首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
David Haig 《Annals of botany》2013,111(3):337-345

Background

A moss sporophyte inherits a haploid set of genes from the maternal gametophyte to which it is attached and another haploid set of genes from a paternal gametophyte. Evolutionary conflict is expected between genes of maternal and paternal origin that will be expressed as adaptations of sporophytes to extract additional resources from maternal gametophytes and adaptations of maternal gametophytes to restrain sporophytic demands.

Interpretation

The seta and stomata of peristomate mosses are interpreted as sporophytic devices for increasing nutrient transfer. The seta connects the foot, where nutrients are absorbed, to the developing capsule, where nutrients are needed for sporogenesis. Its elongation lifts stomata of the apophysis above the boundary layer, into the zone of turbulent air, thereby increasing the transpirational pull that draws nutrients across the haustorial foot. The calyptra is interpreted as a gametophytic device to reduce sporophytic demands. The calyptra fits tightly over the intercalary meristem of the sporophytic apex and prevents lateral expansion of the meristem. While intact, the calyptra delays the onset of transpiration.

Predictions

Nutrient transfer across the foot, stomatal number and stomatal aperture are predicted to be particular arenas of conflict between sporophytes and maternal gametophytes, and between maternal and paternal genomes of sporophytes.  相似文献   

2.
? Premise of the study: Not all ferns grow in moist, shaded habitats; some lineages thrive in exposed, seasonally dry environments. Notholaenids are a clade of xeric-adapted ferns commonly characterized by the presence of a waxy exudate, called farina, on the undersides of their leaves. Although some other lineages of cheilanthoid ferns also have farinose sporophytes, previous studies suggested that notholaenids are unique in also producing farina on their gametophytes. For this reason, consistent farina expression across life cycle phases has been proposed as a potential synapomorphy for the genus Notholaena. Recent phylogenetic studies have shown two species with nonfarinose sporophytes to be nested within Notholaena, with a third nonfarinose species well supported as sister to all other notholaenids. This finding raises the question: are the gametophytes of these three species farinose like those of their close relatives, or are they glabrous, consistent with their sporophytes? ? Methods: We sowed spores of a diversity of cheilanthoid ferns onto culture media to observe and document whether their gametophytes produced farina. To place these species within a phylogenetic context, we extracted genomic DNA, then amplified and sequenced three plastid loci. The aligned data were analyzed using maximum likelihood to generate a phylogenetic tree. ? Key results: Here we show that notholaenids lacking sporophytic farina also lack farina in the gametophytic phase, and notholaenids with sporophytic farina always display gametophytic farina (with a single exception). Outgroup taxa never displayed gametophytic farina, regardless of whether they displayed farina on their sporophytes. ? Conclusions: Notholaenids are unique among ferns in consistently expressing farina across both phases of the life cycle.  相似文献   

3.
环境因子对蕨类植物孢子萌发的影响   总被引:1,自引:0,他引:1  
张正修  戴绍军 《生态学报》2010,30(7):1882-1893
蕨类植物通过孢子萌发形成独立生活的配子体,配子体能够形成精子器和颈卵器,进而通过受精作用形成新的孢子体。孢子萌发是蕨类植物生活史过程中配子体世代向孢子体世代转变的关键步骤。同时,此过程不仅受到多种环境因子的影响,也是研究细胞核极性移动、细胞不对称分裂、假根极性生长等独特的细胞学事件的良好模型。迄今为止,人们已经研究发现多种环境因子对约200余种蕨类植物孢子萌发有影响。总结了环境因子对蕨类植物孢子萌发影响的规律如下:(1)孢子萌发除了受到光照强度影响外,主要受光质的影响,光质的影响主要表现为4种方式:①孢子萌发受红光刺激与远红光抑制像开关一样调控;②孢子萌发不受远红光抑制;③孢子萌发受蓝光抑制;④孢子只能在黑暗条件下萌发。(2)重力作用会影响孢子细胞核移动,进而影响孢子细胞发育的极性。(3)赤霉素(GA)能增加孢子萌发率或帮助孢子打破休眠。成精子囊素与GA作用相似,启动或促进孢子萌发。而脱落酸(ABA)、茉莉酸(JA)和乙烯等其它激素对孢子萌发的影响相对较小。(4)不同植物孢子有着各自最适的萌发培养基条件,如不同种类孢子对MS培养基中无机盐含量、蔗糖含量、pH值的要求不同。孢子外被中的Ca2+、Mn2+和Mg2+,培养基中的Cd2+和La3+,以及孢子接种密度、萌发空间CO2含量也会对孢子萌发造成影响。(5)多数蕨类植物孢子在15-30℃可以萌发,最适萌发温度为25℃。(6)4℃和液氮储藏可以延长孢子寿命并保持较高萌发率。  相似文献   

4.
Annual populations of Macrocystis pyrifera in Southern Chile have been the main focus of studies intending to understand how these populations can couple consecutive sporophytic generations. Research has included studying the population dynamics and gametophytic responses to environmental conditions and the role of recruitment, grazing, and the use of benthic filter feeders as secondary substrate. Adult sporophytes undergo senescence due to changes in abiotic factors during summer and autumn producing 100 % mortality. This study provides evidence about the environmental factors driving the decline in sporophyte populations occurring in summer and fall by monitoring two independent kelp populations and also by running experiments using 400 L tubular photobioreactors with semicontrolled environmental factors for testing the capacity for new recruits to recover population levels under winter conditions. The study of natural populations of giant kelp indicates that high temperatures (>15–17 °C) explain the high mortality of adult plants in summer. On the other hand, the sporophytes established in late winter/early spring are able, under high nitrogen availability, to increase their chlorophyll content significantly, allowing the individuals to reduce their light saturation point and thus allow a higher productivity under the low light conditions that exist in late winter and early spring. These results, in addition to the recruitment facilitation produced by filter feeders, help to explain how giant kelp can deal with, and couple sporophytic generations, in variable environments. These results also emphasize the highly plastic physiology of giant kelp that enables this species to colonize diverse habitats across its large distributional range.  相似文献   

5.
Sporophytes of some epiphytic species in the fern genus Pyrrosia exhibit Crassulacean acid metabolism (CAM), generally considered to be a derived physiological response to xeric habitats. Because these species alternate between independent sporophytic and gametophytic generations yet only the sporophyte has been characterized physiologically, experiments were conducted to determine the photosynthetic pathways present in mature sporophytes, immature sporophytes, and gametophytes of Pyrrosia longifolia. Diurnal CO2 exchange and malic acid fluctuations demonstrated that although the mature sporophytes exhibited CAM, only C3 photosynthesis occurred in the gametophytes and young sporophytes. Consideration of the above results and those from previous studies, as well as the life cycle of ferns, indicates that the induction of CAM probably occurs at a certain developmental stage of the sporophyte and/or following exposure to stress. Elucidation of the precise mechanisms underlying this C3-CAM transition awaits further research.  相似文献   

6.
To study the effect of different radiation conditions on sporogenesis of Laminaria digitata (Huds.) J. V. Lamour., excised disks were induced to form sporangia under PAR (P), PAR + ultraviolet‐A (UVA) (PA), and PAR + UVA + ultraviolet‐B (UVB) (PAB) conditions in the laboratory. Vitality of meiospores, released from sori induced under different radiation conditions in the laboratory and from sori of wild sporophytes acclimated to in situ solar radiation in the presence and absence of ultraviolet radiation (UVR), was measured in terms of their germination capacity. Sorus induction in disks of laboratory‐grown sporophytes was not hampered under light supplemented with UVR, and sorus area was not significantly different among P, PA, and PAB. Vitality and germination rate of meiospores released from sori induced under different radiation treatments was comparable. Likewise, screening of UVR of the natural solar radiation did not promote higher germination rates of meiospores released from wild sporophytes. Germination rates were, however, higher in meiospores released from laboratory‐induced sori compared to sori of wild sporophytes. Higher DNA damage (formation of cyclobutane pyrimidine dimers, CPDs) was observed in laboratory‐grown nonsorus compared to sorus tissue, while CPDs were nondetectable in both sorus and nonsorus tissue of wild sporophytes. To explain the apparent protection of developing meiospores and the unexpected UV resistance of soral tissue, concurrent anatomical investigations of sporogenic tissue were performed. We observed the previously unreported existence of two types of sterile paraphysis cells. One type of paraphysis cells, the most frequent type, contained several red‐fluorescing plastids. The other type, less frequently occurring, was completely filled with substances emitting blue fluorescence under violet excitation, presumably brown algal phenolic compounds (phlorotannins). Cells of this type were irregularly scattered within the sorus and did not contain red‐fluorescing plastids. Meiospore‐containing sporangia were positioned embedded between both types of paraphysis cells. In vegetative tissue, blue autofluorescence was observed only in injured parts of the blade. Results of our study suggest that the sorus structure with phlorotannins localized in the specialized paraphysis cells may be able to screen harmful UVR and protect UV‐sensitive meiospores inside the sporangia.  相似文献   

7.
The life history of the brown alga Chnoospora implexa J. Agardh (Chnoosporaceae, Scytosiphonales) from Japan was studied in laboratory cultures. This species showed a heteromorphic and diphasic life history, alternating between erect gametophytes and discoid sporophytes. The gametophytes were dioecious and produced isogametes. The zygotes developed into sporophytes at 20°C under long‐day conditions, which formed plurilocular zoidangia. Zoids released from the plurilocular zoidangia developed again into sporophytes that always formed plurilocular zoidangia at 20°C and 25°C in long‐day conditions, and mainly unilocular zoidangia at 25°C in short‐day conditions. Zoids released from unilocular zoidangia developed into dioecious gametophytes. At 15°C zygotic erect thalli were formed and were revealed to be diploid by microspectrofluorometric measurements of nuclear DNA contents. The development and reproduction of unfused gametes were similar to those of zygotes. Some strains showed a direct‐type life history; gametophytic thalli were produced, but not via a sporophytic phase.  相似文献   

8.
Apogamy was induced in the fern Ampelopteris prolifera by culturing the gametophytes on mineral nutrients supplemented with various concentrations of sucrose. Higher concentrations (5–8%) of sucrose were detrimental to prothallial growth, while in lower concentrations (2–3 %) apogamy was delayed. Gametophytic callus was induced from the germinating spores by culturing them on 2,4-D rich (3–5 mg/1) media. The differentiation of this gametophytic callus was conditioned by sucrose and auxin concentrations of the medium. In the presence of sucrose, calli responded like prothalli, while in the presence of 2,4-D, differentiation was delayed or completely inhibited. Apospory was induced on the sexual cotyledonary and juvenile sporeling leaveS. Leaves with petiole, excised from aseptically raised plants from excised cultured buds, also exhibited apospory, while no success was achieved with the excised leaves of the parent plantS. Rhizome segments of various length were cultured on media containing different concentrations of sucrose. The differentiation of rhizome segments into gametophytes or sporophytes was conditioned by the length of the rhizome segments and the sucrose concentration of the medium. The possible significance of all the results is discussed.  相似文献   

9.
Land plant life cycles are separated into distinct haploid gametophyte and diploid sporophyte stages. Indeterminate apical growth evolved independently in bryophyte (moss, liverwort, and hornwort) and fern gametophytes, and tracheophyte (vascular plant) sporophytes. The extent to which apical growth in tracheophytes co-opted conserved gametophytic gene networks, or exploited ancestral sporophytic networks, is a long-standing question in plant evolution. The recent phylogenetic confirmation of bryophytes and tracheophytes as sister groups has led to a reassessment of the nature of the ancestral land plant. Here, we review developmental genetic studies of apical regulators and speculate on their likely evolutionary history.

The combined results of recent developmental genetics and phylogenetics studies suggest that the ancestral sporophyte was more complex than previously thought.  相似文献   

10.
The unialgal haploid gametophyte clones are frequently used for variety breeding and sporeling production in the brown seaweed Undaria pinnatifida because a single crossing of a pair of the selected male and female gametophyte clones can generate sporophytic offspring with identical genotype and phenotype. As the seeds to be sprayed on the collectors, the detachment rate of the filamentous gametophytes is high in comparison to the seeded spores. In this investigation, we report the use of parthenogenesis to achieve the same goal in variety selection and sporeling production but with higher efficiency. The selected female unialgal gametophyte clone (Code: 06‐8‐1F) was induced to produce parthenosporophytes. These sporophytes were grown up in a controlled system and used to release zoospores. All zoospores generated into female gametophytes. These female gametophytes were allowed to go through parthenogenesis for the second year to confirm the applicability of this means. In the third year, the zoospores released from the parthenosporophytes were seeded on collectors over summer in female gametophyte form. In the early autumn, a selected male unialgal gametophyte clone (code: 5#F1‐2‐5M) was used to cross the seeded female gametophytes on the collectors. When the sporelings reached a mean length of 780 μm, they were transplanted to open sea on longlines for growing up. At harvest, the average length, width and wet weight of the adult sporophytes were 211 cm, 48.8 cm and 373 g, respectively. The sporophytic blades were uniformly smooth without wrinkles on both sides of the midrib, indicating top quality of the products. Amplified fragment length polymorphism analyses confirmed the identical genotypes of sporophytic offspring. These results suggested that this novel variety breeding and sporeling production method could serve as an efficient alternative to the traditional breeding technique for U. pinnatifida and possibly other commercial kelps that have identical life cycles.  相似文献   

11.
We explored the reproductive modes of Ulva intestinalis in the inner part of the Baltic Sea during three consecutive years by using five microsatellite loci to estimate the relative abundance of diploid sporophytes and haploid gametophytes. Our results suggest that both diploid sporophytes and haploid gametophytes occur regularly in the Baltic Sea. The ratio of haploid to diploid individuals changes with seasons. Sporophytes are more abundant than gametophytes throughout the year, but the proportion of haploids increases from 10% in early summer to 35% in September. The over-wintering takes primarily place as diploid spores released by sporophytes. The sporophytes appear to reproduce both sexually and asexually in the Baltic Sea, since clones were found for this life phase. The fraction of individuals which belonged to an apparent diploid clone was higher in spring (62%) than in autumn (33%). We also found evidence for asexual clones in haploid gametophytes. The presence of both diploid and haploid individuals and the pattern of genetic and genotypic diversity provide evidence of sexual reproduction in the Baltic Sea. Thus the sporophytes and gametophytes do not function as two reproductively separate units. Compared with many other algal species with a reduced reproductive cycle in low salinity, U. intestinalis differs by having a multitude of reproductive modes also in the brackish water Baltic Sea, which can in part explain the dynamic propagation and high adaptability of the species.  相似文献   

12.
《Aquatic Botany》2011,94(4):244-249
We explored the reproductive modes of Ulva intestinalis in the inner part of the Baltic Sea during three consecutive years by using five microsatellite loci to estimate the relative abundance of diploid sporophytes and haploid gametophytes. Our results suggest that both diploid sporophytes and haploid gametophytes occur regularly in the Baltic Sea. The ratio of haploid to diploid individuals changes with seasons. Sporophytes are more abundant than gametophytes throughout the year, but the proportion of haploids increases from 10% in early summer to 35% in September. The over-wintering takes primarily place as diploid spores released by sporophytes. The sporophytes appear to reproduce both sexually and asexually in the Baltic Sea, since clones were found for this life phase. The fraction of individuals which belonged to an apparent diploid clone was higher in spring (62%) than in autumn (33%). We also found evidence for asexual clones in haploid gametophytes. The presence of both diploid and haploid individuals and the pattern of genetic and genotypic diversity provide evidence of sexual reproduction in the Baltic Sea. Thus the sporophytes and gametophytes do not function as two reproductively separate units. Compared with many other algal species with a reduced reproductive cycle in low salinity, U. intestinalis differs by having a multitude of reproductive modes also in the brackish water Baltic Sea, which can in part explain the dynamic propagation and high adaptability of the species.  相似文献   

13.
VON ADERKAS  P. 《Annals of botany》1986,57(4):505-510
Apospory in the fern Matteuccia struthiopteris, which is reportedhere for the first time, was induced more readily in liquidculture than on agar medium. It occurred more frequently fromdetached meristems than from juvenile leaves. Gametophytic outgrowthsbearing rhizoids, but lacking sex organs were found occasionallyon roots. Aposporous gametophytes isolated from liquid culturewere induced to form sporophytes either sexually or apogamously.Both types of sporophyte also behaved aposporously in liquidculture. Matteuccia, fern, apospory, apogamy, liquid culture, detached meristem  相似文献   

14.

Background and Aims

Innovations in vegetative and reproductive characters were key factors in the evolutionary history of land plants and most of these transformations, including dramatic changes in life cycle structure and strategy, necessarily involved cell-wall modifications. To provide more insight into the role of cell walls in effecting changes in plant structure and function, and in particular their role in the generation of vascularization, an antibody-based approach was implemented to compare the presence and distribution of cell-wall glycan epitopes between (free-living) gametophytes and sporophytes of Ceratopteris richardii ‘C-Fern’, a widely used model system for ferns.

Methods

Microarrays of sequential diamino-cyclohexane-tetraacetic acid (CDTA) and NaOH extractions of gametophytes, spores and different organs of ‘C-Fern’ sporophytes were probed with glycan-directed monoclonal antibodies. The same probes were employed to investigate the tissue- and cell-specific distribution of glycan epitopes.

Key Results

While monoclonal antibodies against pectic homogalacturonan, mannan and xyloglucan widely labelled gametophytic and sporophytic tissues, xylans were only detected in secondary cell walls of the sporophyte. The LM5 pectic galactan epitope was restricted to sporophytic phloem tissue. Rhizoids and root hairs showed similarities in arabinogalactan protein (AGP) and xyloglucan epitope distribution patterns.

Conclusions

The differences and similarities in glycan cell-wall composition between ‘C-Fern’ gametophytes and sporophytes indicate that the molecular design of cell walls reflects functional specialization rather than genetic origin. Glycan epitopes that were not detected in gametophytes were associated with cell walls of specialized tissues in the sporophyte.  相似文献   

15.
Meiospores of Laminaria saccharina labeled with a fluorescent stain were put into the sea and recovered at frequent intervals. They developed into gametophytes which produced gametes throughout the year. Antheridia were produced earlier than oogonia. Gametogenesis was slowest during the late autumn and early winter. On the basis of nutritional studies and the seasonal distribution of nutrients, it was concluded that the rate of gametogenesis was not due to nutrient deficiency but most likely to light. Production of macroscopic sporophytes appeared to be limited by survival of microscopic sporophytes rather than gametogenesis. Macroscopic sporophytes became evident during the late winter and autumn. The greater light and perhaps higher temperatures of summer were suggested as agents limiting macroscopic sporophyte production during this period.  相似文献   

16.
Cell suspension cultures were initiated from gametophyte-derived callus of the fern Platycerium coronarium. Two distinct types of callus masses, distinguished by their colouration, were obtained when the cells from suspension culture were plated on semisolid Murashige and Skoog (MS) medium containing 10 M kinetin. The two types of callus masses had distinct morphogenetic capacities despite their common origin. Morphogenesis into either gametophytes or sporophytes occurred when these callus masses were cultured on phytohormone-free MS medium depending on the type of callus used. The dark-green gametophytic callus showed a faster rate of growth and morphogenesis as compared to the pale-green sporophytic callus. Total chlorophyll content and autofluorescence and size of chloroplasts of the sporophytic callus and cell suspension cultures were lower than that of the gametophytic callus. Observations from confocal laser scanning microscopy were in agreement with the physiological parameters measured. The availability of cell cultures of the same ploidy level, but with two distinct pathways of development will be useful for comparative studies of developmental plasticity.  相似文献   

17.
Acrochaete wittrockii (Wille) Nielsen is a heteromorphic diplohaplont. The haplophase consists of isomorphic, dioecious filamentous epiphytes on brown algae. Several generations follow each other by triflagellate zoospores from spring to early summer. By late summer and throughout autumn, quadriflagellate zoopores are produced by the epiphytic thalli; they give rise to male and female gametophytes of a globular, pseudoparenchymatic appearance in culture. The gametophytes produce anisogamic biflagellate gametes which, after gametic union, develop into diploid unicellular sporophytes. After 6–7 days, the sporophyte produces triflagellate zoospores, repeating the life history when germinating on brown algal hosts. Alternatively, triflagellate zoospores which settle on the bottom of petri dishes, develop into unicellular, autonomous sporangial plants. Their triflagellate spores repeat the epiphytic stage on brown algal hosts, or the sporangial plant cycle on non-living substrate, respectively.  相似文献   

18.
Apogamous sporophytes formed on Pteridium gametophytes in response to concentrations of certain sugars which supported gametophytic growth. High osmotic concentration of the medium inhibited apogamy, while variations in the basic medium were not stimulatory. Agar, autoclaving, the ammonium ion, and dry media were not required for apogamy. Renewing the medium during an experiment enhanced the apogamous response. Changing the medium at set intervals facilitated the separation of apogamous plant development into gametophytic, initiative, and developmental phases, thus enabling testing of various factors at each of these stages. Apogamy was light-initiated, while the actual development of apogamous sporophytes was caused by light, succinic acid or sugar.  相似文献   

19.
The population of Undaria pinnatifida in its ecologic niche sustains itself in high temperature summer in the form of vegetative gametophytes, the haploid stage in its heteromorphic life cycle. Gametogenesis initiates when seawater temperature drops below the threshold levels in autumn in the northern hemisphere. Given that the temperature may fall into the appropriate range for gametogenesis, the level of irradiance determines the final destiny of a gametophytic cell, either undergoing vegetative cell division or initiating gametogenesis. In elucidating how vegetatively propagated gametophytes cope with changes of irradiance in gametogenesis, we carried out a series of culture experiments and found that a direct exposure to irradiance as high as 270 μmol photons m?2 s?1 was lethal to dim‐light (7–10 μmol photons m?2 s?1) adapted male and female gametophytes. This lethal effect was linearly corelated with the exposure time. However, dim‐light adapted vegetative gametophytes were shown to be able tolerate as high as 420 μmol photons m?2 s?1 if the irradiance was steadily increased from dim light levels (7–10 μmol photons m?2 s?1) to 90, 180 and finally 420 μmol photons m?2 s?1, respectively, at a minimum of 1–3 h intervals. Percentage of female gametophytic cells that turned into oogonia and were eventually fertilized was significantly higher if cultured at higher but not lethal irradiances. Findings of this investigation help to understand the dynamic changes of population size of sporophytic plants under different light climates at different site‐specific ecologic niches. It may help to establish specific technical details of manipulation of light during mass production of seedlings by use of vegetatively propagated gametophytes.  相似文献   

20.
ONG  B.-L.  KOH  C.K.-K.  WEE  Y.-C. 《Photosynthetica》1998,34(1):147-149
Pyrrosia piloselloides (L.) Price is a constitutive CAM plant in the sporophytic phase of its life-cycle. Newly developed sporophytes, still attached to the gametophytes, showed signs of CAM expression in terms of diurnal changes in titratable acidity of the tissues. The gametophytes did not exhibit CAM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号