首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
微囊藻群体细胞数量估算的一种简单方法   总被引:1,自引:0,他引:1  
舒婷婷  陈非洲 《生态科学》2011,30(5):553-555
采用加酸水解和人工计数的方法,对巢湖铜绿微囊藻、放射微囊藻、惠氏微囊藻、坚实微囊藻、绿色微囊藻、挪氏微囊藻、水华微囊藻、鱼害微囊藻所含细胞数进行了估算.通过统计分析,建立了微囊藻群体最大投影面积与所含细胞数的回归方程模型,通过这些模型可以估算群体微囊藻所含的细胞数.  相似文献   

2.
Bacteria were found attached to the heterocysts of Aphanizomenon flos-aquae and embedded within the mucilage of both anabaena flos-aquae and Microcystis aeruginosa in freshwater plankton. Electron microscopy of thin sections preceding the peak of an Anabaena flos-aquae bloom showed that the density of bacterial cells was 7.4 X 10(5) cells/ml in the planktonic macroenvironment and 2.6 X 10(11) cells/ml within the microenvironment of cyanobacterial mucilage. The bacteria occurred in aggregates and isolation required that these be dispersed by homogenizing at 50 000 rpm with glass beads. This procedure yielded a single bacterial isolate from blooms of Anabaena flos-aquae during 2 consecutive years. The isolate was flagellated, catalase- and oxidase-positive. Gram-negative, and rod-shaped to pleomorphic. Observation that the isolate required a pH greater than 8 for consistent growth, could not grow alone on liquid media but could grow alone on the corresponding solid media, could grow in liquid media only in the presence of Anabaena, formed tough mucilagenous colonies on solid media only in the presence of Anabaena extract, and rapidly assimilated but did not respire extracellular 14C-labelled organic matter produced by Anabaena suggested that the occurrence of the bacterium in cyanobacterial mucilage was not coincidental but reflected an obligatory bacterial requirement for the biological or physicochemical microenvironment of the mucilage. The bacterial isolate occurred in three growth forms. Either as a planktonic swarmer cell (which showed a positive chemotactic response to the cyanobacterium) embedded in cyanobacterial mucilage, or embedded in its own mucilage derived, in part, from a low molecular weight (below 1300) carbohydrate secreted by the cyanobacterium. These cultural, biochemical, and ecological characteristics suggest that the isolate is a new species in the genus Zoogloea and of potential importance in phytoplankton ecology.  相似文献   

3.
Lethal toxicity (intraperitoneal, mouse) was examined in relation to Species composition of samples containing bloom-forming Microcystis populations from natural waters and correlated with toxicity of laboratory strains of four Microcystis formas and species. Toxicity was not always associated with the presence of M. aeruginosa f . aeruginosa Elenkin. A sample with almost all cells of M. aeruginosa f . aeruginosa showed no toxicity, However samples comprised of a high percentage of M. viridis Lemmermann often showed lethal toxicity. Toxicity tests were done on culture strains M. aeruginosa f aeruginosa, M. aeruginosa f flos-aquae Elenkin , M. viridis and M. wesenbergii Kamárek. All five cultured strains of M. viridis were found to be toxic, while only one out of nine strains of M. aeruginosa f . aeruginosa was toxic. Six strains of M. wesenbergii showed no toxicity, It is recommended that attention should be paid to the occurrences and possibility of toxic bloom of M. viridis from the standpoint of water management and public health .  相似文献   

4.
Abstract Volatile organic sulfur compounds occuring during a bloom of different species of Microcystis in Lake Neusiedl, Austria, were analyzed by gas chromatography and mass spectrometry. In open water diisopropyl disulfide and diisopropyl tri-sulfide were the only sulphur compounds to be found. It was shown that Microcystis flos-aquae was the causative agent for the generation of these sulphur compounds, since high concentrations of these substances were found both in the floating scum of cyanobacteria taken from open lake and in axenic cultures of five isolated strains of M. flos-aquae . Strains isolated from colonies of Microcystis aeruginosa were not able to synthesize isopropylthio compounds. Alternatively, methylthio compounds were released. The rather unusual formation of the isopropylthio group can be used as a chemical marker to differentiate between M. flos-aquae and M. aeruginosa as two separate species which hitherto have been regarded as formae. In a canal passing through the reed belt of Lake Neusiedl where Microcystis was missing, these compounds were not detected. Different sulfur compounds (dimethyl disulfide, dimethyl trisulfide, dibutyl sulfide and bis(methylthio) methane) which in part have not yet been reported for freshwater ecosystems occurred at this site. Their origin, however, remains obscure.  相似文献   

5.
三种水华蓝藻对不同磷浓度生理响应的比较研究   总被引:10,自引:0,他引:10  
本实验研究了铜绿微囊藻(Microcystis aeruginosa FACHB469)、水华鱼腥藻(Anabaena flos-aquae FACHB245)和浮游颤藻(Oscillatoria planctonicaFACHB708)对磷浓度变化的生理响应。结果表明,在缺磷条件下,A. flos-aquae对低磷环境的适应能力较强,O. planctonica其次,M. aeruginosa最差;在磷充足条件,微囊藻对磷过量吸收的能力明显高于其他两种蓝藻。三种蓝藻胞外碱性磷酸酶活性(APA)与培养基中磷浓度呈负相关性,其产生碱性磷酸酶(AP)的能力由高至低为:A. flos-aquae>O. planctonica>M. aeruginosa。磷缺陷时A. flos-aquae产生的胞外APA约是M. aeruginosa的10倍,是O. planctonica的5倍。  相似文献   

6.
Morphological evolution from a unicellular to multicellular state provides greater opportunities for organisms to attain larger and more complex living forms. As the most common freshwater cyanobacterial genus, Microcystis is a unicellular microorganism, with high phenotypic plasticity, which forms colonies and blooms in lakes and reservoirs worldwide. We conducted a systematic review of field studies from the 1990s to 2017 where Microcystis was dominant. Microcystis was detected as the dominant genus in waterbodies from temperate to subtropical and tropical zones. Unicellular Microcystis spp. can be induced to form colonies by adjusting biotic and abiotic factors in laboratory. Colony formation by cell division has been induced by zooplankton filtrate, high Pb2+ concentration, the presence of another cyanobacterium (Cylindrospermopsis raciborskii), heterotrophic bacteria, and by low temperature and light intensity. Colony formation by cell adhesion can be induced by zooplankton grazing, high Ca2+ concentration, and microcystins. We hypothesise that single cells of all Microcystis morphospecies initially form colonies with a similar morphology to those found in the early spring. These colonies gradually change their morphology to that of M. ichthyoblabe, M. wesenbergii and M. aeruginosa with changing environmental conditions. Colony formation provides Microcystis with many ecological advantages, including adaption to varying light, sustained growth under poor nutrient supply, protection from chemical stressors and protection from grazing. These benefits represent passive tactics responding to environmental stress. Microcystis colonies form at the cost of decreased specific growth rates compared with a unicellular habit. Large colony size allows Microcystis to attain rapid floating velocities (maximum recorded for a single colony, ∼ 10.08 m h−1) that enable them to develop and maintain a large biomass near the surface of eutrophic lakes, where they may shade and inhibit the growth of less‐buoyant species in deeper layers. Over time, accompanying species may fail to maintain viable populations, allowing Microcystis to dominate. Microcystis blooms can be controlled by artificial mixing. Microcystis colonies and non‐buoyant phytoplankton will be exposed to identical light conditions if they are evenly distributed over the water column. In that case, green algae and diatoms, which generally have a higher growth rate than Microcystis, will be more successful. Under such mixing conditions, other phytoplankton taxa could recover and the dominance of Microcystis would be reduced. This review advances our understanding of the factors and mechanisms affecting Microcystis colony formation and size in the field and laboratory through synthesis of current knowledge. The main transition pathways of morphological changes in Microcystis provide an example of the phenotypic plasticity of organisms during morphological evolution from a unicellular to multicellular state. We emphasise that the mechanisms and factors influencing competition among various close morphospecies are sometimes paradoxical because these morphospecies are potentially a single species. Further work is required to clarify the colony‐forming process in different Microcystis morphospecies and the seasonal variation in this process. This will allow researchers to grow laboratory cultures that more closely reflect field morphologies and to optimise artificial mixing to manage blooms more effectively.  相似文献   

7.
Analysis of a sediment core taken from the Grangent reservoir in 2004 showed the presence of high concentrations of Microcystis aeruginosa Kütz. colonies at the sediment surface (250 colonies · mL sediment?1) and also at depths of 25–35 cm (2300 colonies·mL sediment?1) and 70 cm (600 colonies · mL sediment?1). Measurements of radioactive isotopes (7Be, 137Cs, and 241Am) along with photographic analysis of the core were used to date the deep layers: the layer located at ?30 cm dates from summer 2003, and that located at ?70 cm from 1990 to 1991. The physiological and morphological conditions of those benthic colonies were compared with those of planktonic colonies using several techniques (environmental scanning electron microscopy [ESEM], TEM, DNA markers, cellular esterases, and toxins). The ESEM observations showed that, as these colonies age, peripheral cells disappear, with no cells remaining in the mucilage of the deepest colonies (70 cm), an indication of the survival thresholds of these organisms. In the benthic phase, the physiological conditions (enzyme activity, cell division, and intracellular toxins) and ultrastructure (particularly the gas vesicles) of the cells surviving in the heart of the colony are comparable to those of the planktonic form, with all the potential needed for growth. Maintaining cellular integrity requires a process that can provide sufficient energy and is expressed in the reduced, but still existing, enzymatic activity that we measured, which is equivalent to a quiescent state.  相似文献   

8.
中国淡水微囊藻属常见种类的分类学讨论——以滇池为例   总被引:9,自引:0,他引:9  
根据中国云南滇池藻类样品的观察结果,对中国分布的淡水微囊藻属Microcystis10个常见种的形态特征进行了描述,同时对它们的分类学进行了讨论,并整理出分类检索表。这10种微囊藻是铜绿微囊藻M.aeruginosa、放射微囊藻M.botrys、坚实微囊藻M.firma、水华微囊藻M.flos-aquae、鱼害微囊藻M.ichthyoblabe、挪氏微囊藻M.novacekii、假丝微囊藻M.pseudofilamentosa、史密斯微囊藻M.smithii、绿色微囊藻M.viridis、惠氏微囊藻M.wesenbergii。最后还讨论了中国报道的其它微囊藻种类的分类学状况。  相似文献   

9.
Böing  Wiebke J.  Wagner  Annekatrin  Voigt  Hanno  Deppe  Thomas  Benndorf  Jürgen 《Hydrobiologia》1998,389(1-3):101-114
We studied the response of phytoplankton to grazing by Daphnia galeata in the hypertrophic Bautzen reservoir (Dresden, Germany) from January 1995 to May 1996 during a long-term whole-lake biomanipulation experiment. The correlation between clearance rate of D. galeata and total phytoplankton biomass was negative only if biomass of Microcystis aeruginosa was excluded. This suggests that M. aeruginosa is the main grazing resistant phytoplankton species in the Bautzen reservoir. Except for M. aeruginosa and grazing-resistant Staurastrum quadridentatum spec. nov. (Scharf, 1995) no other phytoplankton species was able to reach a biovolume above 1 mm3 L-1 when the clearance rate of Daphnia exceeded 0.1 L L-1 d-1. There was significant positive correlation between mean cell or colony size of phytoplankters and clearance rate of D. galeata, showing an advantage of bigger cells or colonies at high grazing pressure. Cross-correlation indicated a time lag of about one month between changes in grazing pressure and a change in phytoplankton mean size. The phytoplankton species were divided into edible and inedible fractions, depending on their width and length. No edible species were able to reach high biovolumes during high biomasses of D. galeata but a positive correlation was found between the edible fraction of phytoplankton biovolume and the clearance rate of D. galeata. However, this relationship disappeared when the ‘ingestible edible’ fraction of M. aeruginosa was excluded, suggesting a rejection of ‘edible’ Microcystis colonies by D. galeata. A negative correlation was found between the inedible fraction of phytoplankton biovolume without M. aeruginosa and the clearance rate of D. galeata which might be due to superior competition of M. aeruginosa. We could clearly show that biomanipulation might not work well with respect to the reduction of total phytoplankton biomass under hypertrophic conditions and finally discuss a theoretical threshold of phosphorus (probably around 80 μg L-1), below which biomanipulation should become effective. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Ten common species of Microcystis, based on the examination of water samples from the Dianchi Lake, Yunnan, China, were morphologically described, and their taxonomy was also discussed. They are Microcystis aeruginosa, M. botrys, M. firma, M. flos-aquae, M. ichthyoblabe, M. novacekii, M. pseudofilamentosa, M. smithii, M. viridis and M. wesenbergii. Taxonomic status of other Microcystis species reported in China was also evaluated. Key words Cyanophyta, Microcystis, morphology, taxonomy, China.  相似文献   

11.
Critical-point dried (CPD) cells from clonal cultures of Euglena gracilis Klebs (Z strain), E. deses Ehrb., E. tripteris (Duj.) Klebs and E. myxocylindracea Bold & MacEntee were examined by scanning electron microscopy. Flagellated motile cells of E. gracilis are naked except for a few strands of mucilage on the posterior tip. Flagellated cells of E. tripteris have a permanent mucilage coating often of uneven distribution and usually not as well developed as that of nonflagellated creeping cells which have a distinctive mucilage. In E. deses the coating appears rough due to the aggregation of isolated groups of strands above the cell surface. In E. tripteris the coating appears smooth except for breaks near the articulation of the pellicular strips where the mucilage may rise above the surface to form waves. At high magnification this mucilage consists of a network of strands generally lying parallel to the cell surface; the strands become obscure in some specimens. In E. myxocylindracea elongated, mucilage-coated cells contract to form spheres which undergo further mucilage deposition producing the mucilage covering of palmellae. As palmellae mature, the mucilage surface becomes less porous and the individuality of most mucilage strands is lost.  相似文献   

12.
滇池中溶藻细菌的分离鉴定及其溶藻效应   总被引:1,自引:0,他引:1  
【背景】藻类水华或赤潮在世界范围内频发,带来各种危害,亟需找到有效途径控制水华或赤潮。溶藻细菌具有杀死藻类控制藻类生物量的能力,可以作为防治水华和赤潮的有效工具。【目的】分离并鉴定滇池中的铜绿微囊藻(Microcystisaeruginosa)及其溶藻细菌,对溶藻菌作用于铜绿微囊藻的溶藻效应进行研究,初步了解其溶藻特性与溶藻机制。【方法】采用LB平板稀释涂布,再经多次划线分离纯化细菌,测定16SrRNA基因序列以鉴定细菌种类;采用毛细管分离的方法分离铜绿微囊藻,并测定其cpcBA基因序列以鉴定蓝藻种类;采用热乙醇法提取叶绿素a,从而计算溶藻效率;基于过氧化氢酶(CAT)、还原型谷胱甘肽(GSH)和丙二醛(MDA)探究藻细胞在溶藻菌处理下的抗氧化系统响应。【结果】共分离获得11株微囊藻和17株针对铜绿微囊藻的高效溶藻菌。选取其中一株生长速度最快的铜绿微囊藻DCM4和一株溶藻效果最好的溶藻菌Sp37 (Bacillus siamensis)进行后续研究。Sp37对DCM4的4 d溶藻率达到92.4%±1.5%,且对微囊藻属的水华微囊藻(M. flos-aquae)和惠氏微囊藻(M.wesenbergii)均有溶藻效果,而对绿藻没有溶藻效果。Sp37的原菌液和无菌滤液对DCM4的4d溶藻率分别为86.8%±4.3%和81.1%±2.2%,两者没有显著差异(P0.05)。Sp37菌体对DCM4的溶藻率为25.4%±7.3%。Sp37无菌滤液经不同温度和pH处理之后的溶藻率与未经处理的无菌滤液的溶藻率无明显差异。Sp37无菌滤液处理藻细胞会使藻细胞的CAT、GSH和MDA含量发生变化。【结论】菌株Sp37对铜绿微囊藻DCM4具有高效的溶藻作用,而且对微囊藻属具有一定的溶藻特异性。Sp37是通过分泌胞外物质间接溶藻,且溶藻物质具有热稳定性和酸碱稳定性。Sp37无菌滤液处理藻细胞会触发藻细胞抗氧化系统,并且会损伤藻细胞膜。Sp37无菌滤液很可能是通过对藻细胞造成氧化胁迫,最终导致藻细胞死亡的。  相似文献   

13.
To investigate the changes in the morphology and polysaccharide content of Microcystis aeruginosa (Kütz.) Kütz. during flagellate grazing, cultures of M. aeruginosa were exposed to grazing Ochromonas sp. for a period of 9 d under controlled laboratory conditions. M. aeruginosa responded actively to flagellate grazing and formed colonies, most of which were made up of several or dozens of cells, suggesting that flagellate grazing may be one of the biotic factors responsible for colony formation in M. aeruginosa. When colonies were formed, the cell surface ultrastructure changed, and the polysaccharide layer on the surface of the cell wall became thicker. This change indicated that synthesis and secretion of extracellular polysaccharide (EPS) of M. aeruginosa cells increased under flagellate grazing pressure. The contents of soluble extracellular polysaccharide (sEPS), bound extracellular polysaccharide (bEPS), and total polysaccharide (TPS) in colonial cells of M. aeruginosa increased significantly compared with those in single cells. This finding suggested that the increased amount of EPS on the cell surface may play a role in keeping M. aeruginosa cells together to form colonies.  相似文献   

14.
During Arabidopsis seed development large quantities of mucilage, composed of pectins, are deposited into the apoplast underneath the outer wall of the seed coat. Upon imbibition of mature seeds, the stored mucilage expands through hydration and breaks the outer cell wall that encapsulates the whole seed. Mutant seeds carrying loss-of-function alleles of AtSBT1.7 that encodes one of 56 Arabidopsis thaliana subtilisin-like serine proteases (subtilases) do not release mucilage upon hydration. Microscopic analysis of the mutant seed coat revealed no visible structural differences compared with wild-type seeds. Weakening of the outer primary wall using cation chelators triggered mucilage release from the seed coats of mutants. However, in contrast to mature wild-type seeds, the mutant's outer cell walls did not rupture at the radial walls of the seed coat epidermal cells, but instead opened at the chalazal end of the seed, and were released in one piece. In atsbt1.7, the total rhamnose and galacturonic acid contents, representing the backbone of mucilage, remained unchanged compared with wild-type seeds. Thus, extrusion and solubility, but not the initial deposition of mucilage, are affected in atsbt1.7 mutants. AtSBT1.7 is localized in the developing seed coat, indicating a role in testa development or maturation. The altered mode of rupture of the outer seed coat wall and mucilage release indicate that AtSBT1.7 triggers the accumulation, and/or activation, of cell wall modifying enzymes necessary either for the loosening of the outer primary cell wall, or to facilitate swelling of the mucilage, as indicated by elevated pectin methylesterase activity in developing atsbt1.7 mutant seeds.  相似文献   

15.
Pectodictyon cubicum Taft collected in California develops typical eight-celled, cuboidal colonies only in alkaline media. Vegetative cell ultrastructure is similar to that in other genera of the Chlorococcales, except for an extensive endoplasmic reticulum system paralleling the plasmalemma (termed a paramural ER). Autosporogenesis proceeds inside the parent cell wall by three mitotic divisions producing eight nuclei in two tiers of four. Cleavage furrows following paths delineated by long ER segments and indistinct microtubules bisect and then radically separate the protoplast into eight pyramidal units. Walls comprised of a thick, presumably cellulose layer and a thinner trilaminar layer (not acetolysis resistant) form as cells become rounded, except where touching. A gelatinous matrix is produced around and between cells with concentration at the three sites of prior cell contact 90 degrees apart. Pulsed production of mucilage in three solid strands forces cells to separate, and the expanding colony becomes a hollow cube with a cell at each corner.  相似文献   

16.
17.
We studied the toxicity of copper on Microcystis aeruginosa and Aphanizomenon flos-aquae. The toxicity phenomena can be described by the survival dose relationship which allows us to define the three parameters: threshold concentration (Cs), sensitivity (k) and a NL. 50%. The latter corresponds to the copper concentration which reduces the number of cells at the end of the exponential phase by 50%. A. flos-aquae is very clearly less tolerant than M. aeruginosa to copper. Viable cell counts based on electron transport activity showed that M. aeruginosa cultures can detoxify copper.  相似文献   

18.
The conventional view of root-cap mucilage as an expanded blob of mucilage is characteristic only of root tips in contact with free water. In soil, the mucilage is almost always a dry coating over the tip to which soil particles adhere. The kinetics of expansion of root-cap mucilage of Zea mays roots grown in field soil, in soil in pots, and axenically on agar, were determined when the mucilage was exposed to water. On the soil-grown roots the increase in mucilage volume was linear with time, sometimes reaching a constant volume during the 6 h of measurement, but sometimes not. This linear expansion is interpreted as limited by the rate at which the condensed mucilage in the periplasmic and intercellular spaces of the root cap passes to the exterior of the cap, expanding as fast as it arrives outside in the water. The height of the plateau is interpreted as a measure of the amount of mucilage initially present in the interior spaces. Because of the greater availability of water in the axenic roots grown on 1% agar, the mucilage was already outside the root cap, and it expanded more rapidly. It reached a final volume about 10-fold greater than that on the soil-grown roots. The volume increase was curvilinear with time. An analysis of these curves suggested that this swelling on axenic roots was a diffusion of mucilage outwards from the flanks of the root cap, and the diffusivity of the mucilage was estimated as 4 × 10?8 cm2 s?1. The molecular radius derived from this diffusivity was 34 nm, and the estimated molecular weight was 1.6 × 108 Da.  相似文献   

19.
Manual counting of bacterial colony forming units (CFUs) on agar plates is laborious and error-prone. We therefore implemented a colony counting system with a novel segmentation algorithm to discriminate bacterial colonies from blood and other agar plates.A colony counter hardware was designed and a novel segmentation algorithm was written in MATLAB. In brief, pre-processing with Top-Hat-filtering to obtain a uniform background was followed by the segmentation step, during which the colony images were extracted from the blood agar and individual colonies were separated. A Bayes classifier was then applied to count the final number of bacterial colonies as some of the colonies could still be concatenated to form larger groups. To assess accuracy and performance of the colony counter, we tested automated colony counting of different agar plates with known CFU numbers of S. pneumoniae, P. aeruginosa and M. catarrhalis and showed excellent performance.  相似文献   

20.
非生物因素对藻类胞外多聚糖含量影响   总被引:3,自引:0,他引:3  
本文从研究铜绿微囊藻表型转换机制的需要出发,综述了非生物因素对藻类胞外多聚糖含量的影响.很多藻类的胞外多聚糖分泌量与环境中主要营养盐比例之间存在着一定的响应关系,在高碳氮比或高碳磷比条件下,即在氮不足或磷不足时,藻类光合作用固定的有机物质主要以不含氮磷的碳水化合物形式存在,胞内碳水化合物的过量累积导致其逐步向胞外转移释放,使得胞外多聚糖含量显著升高.在碳氮代谢不平衡的情况下,胞外多聚糖充当了接收过剩固定碳的汇.对于一些藻类,不同光谱、光强和光周期均可影响其胞外多聚糖的合成与分泌.温度对藻类胞外多聚糖的产生也有一定影响.由于胞外多聚糖在藻细胞相互粘结形成群体上发挥着重要作用,通过调控相关非生物因素使得铜绿微囊藻胞外多聚糖产量增加可能有助于在室内模拟铜绿微囊藻的群体形成.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号