Ⅳ级之后。从野生龙眼种群的整个发展阶段来看,目前三种植被类型下的野生龙眼幼年个体数相对丰富,种群维持有较充足的后备资源,中树、大树阶段的个体数能在现有基础上得到补充。继续保持现有野生龙眼种群分布的植株和生境斑块且采取有效保护措施,东方市的野生龙眼种群能有较好的恢复潜能。该研究的创新之处在于从不同植被类型下来分析东方市的种群动态结构,为处在不同植被类型的野生龙眼资源的种群特征提供了理论依据。  相似文献   

15.
Research on individual trait variation has gained much attention because of its implication for ecosystem functions and community ecology. The effect of individual variation on population and community abundance (number of individuals) variation remains scarcely tested. Using two established ecological scaling laws (Taylor's law and abundance–size relationship), we derived a new scaling relationship between the individual size variation and spatial variation of abundance. Tested against multi‐plot tree data from Diaoluo Mountain tropical forest in Hainan, China, the new scaling relationship showed that individual size variation reduced the spatial variation of community assemblage abundance, but not of taxon‐specific population abundance. The different responses of community and population to individual variation were reflected by the validity of the abundance–size relationship. We tested and confirmed this scaling framework using two measures of individual tree size: aboveground biomass and diameter at breast height. Using delta method and height‐diameter allometry, we derived the analytic relation of scaling exponents estimated under different individual size measures. In addition, we used multiple regression models to analyze the effect of taxon richness on the relationship between individual size variation and spatial variation of population or community abundance, for taxon‐specific and taxon‐mixed data, respectively. This work offers empirical evidence and a scaling framework for the negative effect of individual trait variation on spatial variation of plant community. It has implications for forest ecosystem and management where the role of individual variation in regulating population or community spatial variation is important but understudied.  相似文献   

16.
Despite intensified interest in conservation of tropical forests, knowledge of the population genetics of tropical forest trees remains limited. We used random amplified polymorphic DNA (RAPD) data to evaluate trends in genetic diversity and differentiation for four tropical tree species, Alchornea latifolia, Dendropanax arboreus, Inga thibaudiana and Protium glabrum . These species occur at contrasting population densities along an elevational gradient and we use RAPD and ecological data to examine natural levels of genetic diversity of each species, trends in genetic variability with population density and structure, genetic differentiation along the elevation gradient, and the relationship between genetic diversity and such factors as seed dispersal and pollination syndrome. At the distances we examined (plot distances ranging from 0.8 to 8.6 km) there was very little genetic structuring at any distance along the gradient. All four species exhibited levels of variation expected for spatial distribution, mating system and pollinator syndrome; greater than 96% of the genetic variation occurred within plots for Inga thibaudiana, Protium glabrum and Dendropanax arboreus. Alchornea latifolia only occurred in a single plot. The results of this study contribute to a growing database of genetic diversity data that can be utilized to make predictions about the effect of disturbance and subsequent reductions in population size on genetic variation and structure in tropical tree species.  相似文献   

17.
We developed an analytical method that quantifies the relative contributions of mortality and individual growth to ecosystem function and analysed the results from the first biodiversity experiment conducted in a tropical tree plantation. In Sardinilla, central Panama, over 5000 tree seedlings were planted in monoculture and mixed-species plots. After 5 years of growth, mixed-species plots yielded, on average, 30–58% higher summed tree basal area than did monocultures. Simulation models revealed that the increased yield of mixed-species plots was due mostly to enhancement of individual tree growth. Although c . 1500 trees died during the experiment, mortality was highly species-specific and did not differ consistently between biodiversity treatments. Our results show that the effects of biodiversity on growth and mortality are uncoupled and that biodiversity affects total biomass and potentially self-thinning. The Sardinilla experiment suggests that mixed-species plantings may be a viable strategy for increasing timber yields and preserving biodiversity in tropical tree plantations.  相似文献   

18.
Tropical forests hold large stores of carbon, yet uncertainty remains regarding their quantitative contribution to the global carbon cycle. One approach to quantifying carbon biomass stores consists in inferring changes from long-term forest inventory plots. Regression models are used to convert inventory data into an estimate of aboveground biomass (AGB). We provide a critical reassessment of the quality and the robustness of these models across tropical forest types, using a large dataset of 2,410 trees ≥ 5 cm diameter, directly harvested in 27 study sites across the tropics. Proportional relationships between aboveground biomass and the product of wood density, trunk cross-sectional area, and total height are constructed. We also develop a regression model involving wood density and stem diameter only. Our models were tested for secondary and old-growth forests, for dry, moist and wet forests, for lowland and montane forests, and for mangrove forests. The most important predictors of AGB of a tree were, in decreasing order of importance, its trunk diameter, wood specific gravity, total height, and forest type (dry, moist, or wet). Overestimates prevailed, giving a bias of 0.5–6.5% when errors were averaged across all stands. Our regression models can be used reliably to predict aboveground tree biomass across a broad range of tropical forests. Because they are based on an unprecedented dataset, these models should improve the quality of tropical biomass estimates, and bring consensus about the contribution of the tropical forest biome and tropical deforestation to the global carbon cycle. Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

19.
We test for evidence of the Tropical Niche Conservatism or the Out of The Tropics hypotheses in structuring patterns of tree community composition along a 2000 + meter elevational gradient in the northern tropical Andes. By collecting and integrating data on the presence–absence of tree species within plots with phylogenetic information, we analyzed the following: (a) patterns of phylogenetic dispersion and species diversity along the elevational gradient based on indexes of net relatedness, nearest taxon relatedness, and species richness (α‐diversity); and (b) the replacement of lineages along the gradient using the PhyloSorensen metric (β‐diversity). More specifically, we established 20 0.25‐ha permanent tree inventory plots between 750 and 2,802 m asl where all individuals with diameter at breast height (DBH) ≥ 10 cm were measured and identified. We then used a series of linear models to test for changes in α and β diversity between plots in relation to elevation. Neither the net relatedness index nor the nearest taxon index showed a significant relationship with elevation. However, there was greater phylogenetic overdispersion at intermediate elevations; this likely reflects the mixing of species with contrasting origins from tropical and temperate lineages. β‐diversity between plots was negatively related to the corresponding difference in elevation, indicating that closely related lineages occupy similar ranges of elevation and temperature. We conclude that the immigration of lineages from extra‐tropical regions has significant effects in determining the phylogenetic structure of tree communities in tropical Andean forests. Abstract in Spanish is available with online material.  相似文献   

20.
Tropical forests are a key determinant of the functioning of the Earth system, but remain a major source of uncertainty in carbon cycle models and climate change projections. In this study, we present an updated land model (LM3PPA‐TV) to improve the representation of tropical forest structure and dynamics in Earth system models (ESMs). The development and parameterization of LM3PPA‐TV drew on extensive datasets on tropical tree traits and long‐term field censuses from Barro Colorado Island (BCI), Panama. The model defines a new plant functional type (PFT) based on the characteristics of shade‐tolerant, tropical tree species, implements a new growth allocation scheme based on realistic tree allometries, incorporates hydraulic constraints on biomass accumulation, and features a new compartment for tree branches and branch fall dynamics. Simulation experiments reproduced observed diurnal and seasonal patterns in stand‐level carbon and water fluxes, as well as mean canopy and understory tree growth rates, tree size distributions, and stand‐level biomass on BCI. Simulations at multiple sites captured considerable variation in biomass and size structure across the tropical forest biome, including observed responses to precipitation and temperature. Model experiments suggested a major role of water limitation in controlling geographic variation forest biomass and structure. However, the failure to simulate tropical forests under extreme conditions and the systematic underestimation of forest biomass in Paleotropical locations highlighted the need to incorporate variation in hydraulic traits and multiple PFTs that capture the distinct floristic composition across tropical domains. The continued pressure on tropical forests from global change demands models which are able to simulate alternative successional pathways and their pace to recovery. LM3PPA‐TV provides a tool to investigate geographic variation in tropical forests and a benchmark to continue improving the representation of tropical forests dynamics and their carbon storage potential in ESMs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号