首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The behavior of the contractile vacuole of Tetrahymena pyriformis W has been recorded and analyzed quantitatively by cinephotography. The vacuole fills in a stepwise fashion by the confluence of ampullae which appear regularly at the beginning of systole and whose membranes are continuous with that of the contractile vacuole throughout the cycle. The vacuole may subsequently fill slowly by a means not discernible by light microscopy. The vacuole rounds up at the beginning of systole and shortly thereafter the ampullae reappear around the perimeter of the vacuole. They are expanded by fluid forced into them from the vacuole. Round-up and the mode of growth of the ampullae indicate that the contractile vacuole is truly contractile. Expulsion occurs soon after the appearance of the ampullae and terminates the cycle. Contraction is initiated at regular intervals by a timing mechanism which is independent of the size of the vacuole. Suitable terminology to describe the structure and behavior of the contractile vacuole is discussed.  相似文献   

2.
SYNOPSIS. The behavior of the contractile vacuole of Tetrahymena pyriformis W has been recorded and analyzed quantitatively by cinephotography. The vacuole fills in a stepwise fashion by the confluence of ampullae which appear regularly at the beginning of systole and whose membranes are continuous with that of the contractile vacuole throughout the cycle. The vacuole may subsequently fill slowly by a means not discernible by light microscopy. The vacuole rounds up at the beginning of systole and shortly thereafter the ampullae reappear around the perimeter of the vacuole. They are expanded by fluid forced into them from the vacuole. Round-up and the mode of growth of the ampullae indicate that the contractile vacuole is truly contractile. Expulsion occurs soon after the appearance of the ampullae and terminates the cycle. Contraction is initiated at regular intervals by a timing mechanism which is independent of the size of the vacuole. Suitable terminology to describe the structure and behavior of the contractile vacuole is discussed.  相似文献   

3.
ABSTRACT. In ciliates, calmodulin (CaM), as in other cells, has multiple functions, such as activation of regulatory enzymes and modulating calcium‐dependent cellular processes. By immunogold localization, CaM is concentrated at multiple sites in Paramecium. It is seen scattered over the cytosol, but bound to its matrix, and is concentrated at the pores of the contractile vacuole complexes and with at least three microtubular arrays. It was localized peripheral to the nine‐doublet microtubules of the ciliary axonemes. The most striking localization was on the akinetic side only of the cytopharyngeal microtubular ribbons opposite the side where the discoidal vesicles, acidosomes and the 100‐nm carrier vesicles bind and move. CaM was also present at the periphery of the postoral microtubular bundles along which the early vacuole moves and was associated with the cytoproct microtubules that guide the spent digestive vacuoles to the cytoproct. It was not found on the membranes of, or in the interior of nuclei, mitochondria, phagosomes, and trichocysts, and was only sparsely scattered over the cytosolic sides of discoidal vesicles, acidosomes, lysosomes, and digestive vacuoles. Together the associations with specific microtubular arrays and the effects of trifluoperazine and calmidazolium indicate that CaM is involved (i) in vesicle transport to the cytopharynx area for vacuole formation and subsequent vacuole acidification, (ii) in early vacuole transport along the postoral fiber, and (iii) in transporting the spent vacuole to the cytoproct. Higher CaM concentrations subjacent to the cell's pellicle and close to the decorated tubules of the contractile vacuole complex may support a role for CaM in ion traffic.  相似文献   

4.
Paramecium calkinsi from tidal marshes survive a wide salinity range. Fluid output of contractile vacuoles of these cells decreased as salinity of the medium to which they were acclimated increased, and both pulse rate and vacuole volume were used to regulate output. When cells were first exposed to more dilute medium, contractile vacuoles greatly increased volume so that fluid output increased even though pulse rate decreased. In cells shifted to a more concentrated medium, contractile vacuole output decreased by decreasing pulse rate. The contractile vacuole is surrounded by a set of collecting structures which change form as the salinity changes. Distensible ampullae are found in media of low salinity and collecting canals are found in media of high salinity. When cells are shifted from high salinity to low, the number of ampullae increases and the number of canals decreases. When cells are shifted from low salinity to high, the number of ampullae decreases and the number of canals decreases. Other non-contracting vacuoles also appear in response to a hypoosmotic shock. These include vacuoles within the cell as well as "blisters" on the surface. The number and frequency of blisters increases with the size of the hypoosmotic shock. They detach from cells without resulting in any visible loss of cytoplasm. Non-contractile vacuoles may play a role in sequestering and removing excess water that the contractile vacuoles cannot handle.  相似文献   

5.
Our recent analysis of the nephridial apparatus of Paramecium multimicronucleatum by high-speed cinematography (300 fps at X 250) indicates that before the water expulsion vesicle ("contractile vacuole") is completely voided of fluid during expulsion, the ampullae surrounding and confluent with the vesicle swell with fluid entering from their respective nephridial tubules. Once the membranes of the excretory pore at the base of the excretory canal (leading from the vesicle proper to the outside) have constricted and resealed the excretory pore, the up till then constricted injection tubules of the ampullae which conduct fluid to the vesicle open as waves of contraction along the coacervate gel around the ampulla and proceed along each ampulla from distal to proximal end. The coacervate gel around any one ampulla does not necessarily contract in phase with that of any other ampulla. Each ampulla acts independently. The fluid from the ampullae is thus pumped sequentially, but not in predetermined order, into the water expulsion vesicle, refilling and distending it. Our previous studies (Organ et al., 1968a) suggest that an actomyosinoid ATP-using mechanism may be functional in the ampullary contractions.  相似文献   

6.
ABSTRACT. Paramecium calkinsi from tidal marshes survive a wide salinity range. Fluid output of contractile vacuoles of these cells decreased as salinity of the medium to which they were acclimated increased, and both pulse rate and vacuole volume were used to regulate output. When cells were first exposed to more dilute medium, contractile vacuoles greatly increased volume so that fluid output increased even though pulse rate decreased. In cells shifted to a more concentrated medium, contractile vacuole output decreased by decreasing pulse rate. The contractile vacuole is surrounded by a set of collecting structures which change form as the salinity changes. Distensible ampullae are found in media of low salinity and collecting canals are found in media of high salinity. When cells are shifted from high salinity to low, the number of ampullae increases and the number of canals decreases. When cells are shifted from low salinity to high, the number of ampullae decreases and the number of canals decreases. Other non-contracting vacuoles also appear in response to a hypoosmotic shock. These include vacuoles within the cell as well as "blisters" on the surface. The number and frequency of blisters increases with the size of the hypoosmotic shock. They detach from cells without resulting in any visible loss of cytoplasm. Non-contractile vacuoles may play a role in sequestering and removing excess water that the contractile vacuoles cannot handle.  相似文献   

7.
The pore through which a Paramecium contractile vacuole communicates with the external environment is a 1.2 μm long and 1 μm diameter cylindrical orifice in the pellicle. During diastole, the vacuole:pore junction is closed by a substantial diaphragm which parts to the side at systole. The diaphragm is composed of inner and outer membranes continuous with the vacuole and pore membranes, respectively, and an intervening cytoplasmic layer containing filaments and irregular membranous tubules and vesicles. Microtubules, organized into 2 sets, are an important component of the pore apparatus. One set of ~ 16 microtubules forms an annulus around the pore. These microtubules are organized into a right-handed helix with a pitch of 0.5-0.6 μm, and thus complete slightly more than 2 turns in their course from the level of the diaphragm to the pore outer lip. They appear to be embedded in a layer of dense material immediately adjacent to the pore membrane. The other set consists of 5 or more bands of 10–20 microtubules which radiate in a slight left-handed helix from an insertion at the pore out over the vacuole surface to the ampullae.  相似文献   

8.
The cell structure of the freshwater chrysomonad Spumella sp. has been studied. The cell contains a vesicular nucleus, mitochondria with tubular cristae, Golgi apparatus, flagellar roots, and wide dorsal microtubular band. The flagella bear the spiral of four to five coils in the transitional zone. The rudiments of mastigonemes have been found in the perinuclear space. The compact leucoplast has an amorphous core surrounded by the membrane. No stigma has been detected. The leucosin vacuole, rhizoplast, and swelling of the short flagellum are absent. One to three osmiophilic granules lie near the leucoplast. The contractile vacuole is surrounded by tubules. The resemblance and difference of investigated flagellate with other chrysomonads are discussed.  相似文献   

9.
The trophont stage in the life cycle of Ichthyophthirius multifiliis was studied in the electron microscope. Surface ridges contain up to 24 ridge microtubules, disposed as a ribbon. Kinetosomes show the classic morphology of 9 triplets of microtubules. Associated with each kinetosome is a kinetodesmal fibril, originating in proximity to triplets 5, 6, and 7, and having a 30 nm periodicity; 3 to 5 postciliary microtubules, originating between triplets 8 and 9; and up to 3 transverse microtubules, originating at triplet 4, as well as a parasomal sac. Each cell is partially enclosed by a system of 3 “unit” membranes: the outer limiting membrane, and the outer and inner alveolar membranes. The last two membranes define the alveolar sac. Mucocysts, each with a dense core, are present in large numbers. The contractile vacuole system includes the contractile vacuole, associated tubules and vesicles, injection canals, a discharge canal, and a pore. Microtubules abound in the walls of the contractile vacuole, injection and discharge canals, and in the region of the pores, where both ring and radial microtubular arrangements are noted. The ultrastructure suggests that I. multifiliis is more closely related to Tetrahymena pyriformis than to Paramecium aurelia.  相似文献   

10.
This study examines previously undescribed general and cytopharyngeal features of the genus Entodinium. The cytopharynx contains three types of microtubular ribbons underlying the cytostomal membrane as well as a loose palisade of nematodesmata. A protoesophagus composed of microtubular bundles associated with a fibrous wall lies internally to one side of an extrusible peristome on which the adoral zone of syncilia (AZS) is mounted. Macronuclear structures are very similar to those of other ophryoscolecids. The micronucleus has chromatin bodies forming a compact mass but lacks the thick wall found in other species. A tubular spongiome surrounds the contractile vacuole and the cytoproct is relatively undifferentiated. Cortical structure follows the usual five-layered ophryoscolecid pattern with subcortical barren kinetosomes arranged into indistinct kineties. The infraciliature of the AZS has kinetosomes set upon a subkinetal rod and with associated bifurcated kinetodesmata and transverse microtubules, some of which extend into the cytopharynx. Components newly described for Entodinium are the one to three postciliary microtubules and the interkinetosomal centro-lateral strand, all of which are present in other species of ophryoscolecid ciliates. The infraciliature of the paralabial ciliary tuft shows similar components to that of the main AZS, but lacks the subkinetal rod. The microtubular components of the cytopharynx are discussed in relation to the “alimentary” structures in other ophryoscolecids, and a relationship of these structures to dietary differences is suggested.  相似文献   

11.
《The Journal of cell biology》1993,121(6):1311-1327
Amoebae of the eukaryotic microorganism Dictyostelium discoideum were found to contain an interconnected array of tubules and cisternae whose membranes were studded with 15-nm-diameter "pegs." Comparison of the ultrastructure and freeze-fracture behavior of these pegs with similar structures found in other cells and tissues indicated that they were the head domains of vacuolar-type proton pumps. Supporting this identification, the pegs were observed to decorate and clump when broken amoebae were exposed to an antiserum against the B subunit of mammalian vacuolar H(+)-ATPase. The appearance of the peg-rich cisternae in quick-frozen amoebae depended on their osmotic environment: under hyperosmotic conditions, the cisternae were flat with many narrow tubular extensions, while under hypo-osmotic conditions the cisternae ranged from bulbous to spherical. In all cases, however, their contents deep etched like pure water. These properties indicated that the interconnected tubules and cisternae comprise the contractile vacuole system of Dictyostelium. Earlier studies had demonstrated that contractile vacuole membranes in Dictyostelium are extremely rich in calmodulin (Zhu, Q., and M. Clarke, 1992, J. Cell Biol. 118: 347-358). Light microscopic immunofluorescence confirmed that antibodies against the vacuolar proton pump colocalized with anti-calmodulin antibodies on these organelles. Time-lapse video recording of living amoebae imaged by interference-reflection microscopy, or by fluorescence microscopy after staining contractile vacuole membranes with potential-sensitive styryl dyes, revealed the extent and dynamic interrelationship of the cisternal and tubular elements in Dictyostelium's contractile vacuole system. The high density of proton pumps throughout its membranes suggests that the generation of a proton gradient is likely to be an important factor in the mechanism of fluid accumulation by contractile vacuoles.  相似文献   

12.
We have studied fluid secretion by the contractile vacuole apparatuss of the trypanosomatid flagellate Leptomonas collosoma with thin sections and freeze-fracture replicas of cells stabilized by ultrarapid freezing without prior fixation or cryoprotection. The ultrarapid freezing has revealed membrane specializations related to fluid segregation and transport as well as membrane rearrangements which may accompany water expulsion at systole. This osmoregulatory apparatu consists of the spongiome, the contractile vacuole, and the fluid discharge site. The coated tubules of the spongiome converge on the contractile vacuole from all directions. These 60- to 70-nm tubules contain characteristic double rows of 11-nm intramembrane particles in a helical configuration which fracture predominantly with the E face. Short double rows of similar particles are also frequently found on both faces of the contractile vacuole itself, in addition to many smaller particles on the P face. The spongiome tubules fuse with the vacuole during the filling stage of each cycle and then detach before secretion. The contractile vacuole membrane is permanently attached to the plasma membrane of the flagellar pocket by a dense adhesion plaque. In some ultrarapidly frozen cells, 20- to 40-nm perforations can be visualized within the plaque and the adjacent membranes during the presumptive time of discharge. The formation of the plaque perforations and the membrane channels occurs without fusion of the vacuole and the plasma membrane and does not require extracellular calcium. On the basis of our results, we have developed a model for water secretion which suggests that the adhesion plaque may induce pore formation in the adjoining lipid bilayers, thereby allowing bulk expulsion of the fluid.  相似文献   

13.
The contractile vacuole complex of Dictyostelium is the paradigm of a membrane system that undergoes tubular-vesicular transitions during its regular cycle of activities. This system acts as an osmoregulatory organelle in freshwater amoebae and protozoa. It collects fluid in a network of tubules and cisternae, and pumps it out of the cell through transient pores in the plasma membrane. Tubules and vacuoles are interconvertible. The tubular channels are associated with the cortical actin network and are capable of moving and fusing. The contractile vacuole complex is separate from vesicles of the endosomal pathway and preserves its identity in a dispersed state during cell division. We outline techniques to visualize the contractile vacuole system by electron and light microscopy. Emphasis is placed on GFP-fusion proteins that allow visualization of the dynamics of the contractile vacuole network in living cells. Proteins that control activities of this specialized organelle in Dictyostelium have been conserved during evolution and also regulate membrane trafficking in man.  相似文献   

14.
Microsomal membranes of Chlamydomonas reinhardtii possess PPase and V-ATPase activities. By immunogold labelling we have shown that H+-pyrophosphatase (PPase) is localized to membranes of lytic and contractile vacuoles of Chlamydomonas, in which the density of antigen in the latter is much higher. In addition, PPase is conspicuously present in trans cisternae and transpole elements of the Colgi apparatus. Such a distribution for PPase has hitherto not been reported. A positive in situ identification for PPase at the plasma membrane, including the flagellar membrane, was also made, and has also been confirmed by Western blotting and activity measurements on isolated plasma membranes. V-ATPase antisera which cross react with polypeptides of this transport complex from maize roots failed to recognize anything in Western blots of Chlamydomonas microsomal membranes. Thus immunogold labelling for V-ATPase was not possible with Chlamydomonas. On the other hand, surfaces of contractile vacuole membranes as revealed by deepetching were covered by conspicuous 9 ? 11.5 nm diameter smooth particles which had a central hole. These were very similar to those previously identified by Heuser et al., (1993) as the V,-head of V-ATPase in Dictyostelium contractile vacuoles. Another type of membrane image, designated “intermediate-sized vesicle”, was found associated with the contractile vacuole. It was characterized by densely-packed 6 ? 7.5nm diameter polygonal particles, which upon rotation analysis showed both 5- and 6-fold symmetries, also with a central hole. These particles are interpreted as representing either PPase complexes or the V0 body of the V-ATPase in etched fractured membrane surfaces. We have incorporated these findings into a model of contractile vacuole function.  相似文献   

15.
The structure of the contractile vacuole complex of Dictyostelium discoideum has long been a subject of controversy. A model that originated from the work of John Heuser and colleagues described this osmoregulatory organelle as an interconnected array of tubules and cisternae the membranes of which are densely populated with vacuolar proton pumps. A conflicting model described this same organelle as bipartite, consisting of a pump-rich spongiome and a pump-free bladder, the latter membranes being identified by their alkaline phosphatase activity. In the present study we have employed an antiserum specific for Dictyostelium alkaline phosphatase to examine the distribution of this enzyme in vegetative cells. The antiserum labels puncta, probably vesicles, that lie at or near the plasma membrane and are sometimes, but only rarely, enriched near contractile vacuole membranes. We conclude that alkaline phosphatase is not a suitable marker for contractile vacuole membranes. We discuss these results in relation to the two models of contractile vacuole structure and suggest that all data are consistent with the first model.  相似文献   

16.
In vivo K+, Na+, Ca2+, Cl- and H+ activities in the cytosol and the contractile vacuole fluid, the overall cytosolic osmolarity, the fluid segregation rate per contractile vacuole and the membrane potential of the contractile vacuole complex of Paramecium multimicronucleatum were determined in cells adapted to 24 or 124 mosm l(-1) solutions containing as the monovalent cation(s): 1) 2 mmol l(-1) K+; 2) 2 mmol l(-1) Na+; 3) 1 mmol l(-1) K+ plus 1 mmol l(-1) Na+; or 4) 2 mmol l(-1) choline. In cells adapted to a given external osmolarity i) the fluid segregation rate was the same if adapted to either K+ or Na+, twice as high when adapted to solutions containing both K+ and Na+, and reduced by 50% or more in solutions containing only choline, ii) the fluid of the contractile vacuole was always hypertonic to the cytosol while the sum of the ionic activities measured in the fluid of the contractile vacuole was the same in cells adapted to either K+ or Na+, at least 25% higher in cells adapted to solutions containing both K+ and Na+, and was reduced by 55% or more in solutions containing only choline, iii) the cytosolic osmolarity was the same in cells adapted to K+ alone, to Na+ alone or to both K+ and Na+, whereas it was significantly lower in cells adapted to choline. At a given external osmolarity, a positive relationship between the osmotic gradient across the membrane of the contractile vacuole complex and the fluid segregation rate was observed. We conclude that both the plasma membrane and the membrane of the contractile vacuole complex play roles in fluid segregation. The presence of external Na+ moderated K+ uptake and caused the Ca2+ activity in the contractile vacuole fluid to rise dramatically. Thus, Ca2+ can be eliminated through the contractile vacuole complex when Na+ is present externally. The membrane potential of the contractile vacuole complex remained essentially the same regardless of the external ionic conditions and the ionic composition of the fluid of the contractile vacuole. Notwithstanding the large number of V-ATPases in the membrane of the decorated spongiome, the fluid of the contractile vacuole was found to be only mildly acidic, pH 6.4.  相似文献   

17.
Summary To identify the renal cortical tubular segments involved in tubulo-interstitial disease in formalin-fixed, paraffin-embedded percutaneous kidney biopsies, we developed multiple immunolabeling protocols using segment-specific tubular markers. The present study of biopsies from patients with minimal change or thin basement membrane nephropathy provides a baseline for interpretation of histopathology. Proximal tubules were stained either by the PAS reaction or by the biotinylated Phaseolus vulgaris erythroagglutinin (PHA-E)-streptavidin-gold-silver system (brush borders black). The anti-Tamm-Horsfall (THP) antibody-immunoperoxidase (aminoethylcarbazole, AEC-IPO), and anti-epidermal cytokeratins (ECK) antibodies-immunoalkaline-Fast Blue BB methods marked the distal straight tubules and the cortical collecting system red-brown and blue, respectively. When these immunolabelings were combined, the coapplication of AEC-PO-labeled peanut agglutinin (PNA) or anti-epithelial membrane antigen antibody-AEC-IPO technique (both are markers for distal nephron) visualized the apical membranes of distal convoluted tubules. In the protocol PHA-E + PNA + THP + ECK, the tubular basement membranes were outlined by the anti-laminin antibody-AEC-IPO staining, carried out simultaneously. The protocol PNA + THP + ECK + PAS was found to be a quite appropriate multiple immunolabeling method for the tubules, and is recommended for use as a tool in the study of tubulo-interstitial diseases.Abbreviations PAS periodic acid-Schiff reaction - PHAE Phaseolus vulgaris erythroagglutinin - PNA Peanut agglutinin - EMA epithelial membrane antigen - THP Tamm-Horsfall glycoprotein - ECK epidermal cytokeratins - PO peroxidase - Biot-PHA-E biotinylated PHA-E - APAAP complexes of alkaline phosphatase and mouse monoclonal anti-alkaline phosphatase - SWARI swine anti-rabbit immunoglobulins - FCS fetal calf serum - TBS Tris-buffered saline - AEC aminoethylcarbazole - DAB diaminobenzidine - FBBB Fast Blue BB - IA immunoalkaline - GL glomerulus - PT proximal tubule - DST distal straight tubule - DCT distal convoluted tubule - CCS cortical collecting system - CT connecting tubule - CD collecting duct  相似文献   

18.
Evidence from a morphological study of the oral apparatus of Paramecium caudatum using electron microscope techniques have shown the existence of an elaborate structural system which is apparently designed to recycle digestive-vacuole membrane. Disk-shaped vesicles are filtered out of the cytoplasm by a group of microtubular ribbons. The vesicles, after being transported to the cytostome-cytopharynx region in association with these ribbons, accumulate next to the cytopharynx before they become fused with the cytopharyngeal membrane. This fusion allows the nascent food vacuole to grow and increase its membrane surface area. The morphology of this cytostome-cytopharynx region is described in detail and illustrated with a three-dimensional drawing of a portion of this region and a clay sculpture of the oral apparatus of Paramecium. Evidence from the literature for the transformation of food vacuole membrane into disk-shaped vesicles both from condensing food vacuoles in the endoplasm and from egested food vacuoles at the cytoproct is presented. This transformation would complete a system of digestive vacuole membrane recycling.  相似文献   

19.
Summary The contractile vacuole (CV) cycle ofChlamydomonas reinhardtii has been investigated by videomicroscopy and electron microscopy. Correlation of the two kinds of observation indicates that the total cycle (15 s under the hypo-osmotic conditions used for videomicroscopy) can be divided into early, middle, and late stages. In the early stage (early diastole, about 3 s long) numerous small vesicles about 70–120 nm in diameter are present. In the middle stage (mid-diastole, about 6 s long), the vesicles appear to fuse with one another to form the contractile vacuole proper. In the late stage (late diastole, also about 6 s long), the CV increases in diameter by the continued fusion of small vesicles with the vacuole, and makes contact with the plasma membrane. The CV then rapidly decreases in size (systole, about 0.2 s). In isosmotic media, CVs do not appear to be functioning; under these conditions, the CV regions contain numerous small vesicles typical of the earliest stage of diastole. Fine structure observations have provided no evidence for a two-component CV system such as has been observed in some other cell types. Electron microscopy of cryofixed and freeze-substituted cells suggests that the irregularity of the profiles of larger vesicles and vacuoles and some other morphological details seen in conventionally fixed cells may be shrinkage artefacts. This study thus defines some of the membrane events in the normal contractile vacuole cycle ofChlamydomonas, and provides a morphological and temporal basis for the study of membrane fusion and fluid transport across membranes in a cell favorable for genetic analysis.Abbrevations CV contractile vacuole - PM plasma membrane  相似文献   

20.
Previous studies have shown that the vacuolar-ATPase (V-ATPase) of the contractile vacuole complexes (CVCs) in Paramecium multimicronucleatum is necessary for fluid segregation and osmoregulation. In the current study, immunofluorescence showed that the development of a new CVC begins with the formation of a new pore around which the collecting canals form. The decorated membranes are then deposited around the newly formed collecting canals. Quick-freeze deep-etch techniques reveal that six 10-nm-wide V-ATPase V, sectors, tightly packed into a 20 x 30-nm rectangle, form two rows of these compacted sectors that helically wrap around the cytosolic side of decorated membrane tubules. During new CVC formation, packing of decorated tubules around mature CVCs was temporarily disrupted so that some of these decorated tubules became transformed into decorated vesicles. Freeze-fracturing of these decorated vesicles revealed a highly pitted E-face and a particulate P-face. The V-ATPase was purified for the first time in any ciliated protozoan and shown to contain, as in other cells, the V1 subunits A to E, and four 14-20 kDa polypeptides. The B subunit was cloned and found to be encoded by one gene containing four short introns. This subunit has 510 amino acid residues with a predicted molecular weight of 56.8 kDa, a value similar to B subunits of other organisms. Except for the N- and C-termini, it has a 75% sequence identity with other B subunits, suggesting that the B subunits in Paramecium, like other species, have been conserved and that the entire surface of this subunit may be important in interacting with other subunits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号