首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
介绍一种检测SDS聚丙烯酰胺凝胶电泳中家蝇幼虫蛋白的新方法-海波银染法。该方法对传统银染方法中的试剂与步骤加以改进,省略了乙醇固定与洗涤步骤,只需20 min即可完成全部染色过程,且仅在国产分析纯试剂及普通操作条件下,灵敏度可达毫微克级水平。  相似文献   

2.
In order to demonstrate the localization associated with metabolism of an anti-allergic agent, Tranilast, in the liver, light microscopic radioautography of the liver was performed. Rats were administrated orally with 3H-Tranilast, and were sacrificed at 15 minutes to 24 hours after the administration. The livers were taken out and fixed, embedded and processed for light microscopic radioautography. 3H-Tranilast was absorbed rapidly, and the radioactivity in the liver increased and decreased within several hours. The number of radioautographic silver grains reached a maximum 3 hours after the administration. From 1 to 6 hours after the administration, the silver grains decreased from the portal area toward the central area. Seventy to 80% of all silver grains on the hepatocytes were retained in the cytoplasms of the hepatocytes at any experimental period. From these results, it was concluded that the localization of radioautographic silver grains was associated with Tranilast uptake of hepatocytes in each hepatic lobular compartment and that the metabolic process from uptake to excretion of Tranilast took part in the hepatocytes in each hepatic lobular compartment.  相似文献   

3.
Silver-exchanged silicate glass has been irradiated by 532-nm pulsed Nd:YAG laser in order to locally form metallic nanoparticles. The particular interest of this process is to locally control the silver nanoparticles (NPs) growth. Silver ions are exchanged with sodium ions near the glass surface after dumping of a silicate glass few minutes in silver and sodium nitrates molten salt. A low-energy density laser exposure (0.239 J/cm2) chosen at the ablation threshold allows to observe the kinetics of the silver NPs growth according to the increasing shots number. An on-line optical measurement is carried out after each shot to identify the most important steps during the irradiation process. According to this measurement, we have determined four steps highlighted by UV/Visible spectrophotometry and we have identified the influence of located surface plasmon resonance. Three combined material analysis methods were used to understand the glass/laser interaction mechanism: we outlined the material volume variations by profilometric method, the element distribution by scanning electron microscopy and finally the structural distribution of the irradiated region by a local infrared investigation. The trend for NPs formation revealed by the UV/Visible spectrophotometry is thus explained by the formation of a ring expelled from a central hole. We highlight that the on-line extinction measurement can be used to data process the NPs evolution.  相似文献   

4.
The antimesometrial part of rat's decidua of the 9th day of gestation was divided into three zones. Cells of either zone display their own morphological and cytochemical properties. Different rates of 3H-uridine incorporation were observed in the cytoplasm and the nucleus in cells of either zone during 5, 30, 60 and 240 minutes after precursor injection. The largest member of silver grain accumulation was observed in the karyoplasm and nucleolus of cells of the transitional zone. The nucleus of basal zone cells had the smallest intensity of 3H-uridine incorporation. The nuclei of the epithelial zone cells are characterized by a lower intensity of 3H-uridine incorporation than those of the transition zone. The intensity to cytoplasmic accumulation of silver grains raised from cells of the basal zone up to cells of the epithelial zone. The largest quantity of cytoplasmic radioactivity was observed 240 minutes after 3H-uridine injection.  相似文献   

5.
A silver nitrate stain for nerve fibers and endings applicable to paraffin sections on the slide utilizes the properties of urea to accelerate the procedure and improve the specificity of the stain. After removal of the paraffin the sections are run through absolute, 95% and 80% alcohol and placed for 60-90 minutes at 50-60°C. in: 1% aqueous silver nitrate, 100 ml.; urea, 20-30 g.; 1g. mercuric cyanide and 1 g. picric acid in 100 ml. of distilled water, 1-3 drops. After the silver bath they are rinsed quickly in 2 changes of distilled water and reduced for 3-5 minutes at 25-30°C. in: water, 100 ml.; sodium sulfite, anhydrous, 10g.; hydroquinone, 1-2g.; urea, 20-30g. They are then washed thoroughly in 4-5 changes of distilled water, passed through graded alcohols into 80% alcohol and examined under the microscope. If nerve fibers are not distinct, the sections are returned to the same urea-silver-nitrate bath for 10-15 minutes, rinsed, reduced, washed and dehydrated as before. This process may be repeated until staining is adequate; then they are dehydrated, cleared, and mounted.

Nerve fibers show a color range from brown to black; nerve cells from yellow to brown; and the background, depending on the type of tissue and its fixation, from yellow to light brown.  相似文献   

6.
The biliary excretion of 110mAg in rats after i.v. administration of an aqueous solution of 110mAgNO3 (4.57 micrograms; 16kBq per rat) was studied for a period of 24 hours. The maximum rate of excretion was reached in 30th minute after the metal administration and over 70% of the silver dosed was excreted during 24 hours. Using the method of isolated perfused liver it was observed that 110mAg is rapidly taken up in the liver. During the five minutes period of the perfusion less than 50% of silver administered was found in the perfusion medium. In following minutes the level of the metal in the medium remained approximately constant. It was suggested that the rate of excretion of silver and its high uptake in the liver tissue is in connection with an unusual binding of it in the bile.  相似文献   

7.
A silver anode, but not a cathode, is bactericidal at microampere current levels because of the electrochemical reactions occurring at the metal electrode surface. This has been clinically useful as a local anti-infective agent even though the mechanism of action on the bacterial cell has not been determined. We investigated the effect by inducing β-galactosidase while passing current though cultures of Escherichia coli. Enzyme induction was depressed in the silver anode chamber within twenty minutes of initiation of current (0.04 to 40 μA); induction in the connected silver cathode chamber was normal. The inhibition at the anode is not the result of electrolysis of the medium nor is the electric current itself required, since pre-anodized silver is inhibitory. The electrochemical products are effective even after derepression has occurred. They appear to act on the process of protein production itself rather than directly on the liberated β-galactoside enzyme.  相似文献   

8.
To understand the changes of serum levels of sex steroids in the wild Japanese eel Anguilla japonica during silvering process, eels collected from the Kaoping River of Taiwan from August 2000 through June 2001 were examined. The maturational stages of female eels before and during silvering were divided into four stages: juvenile, sub-adult, pre-silver and silver stages based on skin coloration and oocyte diameter. Male eels were investigated only in the silver stage. Radioimmunoassays were employed to measure serum levels of estradiol-17β (E2) and testosterone (T). The mean liver mass of the female eels increased significantly during silvering, but the mean hepatosomatic index remained constant. In contrast, mean ovarian mass and gonadosomatic index increased significantly during silvering. Serum concentrations of E2 in females increased significantly during silvering (P<0.05), while E2 was undetectable in silver males. The mean serum T concentrations increased significantly in females (P<0.05) during silvering, with lowest mean values in the juvenile stage and highest mean value in the silver stage. The mean serum T level in the silver males was significantly lower than in silver females (P<0.05). In conclusion, both serum E2 and T concentrations increased with ovarian development of wild Japanese eels during silvering, while serum E2 was undetectable in the silver male eels. The findings support the idea that androgen, but not estrogen, plays a major role in silvering process of the eels in both sexes.  相似文献   

9.
10.
Rat and rabbit brains containing surgical lesions of 5-10 days' duration were fixed in 10% formalin (neutralized with calcium carbonate) for 1 week to 6 months. Frozen sections (15-20 n) were rinsed and then soaked 7 minutes in a 1.7% solution of strong ammonia in distilled water. Subsequent treatment was as follows: rinse; 0.05% aqueous potassium permanganate 5-15 minutes; 0.5% aqueous potassium metabisulfite, 2 changes of 2.5 minutes each; wash thoroughly in 3 changes distilled water; 1.5% aqueous silver nitrate, 0.5-1.0 hr.; 1% citric acid, 5-10 sec.; 2 changes distilled water; 1% sodium thiosulfate, 30 see.; 3 changes distilled water. Each section is then processed separately. Ammoniacal silver solution (450 mg. silver nitrate in 10 ml. distilled water; add 5 ml. ethanol; let cool to room temperature; add 1 ml. strong ammonia water and 0.9 ml. of 2.5% aqueous sodium hydroxide), 0.5-1.0 min. with gentle agitation. Reduction of about 1 minute is accomplished in: distilled water, 45 ml.; ethanol, 5 ml.; 10% formalin, 1.5 ml.; 1% citric acid, 1.5 ml. Rinsing; 1% sodium thiosulfate, 10 sec.; thorough washing followed by dehydration through graded alcohol and 3 changes of xylene or toluene complete the staining process. Normal nerve fibers are slightly stained to unstained, degenerating fibers, black. The treatment in potassium permanganate is critical since too little favors overstaining of normal fibers and too much abolishes staining of degenerating fibers.  相似文献   

11.
A silver staining method for paraffin sections of material fixed in HgCl2, sat. aq., with 5% acetic acid is as follows. Process the sections through the usual sequence of reagents, and including I-KI in 70% alcohol, thiosulfate (5% aq.), washing and back to 70% alcohol containing 5% of NH4OH (conc. aq.). After 3 minutes in the ammoniated alcohol, wash through tap water and 2 changes of distilled water and silver 5-10 minutes at 25°C. in 15% AgNO3 aq. to which 0.02 ml. of pyridine per 100 ml. has been added. Blot the slide, but not the section and do not rinse. Reduce at 45°C. in 0.1% pyrogallol in 55% alcohol, then rinse in 55% alcohol and wash in water. The remainder of the process consists of gold toning, intensifying in oxalic acid, fixing in 5% Na2S2O3, washing, dehydrating, clearing and covering. When the specimen contains much smooth muscle, the I-KI solution is acidified before use by adding 2 ml. of 1N nitric acid per 100 ml., and the sections treated for 3 minutes instead of the usual 2 minutes. Formalin should not be added to sublimate-acetic, but specimens that do not contain strongly argyrophilic nonneural tissue may be fixed in formalin or, preferably, Bouin's fluid. Sections of tissue after the latter type of fixation will not require the I-KI and thiosulfate but can go from 95% alcohol to the ammoniated alcohol. The advantages of fixing in HgCl2-acetic acid are suppression of the staining of connective tissue and intensifying the staining of nerve fibers.  相似文献   

12.
杨书婷  桂建芳 《遗传》2000,22(4):221-224
以雌核发育银鲫和两性生殖彩鲫的成熟卵为材料,分离卵壳,经处理得到卵壳可溶性蛋白组分。SDS-PAGE梯度凝胶电泳分析在雌核发育银鲫中揭示出3条较明显的差异蛋白带。同时,采用相同处理方法对受精前后卵壳蛋白组分进行比较分析后发现,这些差异蛋白带在受精后发生了变化,其带纹表现为减弱或消失,表明这些差异蛋白可能与受精过程相关。 Abstracts:Egg chorions were isolated from unfertilized and fertilized eggs of gynogenetic silver crucian carp and gonochoristic color crucian carp by homogenization and further purification techniques.Then,soluble proteins were extracted from the isolated egg chorions,and were analyzed by gradient SDS-PAGE.Three differential protein bands were revealed between the gynogenetic silver crucian carp and gonochoristic color crucian carp.Furthermore,these differential proteins were demonstrated to undergo obvious changes during fertilization.It was suggested that these differential proteins should be related to the special fertilization process in gynogenetic silver crucian carp.  相似文献   

13.
Silver sulfathiazole shows strong antibacterial activity and good tolerance after topical application. The aim of the study was to determine the antiviral activity of silver sulfathiazole in tissue culture after incubation of drug and virus. The antiviral activity was measured after various periods of exposure and at different drug concentrations. The results obtained indicate the activity of silver sulfathiazole against Herpesvirus type 1 and type 2. This drug suppresses or completely inactivates the infectivity of virus. The antiviral effect is directly related to concentration of the drug and duration of exposure. At concentration of 10 micrograms/ml it has the highest activity after 30 minutes of exposure, however at a concentration of 20 micrograms/ml it induces a similar effect after 10 minutes. Silver sulfathiazole had antiviral activity similar to that of silver nitrate, while sulfathiazole alone was ineffective.  相似文献   

14.
Immunogold silver staining for light microscopy   总被引:5,自引:3,他引:2  
 The immunogold silver staining method (IGSS) is widely used as a sensitive and specific immunohistochemical visualisation technique. IGSS involves the specific deposition of metallic silver at the site of immunogold labelling and provides a means of visualisation at low magnification by light or electron microscopy. Silver developers for IGSS rapidly deposit metallic silver only at the site of heavy metals, including gold and silver, because of their catalytic activity. The developing solution contains the silver ions and reducing agent necessary for this reaction. Using different silver salts as ion donors and by selecting an appropriate temperature and pH, visible amounts of silver can be deposited in a few minutes at the site of colloidal gold labelling while little non-specific background deposition occurs. Inclusion of protective colloids in the solution can also be used to control the reaction. Although studies of the chemical basis of silver deposition around unlabelled colloidal gold date back to 1939, immunogold enhancement by silver was established in 1983. The IGSS method evolved from the combination of disparate photographic, histochemical and immunogold techniques which have been effectively combined and optimised over the last 10 years to provide a visualisation system which is well suited to many immunohistochemical studies. Accepted: 29 April 1996  相似文献   

15.
Summary The effect of time on the formation of metallic silver by tissue reducing groups follows a curve which can be devided into three main parts. In the first, which may last for several hours, the reaction is very slow, and only an undetectably small amount of metallic silver is produced. In the second period the speed of the reaction first increases in a progressive manner and then begins to decrease gradually; during the third period the speed approaches zero asymptotically. Binding of the silver ions by the tissue commences initially at its fastest rate; the level then decreases steadily to zero within about a quarter of an hour. There is no direct relationship between the amount of silver ion bound to the tissue and the formation of metallic silver. The latter cannot take place by way of direct (non-catalysed) reaction. The following mechanism is proposed for the process: Transfer of electrons from the reducing molecules to the silver ions is mediated at first by certain tissue sites (catalytic points) and then also by the steadily increasing total surface area of the metallic silver grains (autocatalysis). On the basis of this mechanism, several anomalies of both the argentaffin and argyrophil reactions are explained.  相似文献   

16.
The effect of time on the formation of metallic silver by tissue reducing groups follows a curve which can be divided into three main parts. In the first, which may last for several hours, the reaction is very slow, and only an undetectably small amount of metallic silver is produced. In the second period the speed of the reaction first increases in a progressive manner and then begins to decrease gradually; during the third period the speed approaches zero asymptotically. Binding of the silver ions by the tissue commences initially at its fastest rate; the level then decreases steadily to zero within about a quarter of an hour. There is no direct relationship between the amount of silver ion bound to the tissue and the formation of metallic silver. The latter cannot take place by way of direct (non-catalysed) reaction. The following mechanism is proposed for the process: Transfer of electrons from the reducing molecules to the silver ions is mediated at first by certain tissue sites (catalytic points) and then also by the steadily increasing total surface area of the metallic silver grains (autocatalysis). On the basis of this mechanism, several anomalies of both the argentaffin and argyrophil reactions are explained.  相似文献   

17.
Our studies on the effects of temperature on the demonstration of neurosecretory granules using argyrophil stains indicate an inverse relationship between the time needed for staining and temperature of the silver and reducing solutions. Careful monitoring of the temperature of silver solutions during the Grimelius procedure and its modifications show long incubation times serve in large part only to bring the solutions to reaction temperature. Tissue sections added when this temperature has been reached will stain with the same intensity as sections impregnated for the entire incubation period. We have modified the argyrophil procedure so that double-impregnation with solutions preheated to 60-70 C and development in Bodian's reducer prepared with preheated water rapidly demonstrates secretory granules. Our method does not require a microwave oven and much shorter incubation periods are required than with usual procedures. It is not necessary to incubate sections in hot solutions for extended periods of time, which can lead to detachment of sections, nonspecific staining and decomposition of the silver solution. Rinsing after impregnation and before development greatly increases contrast of argyrophil cells by reducing background staining. Our procedure results in more reliable staining of argyrophil and argentaffin cells and takes only ten minutes.  相似文献   

18.
Out studies on the effects of temperature on the demonstration of neurosecretory granules using argyrophil stains indicate an inverse relationship between the time needed for staining and temperature of the silver and reducing solutions. Careful monitoring of the temperature of silver solutions during the Grimelius procedure and its modifications show long incubation times serve in large part only to bring the solutions to reaction temperature. Tissue sections added when this temperature has been reached will stain with the same intensity as sections impregnated for the entire incubation period. We have modified the argyrophil procedure so that double-impregnation with solutions preheated to 60-70 C and development in Bodian's reducer prepared with preheated water rapidly demonstrates secretory granules. Our method does not require a microwave oven and much shorter incubation periods are required than with usual procedures. It is not necessary to incubate sections in hot solutions for extended periods of time, which can lead to detachment of sections, nonspecific staining and decomposition of the silver solution. Rinsing after impregnation and before development greatly increases contrast of argyrophil cells by reducing background staining. Our procedure results in more reliable staining of argyrophil and argentaffin cells and takes only ten minutes.  相似文献   

19.
A tissue pretreatment technique is introduced which effectively suppresses the silver impregnation of connective tissue and nompecific background elements in peripheral nerve. The result is a selective impregnation of nerve fibers. The procedure utilizes fresh frozen sections and can be used with the Holmes (1947) or Bodian (1936) techniques. Fresh frozen sections are cut at 10 microns, mounted on slides and air dried for 5 minutes. They are fixed for 30 minutes in formol-sublimate (10% formalin saturated with mercuric chloride) and then placed into 0.5% iodine in 70% alcobol for 5 minutes followed by bleaching in 2.5% sodium thiosulfate for 2 minutes. After washing in running tap water for 10 minutes and a brief rinse in distilled water, impregnation is accomplished by the Holmes (1947) or Bodian (1936) procedure beginnins with the step containing the aqueous silver solution. The results show an absence of impregnation of connective tissue and nonspecific background. The technique is simple, rapid, and, by utilidng fresh hrozen sections, can be used for other histological and histochemical purposes. Several experiments were done to determine the causes of the connective tissue and background suppression. The air drying step was omitted; the sections were fixed in formalin without mercuric chloride; and the formol-sublimate fixation time was increased. The results suggest that connective tissue impregnation H suppressed by the use of mercuric chloride in the fixative and that the background supprgsion is related to the short fixation time with formol-sublimate.  相似文献   

20.
A tissue pretreatment is introduced which effectively suppresses the silver impregnation of connective tissue and nonspecific background elements in peripheral nerve. The result is a selective impregnation of nerve fibers. The procedure utilizes fresh frozen sections and can be used with the Holmes (1947) or Bodian (1936) techniques. Fresh frozen sections are cut at 10 microns, mounted on slides and air dried for 5 minutes. They are fixed for 30 minutes in formol-sublimate (10% formalin saturated with mercuric chloride) and then placed into 0.5% iodine in 70% alcohol for 5 minutes followed by bleaching in 2.5% sodium thiosulfate for 2 minutes. After washing in running tap water for 10 minutes and a brief rinse in distilled water, impregnation is accomplished by the Holmes (1947) or Bodian (1936) procedure beginning with the step containing the aqueous silver solution. The results show an absence of impregnation of connective tissue and nonspecific background. The technique is simple, rapid, and, by utilizing fresh frozen sections, can be used for other histological and histochemical purposes. Several experiments were done to determine the causes of the connective tissue and background suppression. The air drying step was omitted; the sections were fixed in formalin without mercuric chloride; and the formol-sublimate fixation time was increased. The results suggest that connective tissue impregnation is suppressed by the use of mercuric chloride in the fixative and that the background suppression is related to the short fixation time with formolsublimate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号