首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ontogenetic changes in diet and foraging behavior ofThalassoma lutescens were examined in shallow reef habitats around Kuchierabu Island, southern Japan. This species mainly took small benthic invertebrates, including gammarids, polychaetes, sipunculids, chitons, crabs, gastropods, pelecypods and urchins from algal mats. Larger fish consumed correspondingly larger prey, although most of the latter were armored with hard exoskeletons, shells or body plates (e.g., crabs, gastropods, pelecypods and urchins). Such hard parts were crushed with the molar-like, pharyngeal teeth which develop with fish growth, allowing exploitation of such larger, hard-bodied prey. Because the densities of larger prey species were relatively low in the initial habitats foraged, larger fish shifted their foraging attention to rock and coral crevices, where the prey species dwelt in greater numbers, as well as foraging over larger areas. Such behavioral changes maintained high foraging efficiency in larger fish.  相似文献   

2.
Although invasive species often resemble their native counterparts, differences in their foraging and anti-predator strategies may disrupt native food webs. In a California estuary, we showed that regions dominated by native crabs and native whelks have low mortality of native oysters (the basal prey), while regions dominated by invasive crabs and invasive whelks have high oyster mortality and are consequently losing a biologically diverse habitat. Using field experiments, we demonstrated that the invasive whelk’s distribution is causally related to a large-scale pattern of oyster mortality. To determine whether predator–prey interactions between crabs (top predators) and whelks (intermediate consumers) indirectly control the pattern of oyster mortality, we manipulated the presence and invasion status of the intermediate and top trophic levels in laboratory mesocosms. Our results show that native crabs indirectly maintain a portion of the estuary’s oyster habitat by both consuming native whelks (density-mediated trophic cascade) and altering their foraging behavior (trait-mediated trophic cascade). In contrast, invasive whelks are naive to crab predators and fail to avoid them, thereby inhibiting trait-mediated cascades and their invasion into areas with native crabs. Similarly, when native crabs are replaced with invasive crabs, the naive foraging strategy and smaller size of invasive crabs prevents them from efficiently consuming adult whelks, thereby inhibiting strong density-mediated cascades. Thus, while trophic cascades allow native crabs, whelks, and oysters to locally co-exist, the replacement of native crabs and whelks by functionally similar invasive species results in severe depletion of native oysters. As coastal systems become increasingly invaded, the mismatch of evolutionarily based strategies among predators and prey may lead to further losses of critical habitat that support marine biodiversity and ecosystem function. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
In most shallow water marine systems, fluid movements vary on scales that may influence local community dynamics both directly, through changes in the abundance of species, and indirectly, by modifying important behaviors of organisms. We examined how differences in current speed affect the outcome of predator-prey interactions for two species of marine benthic predators (knobbed whelks, Busycon carica, and blue crabs, Callinectes sapidus) foraging on two common prey species (bay scallops, Argopecten irradians, and hard clams, Mercenaria mercenaria). The predators differ in their foraging strategies and prey in their potential escape responses. Predation by blue crabs, highly mobile predators/scavengers that rely upon chemical odors transported in the water column to locate prey, could be strongly affected by changes in current speed and turbulent mixing because their foraging strategy relies on a high degree of spatial integration of prey odor plumes. Whelks, slow moving, predatory gastropods that often forage with their bodies buried in the sediment, may be less susceptible to flow-induced distortion of prey odor plumes because their sluggish movements result in a high degree of temporal integration of prey odors. Bay scallops, relatively mobile bivalves capable of rapid short-distance swimming burst, and hard clams, sedentary bivalves, have been shown to respond to varying degrees to predator odors that are dispersed in the water column. Flow regime for the predator-prey experiments was manipulated in situ using large channels. Predation by blue crabs on both juvenile hard clams and bay scallops decreased with increases in water flow (0-12 vs. 0-30 cm s−1). Whelk predation on bay scallops increased with increases in water flow, whereas predation by whelks on hard clams did not differ between flow regimes. For blue crabs movement decreased at periods of high water flow. Because blue crabs locate prey through chemolocation of water-borne cues, which are diluted rapidly at higher flows, decreases in foraging may result from the inability to successfully detect prey at enhanced flows. Differences in predation by whelks could not be explained by a similar mechanism. Visual observations of foraging whelks revealed no differences in whelk behavior between the two flow regimes. The pattern of higher whelk predation on scallops at enhanced flow is likely to be related to a flow-inhibiting ability of scallops to detect predator approach. Thus, flow enhancement interferes with three of the predator-prey systems but the effect on predator success depends on whether the predator or prey is most affected.  相似文献   

4.
Synopsis The foraging ecology of two temperate marine gobies (Pisces: Gobiidae) was studied in rocky subtidal habitats off Santa Catalina Island, California. The bluebanded goby, Lythrypnus dalli, foraged from exposed ledges and fed on planktonic and benthic prey, although planktonic prey were more important in diets by number and weight. The more cryptic zebra goby, Lythrypnus zebra, remained hidden under rocks and in crevices feeding on benthic prey almost exclusively. The active selection of particular prey taxa from the two prey sources (water column and substratum), mediated by species-specific differences in foraging behavior, resulted in interspecific differences in type, number, size and weight of prey consumed. Interspecific differences in foraging ecology reflect the selection of prey most readily available to these fishes that occupy specific and fixed microhabitats within rocky reefs.  相似文献   

5.
Susan M.  Swift 《Journal of Zoology》1997,242(2):375-384
Seven nursery roosts and four roosts of male Myotis nattereri , Kuhl 1818 were found in central Scotland at latitude 56–57 N. Most were in crevices in the stonework of man-made structures other than occupied houses. Emergence occurred late in the evening, at an average light intensity of 3.5 lux and emerging bats circled in dark, sheltered areas outside roosts before departing along flyways towards foraging areas. Individuals departed from, and returned to, roosts in groups of 2-6, and circling behaviour was repeated on returning to the roost. During pregnancy, bats from anursery roost made one flight each per night. This increased to an average maximum of 1.84 early in lactation and then decreased again to one around weaning. Night roosts were situated in foraging areas and were used by M. nattereri for resting and grooming, for suckling volant but incompletely weaned young and also, possibly, for information transfer. Important foraging habitats were woodland edges, parkland, roadside vegetation and sheltered areas of water. Arthropod prey was captured both on the wing and by gleaning from foliage, and the bats were able to vary their diet according to arthropod availability. Overall, important prey included Diptera (both Nematocera and higher flies), Trichoptera, Coleoptera and non-flying groups such as Hemiptera, Dermaptera, Arachnida and Opiliones.  相似文献   

6.
Categorization of similar prey types and the application of decision rules by dietary generalists can enhance the efficiency of foraging decisions and facilitate the inclusion of novel prey types in the diet. While considerable research attention has been directed toward investigation of these concepts in invertebrates, few have assessed categorization and decision rules used by generalist vertebrate predators. In this study, we experimentally investigated decision rules and prey preferences of northwestern crows (Corvus caurinus) feeding on littleneck clams (Tapes philippinarum) and whelks (Nucella lamellosa). We presented crows with three species‐size combinations: small clams (2.0–2.9 cm length) paired with large whelks (4.0–4.9 cm), small clams paired with medium whelks (3.0–3.9 cm), and large clams (4.0–4.9 cm) with large whelks. Profitability estimates based on observations of crows feeding on these prey species indicated that clams were always the more energetically profitable option; however, in prey choice trials crows consistently selected the heavier prey species, regardless of differences in profitability. These results show that crows apply a general decision rule according to which they select heavier prey items when feeding on hard‐shelled prey requiring similar handling techniques, and that while such decision rules may approximate optimal choices they may not always follow predictions based solely on prey profitability. We discuss these results in the context of behavioural flexibility of generalist predators, and predicting impacts of intertidal avian predators on prey populations.  相似文献   

7.
For immature animals, diet quality and composition influence expression of life history traits such as growth rates and ultimately life stage duration and age to maturity. Circumglobally distributed loggerhead turtles (Caretta caretta) exhibit a multi-decade immature stage that generally occupies neritic habitats and is characterized by slow growth and an omnivorous diet. Although adult nesting populations are geographically distinct, foraging areas for immature loggerheads show a high degree of mixing of individuals that originate from multiple nesting stocks. Furthermore, despite their generalist foraging ecology, immature loggerheads have been observed to supplement their natural diets with fish from fishery discards and/or caught in fishing gear. However, whether trophic opportunism results in variation in loggerhead growth rates within or among feeding areas has not been investigated. In Core Sound, North Carolina (NC), USA, immature loggerheads demonstrate highly variable size-specific growth rates, in contrast to other studies that report discernible somatic growth functions in immature marine turtles. To determine whether inter-individual variation in growth rates at this site was due to variation in diet composition, and specifically variation in consumption of fish, we analyzed carbon and nitrogen stable isotope ratios of loggerhead blood plasma and of tissue samples of putative loggerhead prey, as well as commercially important fish species. Our results indicated that growth rates were not related to trophic levels at which individual turtles fed, but rather probably reflected inter-individual variation in overwintering or foraging behavior (i.e. nearshore vs. offshore). Furthermore, loggerhead diets were highly diverse, and comprised mainly blue crabs and/or whelks, as well as small proportions of cannonball jellies. Fish were unimportant dietary components for loggerheads. Although loggerheads in NC do not appear to feed on fish catch or discards, immature turtles showed dietary preferences for prey items that are also valuable to or are commonly taken as bycatch in commercial fisheries (e.g. blue crabs and whelks, respectively) in the region. Thus, the status of these prey items/fishery stocks as well as trends in loggerhead populations should be monitored to mitigate potential competitive interactions between fisheries activities and loggerhead turtles.  相似文献   

8.
We study whether and how physiological demands affect foraging decisions under predation risk, by evaluating the effect of starvation on the rate of food consumption and prey‐size preferences and the potential trade‐off between starvation and predation risk on foraging behavior in the whelk Acanthina monodon, a gastropod inhabiting the intertidal rocky shores of central Chile. These whelks appear to adjust their foraging strategy to physiological (nutritional) demand and predation risk. Starvation reduced the effect of predation risk on the rate of food consumption by A. monodon. Thus, in the absence of the predator sea star, the rate of food consumption by starved and satiated whelks was similar. When a predator was present, starved whelks fed faster than satiated whelks. Our results indicate that foraging behaviour represents an integrated and hierarchical response to environmental conditions and the physiological conditions of the forager.  相似文献   

9.
Hughes AR  Grabowski JH 《Oecologia》2006,149(2):256-264
Despite increasing evidence that habitat structure can shape predator–prey interactions, few studies have examined the impact of habitat context on interactions among multiple predators and the consequences for combined foraging rates. We investigated the individual and combined effects of stone crabs (Menippe mercenaria) and knobbed whelks (Busycon carica) when foraging on two common bivalves, the hard clam (Mercenaria mercenaria) and the ribbed mussel (Geukensia demissa) in oyster reef and sand flat habitats. Because these species co-occur across these and other estuarine habitats of varying physical complexity, this system is ideal for examining how habitat context influences foraging rates and the generality of predator interactions. Consistent with results from previous studies, consumption rates of each predator in isolation from the other were higher in the sand flat than in the more structurally complex oyster reef habitat. However, consumption by the two predators when combined surprisingly did not differ between the two habitats. This counterintuitive result probably stems from the influence of habitat structure on predator–predator interactions. In the sand-flat habitat, whelks significantly reduced their consumption of their less preferred prey when crabs were present. However, the structurally more complex oyster reef habitat appeared to reduce interference interactions among predators, such that consumption rates when the predators co-occurred did not differ from predation rates when alone. In addition, both habitat context and predator–predator interactions increased resource partitioning by strengthening predator dietary selectivity. Thus, an understanding of how habitat characteristics such as physical complexity influence interactions among predators may be critical to predicting the effects of modifying predator populations on their shared prey.  相似文献   

10.
Summary Mayfly larvae of Paraleptophlebia heteronea (McDunnough) had two antipredator responses to a nocturnal fish predator (Rhinichthys cataractae (Valenciennes)): flight into the drift and retreat into interstitial crevices. Drift rates of Paraleptophlebia abruptly increased by 30 fold when fish were actively foraging in the laboratory streams but, even before fish were removed, drift began returning to control levels because larvae settled to the substrate and moved to areas of low risk beneath stones. This drifting response was used as an immediate escape behavior which likely decreases risk of capture from predators which forage actively at night. Surprisingly, drift most often occurred before contact between predator and prey, and we suggest that in darkness this mayfly may use hydrodynamic pressure waves for predator detection, rather than chemical cues, since fish forage in an upstream direction. Although drifting may represent a cost to mayfly larvae in terms of relocation to a new foraging area with unknown food resources, the immediate mortality risk probably out-weighs the importance of staying within a profitable food patch because larvae can survive starvation for at least 2 d. In addition to drifting, mayflies retreated from upper, exposed substrate surfaces to concealed interstitial crevices immediately after a predator encounter, or subsequent to resettlement on the substrate after predator-induced drift. A latency period was associated with this response and mayflies remained in these concealed locations for at least 3 h after dace foraging ceased. Because this mayfly feeds at night and food levels are significantly lower in field refugia under stones, relative to exposed stone surfaces, predator avoidance activity may limit foraging time and, ultimately, reduce the food intake of this stream mayfly.  相似文献   

11.
Food acquisition in central-place foraging animals demands efficient detection and retrieval of resources. Most ant species rely on a mass recruitment foraging strategy, which requires that some potential foragers remain at the nest where they can be recruited to food once resources are found. Because this strategy reduces the number of workers initially looking for food, it may reduce the food detection rate while increasing the postdiscovery food retrieval rate. In previous studies this tradeoff has been analyzed by computer simulation and mathematical models. Both kinds of models show that food acquisition rate is greatly influenced by food distribution and resource patch size: as food is condensed into fewer patches, the maximal acquisition rate is achieved by a shift to fewer initial searchers and more potential recruits. In general, these models show that a mass recruitment strategy is most effective when resources are clumped. We tested this prediction in two experiments by letting laboratory colonies of the Argentine ant (Linepithema humile) forage for resources placed in different distributions. When all prey were small, retrieval rate increased with increasing resource patch size, in support of foraging models. When prey were large, however, the mass of prey returned to the colony over time was much lower than when prey were small and widely distributed. As more ants reached a large prey item, the distance the prey item was transported decreased due to a greater emphasis on feeding rather than transport. Because Argentine ants can transport more biomass externally than they can ingest, food retrieval that depends only on ingestion can depress the biomass retrieval rate. Thus, our results generally support theoretical foraging models, but we show how prey size, through differential prey-handling behavior, can produce an outcome greatly different from that predicted only on the distribution of resources.  相似文献   

12.
Territory shape yields important insights into how animals exploit local resources. Territories of stream‐dwelling salmonids are typically (1) mapped around a single central‐place, (2) described as circular, elliptical or teardrop‐shaped, and (3) believed to reflect their exploitation of drifting invertebrate prey. In this study, we tested the current view of territory shape by mapping multiple central‐place territories for 50 young‐of‐the‐year Atlantic salmon. Multiple central‐place areas were more elongated (eccentricity: median = 1.301, range = 1.043–2.784) than the foraging patterns around each central place (eccentricity: median = 1.135, range = 1.014–1.385). In addition, multiple central‐place areas were elongated along the stream length (33 of 50 fish), whereas the foraging areas around each station tended to be elongated along the stream width (32 of 50 fish). These findings may be explained by the way that stream salmonids interact with drifting prey. At each central place, a wider foraging area should provide an increased access to prey drifting downstream. Similarly, by regularly patrolling a large multiple central‐place area along the stream axis, a territorial fish may increase its access to drifting prey by excluding competitors from upstream areas. Further studies are needed on the ecological factors that determine territory shape in stream fish and multiple central‐place foragers.  相似文献   

13.
Central-place foraging seabirds alter the availability of their prey around colonies, forming a "halo" of reduced prey access that ultimately constrains population size. This has been indicated indirectly by an inverse correlation between colony size and reproductive success, numbers of conspecifics at other colonies within foraging range, foraging effort (i.e. trip duration), diet quality and colony growth rate. Although ultimately mediated by density dependence relative to food through intraspecific exploitative or interference competition, the proximate mechanism involved has yet to be elucidated. Herein, we show that Adélie penguin Pygoscelis adeliae colony size positively correlates to foraging trip duration and metabolic rate, that the metabolic rate while foraging may be approaching an energetic ceiling for birds at the largest colonies, and that total energy expended increases with trip duration although uncompensated by increased mass gain. We propose that a competition-induced reduction in prey availability results in higher energy expenditure for birds foraging in the halo around large colonies, and that to escape the halo a bird must increase its foraging distance. Ultimately, the total energetic cost of a trip determines the maximum successful trip distance, as on longer trips food acquired is used more for self maintenance than for chick provisioning. When the net cost of foraging trips becomes too high, with chicks receiving insufficient food, chick survival suffers and subsequent colony growth is limited. Though the existence of energetic studies of the same species at multiple colonies is rare, because foraging metabolic rate increases with colony size in at least two other seabird species, we suggest that an energetic constraint to colony size may generally apply to other seabirds.  相似文献   

14.
Resource clumping (prey hotspots) and intraspecific competition may interact to influence predator foraging behaviour. Optimal foraging theory suggests that predators should concentrate most of their foraging activity on prey hotspots, but this prediction has received limited empirical support. On the other hand, if prey concentration at hotspots is high enough to allow its use by several individuals, increased competition may impose constraints on foraging decisions of conspecifics, resulting in a temporal segregation in the use of shared resources. We investigated how artificial prey hotspots influence foraging behaviour in the Iberian lynx Lynx pardinus, and examined variations in the use of prey hotspots by individuals with different competitive abilities. All lynx, irrespective of their position in the competitive hierarchy, focused their activity on prey hotspots. Supplemented lynx concentrated higher proportions of active time on 100 m circular areas around hotspots than non‐supplemented lynx did on any area of the same size. However, we found evidence for a dynamic temporal segregation, where inferior competitors may actively avoid the use of prey hotspots when dominants were present. Dynamic temporal segregation may operate in solitary and territorial predators as a mechanism to facilitate coexistence of conspecifics in the absence of opportunities for spatial segregation when they use extremely clumped resources.  相似文献   

15.
Abstract Orb web spiders face a dilemma: forage in open habitats and risk predation or forage in closed habitats to minimize risk but at reduced foraging profitability. We tested whether Argiope keyserlingi opts for safer habitats at the expense of foraging success by (i) determining habitat selection indices in open and closed habitats; (ii) marking and releasing individual juvenile, subadult and adults over two 4‐week periods to determine if life‐history stage influences habitat selection; and (iii) determining the biotic and abiotic environmental parameters that relate to A. keyserlingi abundance. We found that A. keyserlingi selected closed habitats. Sedge and anthropogenic structures were selected and trees were avoided. Juveniles were never found in open habitats, most likely because of high postdispersal mortality. Subadults and adults may shift from closed to open habitats while juveniles never shifted habitat. Foliage density, plant height, potential prey abundance, and mantid and bird abundance were correlated with A. keyserlingi abundance, with only bird abundance explaining habitat selection. We measured web capture area, spiral distance (distance between spiral threads) and the number of decoration arms (0, 1, 2, 3 or 4) in the field and did laboratory experiments to test the influence of (i) space and vegetation; (ii) prey abundance; and (iii) web damage, on web architecture. Argiope keyserlingi webs exhibited geometric plasticity by having larger prey capture areas and spiral distances in open habitats. Decoration design did not differ between habitats however. Variation in space availability, air temperature, prey abundance and web damage explained the variations in web architecture. Potential prey size and diversity differed between habitats but prey abundance did not. As large prey may be important for spider survivorship, foraging success appears to be compromised by occupying closed habitats.  相似文献   

16.
Individual consistency in foraging behaviour can generate behavioural variability within populations and may, ultimately, lead to species diversification. However, individual‐based long‐term behavioural studies are particularly scarce in seabird species. Between 2008 and 2011, breeding Imperial Shags Phalacrocorax atriceps at the Punta León colony, Argentina, were tracked with GPS devices to evaluate behavioural consistency during their foraging trips. Within a breeding season, individuals were highly consistent in the maximum distances they reached from the shore and the colony, as well as in the time invested in flight and diving across consecutive days during early chick rearing. In addition, each individual had its specific foraging area distinct from the foraging area of other individuals. Comparing between early and late chick rearing in the same season, individuals were consistent, to a lesser degree, in the maximum distance they reached from the colony and the shore, increasing in consistency later on in the season. Within the season, females were more consistent than males in the maximum distance they moved from the colony and the shore, the sexes segregated in their foraging areas and individual females were segregated from one another. Twenty‐eight individuals tracked in different breeding seasons were marginally consistent in their trip durations and maximum distance reached from shore across seasons. Among seasons, foraging locations differed between sexes and among individual females. Individuals from this colony exhibited consistency over time in several aspects of foraging behaviour, which may be due to a combination of individual characteristics such as learning abilities, breeding experience or health, as well as targeted prey type and stability of the environment at this location.  相似文献   

17.
Habitat use and foraging behavior of two benthic insectivorous gobies, Rhinogobius sp. CO (cobalt type) and Rhinogobius sp. DA (dark type), were examined in relation to their predation effects on local prey density in a small coastal stream in southwestern Shikoku, Japan. Correlations among the foraging range, frequency of foraging attempts and current velocity indicated that individuals using fast-current habitats had small foraging ranges and infrequently made foraging attempts while those in slow currents frequently foraged over large areas. The former and the latter were recognized as ambush and wandering foragers, respectively. Interspecific comparisons of habitat use, foraging behavior and prey preference suggested that Rhinogobius sp. CO selectively forage mobile prey by ambushing in fast currents, whereas Rhinogobius sp. DA randomly forage available prey by wandering in slow-current habitats. A cage experiment was conducted to assess prey immigration rate and the degree of predation effects on local prey density in relation to current velocity. The results of the experiment support, at least in part, our initial predictions: (1) prey immigration rates increase with current velocity and (2) the effects of fish predation on local prey density are reduced as current velocity increases. Overall results illustrated a link between the foraging modes of the stream gobies and their predation effects on local prey density: fish adopt ambush foraging in fast currents, where the decrease in prey density tends to be less, whereas fish actively forage over large areas in slow currents, where the decrease in prey is relatively large.  相似文献   

18.
Echolocation constraints of Daubenton's Bat foraging over water   总被引:2,自引:0,他引:2  
1. Daubenton's Bats ( Myotis daubentonii ) foraging over a stream concentrated their activity over calm surfaces, avoiding an adjacent area with small ripples (< 3 cm high). Aerial insects were most abundant over the ripples, so insect distribution could not explain why the bats avoided this area.
2. The bats flew low over water and always ( N = 22) directed the head forwards, presumably emitting the echolocation beam parallel to the surface, thus minimizing clutter. At an angle of incidence of 30° there was significantly more clutter from the rippled water.
3. The ripples produced ultrasonic noises in the form of transient pulses at an average rate of 6·2 per second. In the present case, such pulses were common enough potentially to interfere with target detection by the bats. Transient noises and echo clutter from moving ripples may be the principal reason why bats generally avoid foraging low over turbulent water.
4. The target strength of a potential insect prey at the water surface and the source levels of the bats' searching signals were measured to use in estimating the echo level at the bat when it detects the prey. The echo level at detection (+ 38 dB sound pressure level) was about the same as the clutter level extrapolated to the detection distance. This suggests that Daubenton's Bat operates at very low signal-to-noise ratios when foraging for insects near the water surface.  相似文献   

19.
We studied the regional variation in population density of Myotis myotis (Borkhausen 1797) in south-eastern Bavaria, Germany, and its relations to diet composition and the availability of potential foraging habitats. We monitored colony size and juvenile mortality from 1991 to 2003, conducted faecal analyses in 1993 and determined land-use patterns around colonies. The numbers of individuals counted in the nursery colonies showed only small fluctuations over the years. However, data on colony size demonstrated a pronounced regional variation. Epigeic arthropods, mainly Carabidae, were the most important prey. The diet included prey taxa of forest as well as grassland habitats. The percentage of those prey taxa in the diet that originated in grassland managed with different intensity varied according to the availability of these potential foraging habitats around the nursery roosts. The calculated population density of the bats was positively correlated to forest area and especially to the area of mixed forest around the nursery roosts. Our results indicate that the availability of foraging habitats is a limiting factor for local population densities in the greater mouse-eared bat.  相似文献   

20.
Strategies employed by wide-ranging foraging animals involve consideration of habitat quality and predictability and should maximise net energy gain. Fidelity to foraging sites is common in areas of high resource availability or where predictable changes in resource availability occur. However, if resource availability is heterogeneous or unpredictable, as it often is in marine environments, then habitat familiarity may also present ecological benefits to individuals. We examined the winter foraging distribution of female Antarctic fur seals, Arctocephalus gazelle, over four years to assess the degree of foraging site fidelity at two scales; within and between years. On average, between-year fidelity was strong, with most individuals utilising more than half of their annual foraging home range over multiple years. However, fidelity was a bimodal strategy among individuals, with five out of eight animals recording between-year overlap values of greater than 50%, while three animals recorded values of less than 5%. High long-term variance in sea surface temperature, a potential proxy for elevated long-term productivity and prey availability, typified areas of overlap. Within-year foraging site fidelity was weak, indicating that successive trips over the winter target different geographic areas. We suggest that over a season, changes in prey availability are predictable enough for individuals to shift foraging area in response, with limited associated energetic costs. Conversely, over multiple years, the availability of prey resources is less spatially and temporally predictable, increasing the potential costs of shifting foraging area and favouring long-term site fidelity. In a dynamic and patchy environment, multi-year foraging site fidelity may confer a long-term energetic advantage to the individual. Such behaviours that operate at the individual level have evolutionary and ecological implications and are potential drivers of niche specialization and modifiers of intra-specific competition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号