首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
After pollen arrives on a stigma, the paternity of seeds may be influenced by microgametophyte competition, maternal choice, genetic complementation between parents, and embryo competition. While microgametophyte competition has been well accepted, the other mechanisms are more difficult to demonstrate, and their effects are often confounded. Here, wild radish plants were pollinated with single and mixed pollen loads, and some plants were stressed such that reproduction was reduced. Effects of pollen donors, maternal families, maternal × paternal interaction, pollen donor number, and stress on fruit abortion, seed number per fruit, seed weight, and total seed weight per fruit were measured. Maternal-plant × pollen-donor interaction effects were found for all variables, indicating that genetic complementation or maternal choice occurred. Values of the components of reproduction were generally higher for multiply sired fruits than for singly sired fruits, indicating that either competition among embryos changed under multiple paternity or maternal choice for multiply sired fruits occurred. Finally, when maternal plants were stressed, the components of reproduction were more strongly affected by seed and fruit paternity. This result indicates that either competitive regimes among embryos were affected by stress or maternal plants become more selective under stress. In both cases where embryo competition might have been an explanation of the results, variation in seed weight within fruits was unaffected, suggesting that competitive regimes were unchanged. Clearly, mechanisms in addition to microgametophyte competition are important in sorting the pollen that arrives on stigmas of wild radish. These data suggest that maternal choice is likely to be important. In addition, these processes are likely to occur in the field, since the effects are stronger in stressed than in control plants.  相似文献   

2.
Åsa Lankinen  Io Skogsmyr 《Oikos》2001,93(3):459-469
Pollen competition in the pistil does not only give flowering plants the possibility to reduce inbreeding but also provides an opportunity for selection of pollen traits that increase male reproductive success. An objection to the existence of selection on pollen competitive ability is that individual variation should quickly vanish if selection is strong. A balance between selection for local adaptation of sporophytes within sites and pollen flow between sites could maintain variation in pollen competitive ability. A prerequisite is that variation in male competitive ability is condition dependent, i.e., influenced by sporophytic adaptation to a patch. This further means that selection on pollen competitive ability can occur both directly on the gamethophytic level and indirectly on the sporophytic level. Our dynamic model shows that maintenance of variation in male competitive ability is more probable when differences in pollen competitive ability influence male fitness, i.e., in cases with pollen competition, than when differences in this trait only is a side effect of selection for more viable individuals. Since there is a connection between the gamethophytic and sporophytic life-phases, the incidence of pollen competition between donors should make it more probable that variability also in sporophyte fitness is preserved.  相似文献   

3.
Studies of the weedy annual Raphanus sativus have demonstrated that nonrandom mating, a prerequisite for sexual selection, can occur in greenhouse plants. To determine whether this nonrandom mating pattern can occur under a wide range of conditions, including conditions that might occur in the field, we considered variation in both maternal condition and pollen load size. Maternal condition was varied by altering the watering regime. Pollen load size was varied from approximately 26 to 343 pollen grains per stigma. At the smallest pollen load size, patterns of seed paternity were altered in two of the three pollen donor pairs; seed paternity became more equal among donors. For one of three pollen donor pairs, seed paternity was more divergent among donors on stressed maternal plants. Finally, for one pollen donor pair, rank order of pollen donor performance changed from the medium to the small pollen loads on stressed vs. control maternal plants. Thus, some field conditions may alter patterns of nonrandom mating in wild radish.  相似文献   

4.
Gametophytic competition among pollen grains has been proposed as an important mechanism of sexual selection in plants. The purpose of this paper is to examine the contribution of pollen source on in vivo pollen tube growth in Chamaecrista fasciculata. We addressed two questions: 1) Is pollen tube growth affected by the genetic relatedness between the pollen source and the pollen recipient? 2) Is there significant phenotypic variation among pollen donors for pollen tube growth? We compared pollen tube growth by measuring the number of pollen tubes which germinated, reached quarter length of style, and reached the ovary resulting from self- and outcross-pollinations. The outcross pollinations included three interplant distance classes: near (within genetic neighborhood, ca. 1 m), far (between far neighborhoods and within subpopulation, ca. 20 m), and distant (between neighborhoods and adjacent subpopulations, ca. 50–100 m). Our results show that pollen tube growth was not affected by genetic relatedness, by differences between self and outcross, nor by differences due to phenotypic variation among pollen donors. In contrast, maternal environment had a strong impact on pollen tube growth. These results suggest a lack of gametophytic competition and indicate little opportunity for sexual selection on pollen tube growth in C. fasciculata.  相似文献   

5.
The possibility that sexual selection operates in angiosperms to effect evolutionary change in polygenic traits affecting male reproductive success requires that there is additive genetic variance for these traits. I applied a half-sib breeding design to individuals of the annual, hermaphroditic angiosperm, wild radish (Raphanus raphanistrum: Brassicaceae), to estimate paternal genetic effects on, or, when possible, the narrow-sense heritability of several quantitative traits influencing male reproductive success. In spite of significant differences among pollen donors with respect to in vitro pollen tube growth rates, I detected no significant additive genetic variance in male performance with respect to the proportion of ovules fertilized, early ovule growth, the number of seeds per fruit, or mean individual seed weight per fruit. In all cases, differences among maternal plants in these traits far exceeded differences among pollen donors. Abortion rates of pollinated flowers and fertilized ovules also differed more among individuals as maternal plants than as pollen donors, suggesting strong maternal control over these processes. Significant maternal phenotypic effects in the absence of paternal genetic or phenotypic effects on reproductive traits may be due to maternal environmental effects, to non-nuclear or non-additive maternal genetic effects, or to additive genetic variance in maternal control over offspring development, independent of offspring genotype. While I could not distinguish among these alternatives, it is clear that, in wild radish, the opportunity for natural or sexual selection to effect change in seed weight or seed number per fruit appears to be greater through differences in female performance than through differences in male performance.  相似文献   

6.
In order to understand the characters on which sexual selection might operate in plants, it is critical to assess the mechanisms by which pollen competition and mate choice occur. To address this issue we measured a number of postpollination characters, ranging from pollen germination and pollen tube growth to final seed paternity, in wild radish. Crosses were performed using four pollen donors on a total of 16 maternal plants (four each from four families). Maternal plants were grown under two watering treatments to evaluate the effects of maternal tissue on the process of mating. The four pollen donors differed significantly in number of seeds sired and differed overall in the mating characters measured. However, it was difficult to associate particular mechanistic characters with ability to sire seeds, perhaps because of interactions among pollen donors within styles or among pollen donors and maternal plants. The process of pollen tube growth and fertilization differed substantially among maternal watering treatments, with many early events occurring more quickly in stressed plants. Seed paternity, however, was somewhat more even among pollen donors used on stressed maternal plants, suggesting that when maternal tissue is more competent, mating is slowed and is more selective.  相似文献   

7.

Background and Aims

Heritable genetic variation is crucial for selection to operate, yet there is a paucity of studies quantifying such variation in interactive male/female sexual traits, especially those of plants. Previous work on the annual plant Collinsia heterophylla, a mixed-mating species, suggests that delayed stigma receptivity is involved in a sexual conflict: pollen from certain donors fertilize ovules earlier than others at the expense of reduced maternal seed set and lower levels of pollen competition.

Methods

Parent–offspring regressions and sib analyses were performed to test for heritable genetic variation and co-variation in male and female interactive traits related to the sexual conflict.

Key Results

Some heritable variation and evolvability were found for the female trait (delayed stigma receptivity in presence of pollen), but no evidence was found for genetic variation in the male trait (ability to fertilize ovules early). The results further indicated a marginally significant correlation between a male''s ability to fertilize early and early stigma receptivity in offspring. However, despite potential indirect selection of these traits, antagonistic co-evolution may not occur given the lack of heritability of the male trait.

Conclusions

To our knowledge, this is the first study of a plant or any hermaphrodite that examines patterns of genetic correlation between two interactive sexual traits, and also the first to assess heritabilities of plant traits putatively involved in a sexual conflict. It is concluded that the ability to delay fertilization in presence of pollen can respond to selection, while the pollen trait has lower evolutionary potential.  相似文献   

8.
Nonrandom mating in plants may involve differential success of self- vs. outcross pollen, of pollen from relatives vs. nonrelatives, and of pollen from several compatible donors. Of these, the last is least understood. Wild radish plants were crossed with six pollen donors in all possible combinations to investigate differences in pollen donor performance and to compare multiply sired fruits with different numbers and identities of fathers. Pollen donors differed in number of seeds sired, position of seeds sired within fruits, and mass of seeds sired. Performance in single pollination was not a good predictor of performance in mixed pollination. Performance in two-donor pollinations was a better predictor of the outcome of multidonor pollinations. Multiply sired fruits were selectively filled, but not all multiply sired fruits were equal. Both the number and identity of donors affected fruit filling. These results and others with wild radish suggest that variation in pollen donor ability to sire seeds is relatively common in wild radish. Since wild radish plants in the field typically receive pollen from several donors, there may be considerable opportunity for selection at this stage of the life cycle in wild radish.  相似文献   

9.

Background and Aims

Evolutionary change in response to natural selection will occur only if a trait confers a selective advantage and there is heritable variation. Positive connections between pollen traits and fitness have been found, but few studies of heritability have been conducted, and they have yielded conflicting results. To understand better the evolutionary significance of pollen competition and its potential role in sexual selection, the heritability of pollen tube-growth rate and the relationship between this trait and sporophytic offspring fitness were investigated in Collinsia heterophylla.

Methods

Because the question being asked was if female function benefited from obtaining genetically superior fathers by enhancing pollen competition, one-donor (per flower) crosses were used in order to exclude confounding effects of post-fertilization competition/allocation caused by multiple paternity. Each recipient plant was crossed with an average of five pollen donors. Pollen-tube growth rate and sporophytic traits were measured in both generations.

Key Results

Pollen-tube growth rate in vitro differed among donors, and the differences were correlated with in vivo growth rate averaged over two to four maternal plants. Pollen-tube growth rate showed significant narrow-sense heritability and evolvability in a father–offspring regression. However, this pollen trait did not correlate significantly with sporophytic-offspring fitness.

Conclusions

These results suggest that pollen-tube growth rate can respond to selection via male function. The data presented here do not provide any support for the hypothesis that intense pollen competition enhances maternal plant fitness through increased paternity by higher-quality sporophytic fathers, although this advantage cannot be ruled out. These data are, however, consistent with the hypothesis that pollen competition is itself selectively advantageous, through both male and female function, by reducing the genetic load among successful gametophytic fathers (pollen), and reducing inbreeding depression associated with self–pollination in plants with mix-mating systems.Key words: Collinsia heterophylla, evolvability, female fitness, good genes, heritability, male fitness, mixed-mating system, Plantaginaceae, pollen competition, sexual selection  相似文献   

10.
Two widespread assumptions underlie theoretical models of the evolution of sex allocation in hermaphroditic species: (1) resource allocations to male and female function are heritable; and (2) there is an intrinsic, genetically based negative correlation between male and female reproductive function. These assumptions have not been adequately tested in wild species, although a few studies have detected either genetic variation in pollen and ovule production per flower or evidence of trade-offs between male and female investment at the whole plant level. It may also be argued, however, that in highly autogamous, perfect-flowered plant taxa that exhibit genetic variation in gamete production, strong stabilizing selection for an efficient pollen:ovule ratio should result in a positive correlation among genotypes with respect to mean ovule and mean pollen production per flower. Here we report the results of a three-generation artificial selection experiment conducted on a greenhouse population of the autogamous annual plant Spergularia marina. Starting with a base population of 1200 individuals, we conducted intense mass selection for two generations, creating four selected lines (high and low ovule production per flower; high and low anther production per flower) and a control line. By examining the direct and correlated responses of several floral traits to selection on gamete production per flower, we evaluated the expectations that primary sexual investment would exhibit heritable variation and that resource-sharing, variation in resource-garnering ability, or developmental constraints mold the genetic correlations expressed among floral organs. The observed direct and correlated responses to selection on male and female gamete production revealed significant heritabilities of both ovule and anther production per flower and a significant negative genetic correlation between them. When plants were selected for increased ovules per flower over two generations, ovule production increased and anther production declined relative to the control line. Among plants selected for decreased anthers per flower, we observed a decline in anther production and an increase in ovule production relative to the control line. In contrast, the lines selected for low ovules per flower and for high anthers per flower exhibited no evidence for significant genetic correlations between male and female primary investment. Correlated responses to selection also indicate a genetically based negative correlation between the production of normal versus developmentally abnormal anthers (staminoid organs); a positive correlation between the production of ovules versus staminoid organs; and a positive correlation between the production of anthers and petals. The negative relationship between male versus female primary investment supports classical sex allocation theory, although the asymmetrical correlated responses to selection indicate that this relationship is not always expressed.  相似文献   

11.
To predict the possible evolutionary response of a plant species to a new environment, it is necessary to separate genetic from environmental sources of phenotypic variation. In a case study of the invader Solidago altissima, the influences of several kinds of parental effects and of direct inheritance and environment on offspring phenotype were separated. Fifteen genotypes were crossed in three 5 × 5 diallels excluding selfs. Clonal replicates of the parental genotypes were grown in two environments such that each diallel could be made with maternal/paternal plants from sand/sand, sand/soil, soil/sand, and soil/soil. In a first experiment (1989) offspring were raised in the experimental garden and in a second experiment (1990) in the glasshouse. Parent plants growing in sand invested less biomass in inflorescences but produced larger seeds than parent plants growing in soil. In the garden experiment, phenotypic variation among offspring was greatly influenced by environmental heterogeneity. Direct genetic variation (within diallels) was found only for leaf characters and total leaf mass. Germination probability and early seedling mass were significantly affected by phenotypic differences among maternal plants because of genotype ( genetic maternal effects ) and soil environment ( general environmental maternal effects ). Seeds from maternal plants in sand germinated better and produced bigger seedlings than seeds from maternal plants in soil. They also grew taller with time, probably because competition accentuated the initial differences. Height growth and stem mass at harvest (an integrated account of individual growth history) of offspring varied significantly among crosses within parental combinations ( specific environmental maternal effects ). In the glasshouse experiment, the influence of environmental heterogeneity and competition could be kept low. Except for early characters, the influence of direct genetic variation was large but again leaf characters (= basic module morphology) seemed to be under stricter genetic control than did size characters. Genetic maternal effects, general environmental maternal effects, and specific environmental maternal effects dominated in early characters. The maternal effects were exerted both via seed mass and directly on characters of young offspring. Persistent effects of the general paternal environment ( general environmental paternal effects ) were found for leaf length and stem and leaf mass at harvest. They were opposite in direction to the general environmental maternal effects, that is the same genotypes produced “better mothers” in sand but “better fathers” in soil. The general environmental paternal effects must have been due to differences in pollen quality, resulting from pollen selection within the male parent or leading to pre- or postzygotic selection within the female parent. The ranking of crosses according to mean offspring phenotypes was different in the two experiments, suggesting strong interaction of the observed effects with the environment. The correlation structure among characters changed less between experiments than did the pattern of variation of single characters, but under the competitive conditions in the garden plant height seemed to be more directly related to fitness than in the glasshouse. Reduced competition could also explain why maternal effects were less persistent in the glasshouse than in the garden experiment. Evolution via selection of maternal effects would be possible in the study population because these effects are in part due to genetic differences among parents.  相似文献   

12.
Studies of sexual selection in plants historically have focused on pollinator attraction, pollen transfer, gametophytic competition, and post-fertilization discrimination by maternal plants. Pollen performance (the speeds of germination and pollen tube growth) in particular is thought to be strongly subject to intrasexual selection, but the effect of mating system on this process has not been rigorously evaluated. Here we propose four predictions derived from the logic that pollen performance should evolve with mating system as an adaptive response to: (1) the competitive environment among pollen genotypes and (2) variation among female genotypes regularly encountered by a given pollen genotype. First, as previously predicted, due to the higher potential for intense selection among diverse pollen genotypes in outcrossing relative to selfing taxa, pollen should evolve to germinate and/or to grow more rapidly in outcrossers than in selfers. Second, due to stronger selection on pollen performance in outcrossing than in selfing taxa, heritable variation in pollen tube growth rate is more likely to be purged in outcrossers. In selfers, by contrast, genetic variation in pollen tube growth rates may readily accumulate because selfing reduces the number of genetically distinct male gametophytes likely to be deposited on any given stigma, thereby relaxing selection on male gametophytic traits. A summary of published studies presented here provides preliminary support for this prediction. Third, due to the high probability that the pollen of outcrossing individuals will be exposed to multiple pistil genotypes, we predict that the pollen of habitually outcrossing taxa will evolve to perform more consistently across female genotypes than the pollen of selfing taxa. Fourth, we predict that epistatic interactions between pollen and pistil genotypes are more likely to evolve in selfers than in outcrossers. We suggest several empirical approaches that may be used to test these predictions.  相似文献   

13.
Temporal variation in selection has long been proposed as a mechanism by which genetic variation could be maintained despite short‐term strong directional selection and has been invoked to explain the maintenance of consistent individual differences in behaviour. We tested the hypothesis that ecological changes through time lead to fluctuating selection, which could promote the maintenance of variation in female behavioural traits in a wild population of North American red squirrels. As predicted, linear selection gradients on female aggression and activity significantly fluctuated across years depending on the level of competition among juveniles for vacant territories. This selection acted primarily through juvenile overwinter survival rather than maternal fecundity. Incorporating uncertainty in individual measures of behaviour reduced the magnitude of annual selection gradients and increased uncertainty in these estimates, but did not affect the overall pattern of temporal fluctuations in natural selection that coincided with the intensity of competition for vacant territories. These temporal fluctuations in selection might, therefore, promote the maintenance of heritable individual differences in behaviour in this wild red squirrel population.  相似文献   

14.
Previous research on the Black Beauty bush cv. of zucchini has documented a strong positive relationship between the size of the pollen load and the vigor (performance) of the progeny. Here we report the results of three studies designed to test the hypothesis that the previously observed differences in progeny vigor are heritable. Two studies examined the transmission of the pollen load effect to subsequent generations through the ovules (female role). The third study determined if there is genetic variation for pollen performance and if the pollen load effect could be transmitted to a subsequent generation through the pollen (male role). In each of these studies the vigor of the progeny from the subsequent generation was evaluated in the greenhouse and/or the field. The results of these studies reveal (1) that the ability to sire seeds does respond to selection imposed by high pollen loads, (2) that only 23 of the 35 total traits that we measured in the three studies of transmission to subsequent generations changed in the direction predicted by the pollen competition hypothesis, (3) that only 5 of the 35 traits were significantly affected by the size of the pollen load that produced the previous generation (but all 5 were in the direction predicted by the pollen competition hypothesis), and (4) that only one study produced an overall significant difference (MANOVA) attributable to the size of the pollen load that produced the previous generation (but it too was in the direction predicted by the pollen competition hypothesis). From these experiments we conclude that pollen competition appears to play a real but minor role in the production of differences in vigor between progeny arising from low versus high pollen loads. In Black Beauty bush cv. of zucchini, maternal effects, pollen-pistil interactions, or nonrandom patterns of seed abortion must play important roles as well.  相似文献   

15.
16.
The mean volume of pollen grains and total pollen production varied both within and among plants of Erythronium grandiflorum. The second flowers of two-flowered plants tended to produce smaller and fewer grains than first flowers, but there was no overall relationship between mean pollen grain size and production per flower. I evaluated the effects of pollen size differences within and among plants on two components of male reproductive success: pollen tube growth and postfertilization siring ability. Pollen tubes grown in media were longer for second flowers, but were not correlated with the mean size of pollen grains, suggesting that (1) internal resource content of pollen (i.e., carbohydrates plus lipids) was not associated with the hydrated size of pollen, and that (2) pollen from second flowers contained more resources. I analyzed the growth rate and the fertilization ability of pollen growing in styles. Growth rate differed among donors and recipients, but no effects of pollen or donor characters (i.e., pollen production, grain size, and flower position) were detected. In single donor pollinations, pollen size was negatively correlated with fertilization ability across donors, and positively correlated with postfertilization siring ability of donors. A second experiment used pairs of donors; within-plant differences in pollen size and flower position had effects similar to the single donor experiment on fertilization ability, but among-plant differences were not significant. The results corroborate earlier experiments that suggest that the growth of pollen tubes in the style is probably controlled by the recipient, since donor characters had minimal effects on pollen fertilization ability. Postfertilization siring ability was not affected by within-plant differences in mean grain size and production. For among-donor differences, the number of seeds set for each donor was positively correlated with the mean grain volume, and when a donor producing large pollen fertilized ovules in an ovary, there was increased seed abortion for seeds in the same ovary sired by a second donor. In addition, the total number of seeds produced by a fruit was decreased when both donors had large pollen, apparently due to increased postfertilization abortion. Postfertilization processes appear to be influenced by paternal differences that are expressed through competition among developing seeds for maternal resources.  相似文献   

17.
Evolution of pistil length as a choice mechanism for pollen quality   总被引:3,自引:0,他引:3  
During the fertilisation process in plants, pollen tube growth rate may be selected as a trait important in male to male competition. Since female morphology provides the necessary selective arena for such competition, we investigate if sexual selection theory can be used to explain the evolution of pistil length as a female choice mechanism. This choice is performed by direct interference with male to male competition. Furthermore, the sessile nature of plants limits the number of mates a female can choose between, which could limit the benefit a female can gain from distinguishing between donors. To mirror these circumstances, we model a situation when there are only two competitors at a time. Using a game theoretical approach we show that if pollen tube growth rate can be used as an indication of heritable quality, pistil length can be selected in response to variation of this trait. We further find that length of the pistil affects selection of pollen tube growth rate. Thus female preference and male competitive ability co-evolve, but this does not necessarily lead to a positive relationship between the two. Under certain circumstances we find a negative relation instead. Given realistic differences in male quality, the model indicates that there is a potential for evolution of female morphology as a choice mechanism for pollen quality.  相似文献   

18.
We tested whether pollen grain size (PGS) shows heritable variation in three independent populations of Mimulus guttatus by imposing artificial selection for this character. In addition, we looked for correlated responses to selection in a range of 15 other floral characters. Heritable variation in PGS was found in all three populations, with heritabilities of between 19 and 40% (average 30%). After three generations, upward and downward lines differed on average by 30% in pollen volume. No consistent patterns of correlated response were found in other characters, indicating that PGS can respond to selective forces acting on PGS alone. Possible selection mechanisms on PGS in this species could include intermale selection, if large pollen grains produce more competitive gametophytes; or optimization of patterns of resource allocation, if local mate competition varies.  相似文献   

19.
The possibility that sexual selection has played a role in theevolution of plant reproductive characters remains interesting, butcontroversial. One reason is that clear demonstration of the necessaryconditions for sexual selection is lacking. For sexual selection tooccur, differences in pollen donor performance must be consistent acrossmaternal plants and not be due to mechanisms such asself-incompatibility that produce interactions between maternal plantsand pollen donors. Here, I performed two experiments with wild radish totest whether differences in pollen donor performance are consistentacross maternal plants and not due to subtle effects of theincompatibility system. In the first, all maternal and paternal lineageshad different S-alleles. There were 16 maternal plants, four in each offour lineages and four pollen donors, one in each of four lineages. Rankorder of pollen donor performance, in terms of number of seeds siredafter mixed pollination, was highly consistent across maternal plantsand maternal lineages. In addition, maternal stress treatment had aneffect on mating success of pollen donors, but the effect was subtle anddid not affect the rank order of seeds sired by the four pollen donors.In the second experiment, pollinations were performed on both mature andimmature stigmas. Immature stigmas allowed some self seed set, so theincompatibility system was compromised. There was some nonrandom seedpaternity on both mature and immature stigmas. However, the amount ofnonrandom mating was less on immature stigmas. Taken together, theseexperiments show that the kind of consistent nonrandom mating necessaryfor sexual selection occurs in wild radish, but that the incompatibilitysystem and the mechanisms for sorting among compatible mates may overlapin time of development or in somepathways.  相似文献   

20.
Interspecific competition is likely to act as an agent for selection on local scales, although evidence in plants is sparse so far. We hypothesize that in annual shade-avoiding grassland species, heterogeneity in the intensity of aboveground competition for light may shape patterns of genetic variation and induce phenotypic plasticity in traits affecting competitive ability. We collected maternal seed families of Erodium cicutarium from replicated high and low competition environments and exposed them to different levels of aboveground competition in a glasshouse. We examined effects of seed source and competition treatment on expression of plant traits related to competitive ability and fitness. Source environments with high levels of competition were significantly more heterogeneous in competition intensity at both intermediate (approx. 10 m) and small (approx. 0.1 m) spatial scales. Seed source and competition treatment both had highly significant effects on trait expression. Greater intensity of competition experienced by maternal plants was coupled with lower vegetative biomass production and slower growth rates, and at the same time lower abortion rates in the offspring. We interpret these findings as an indication of greater reproductive efficiency in the next generation, in response to competition experienced by parents. There was higher total phenotypic variability in the plants from high competition source sites, but equivalent levels of phenotypic plasticity across source-site competition levels; no costs of phenotypic plasticity were detected. We concluded that differences in competition intensity can lead to trait differentiation in the next generation. For E. cicutarium, experience with competition matters: it leads to substantial phenotypic differences and more total variability in the offspring generation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号