首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Calcium ion (Ca2+) is one of the key regulatory elements for ciliary movements in the Paramecium species. It has long been known that members of Paramecium species including green paramecia (Paramecium bursaria) exhibit galvanotaxis which is the directed movement of cells toward the anode by swimming induced in response to an applied voltage. However, our knowledge on the mode of Ca2+ action during green paramecia anodic galvanotactic response is still largely limited. In the present study, quantification of anodic galvanotaxis was carried out in the presence and absence of various inhibitors of calcium signaling and calcium channels. Interestingly, galvanotactic movement of the cells was completely inhibited by a variety of Ca2+-related inhibitors. Such inhibitors include a Ca2+ chelator (EGTA), general calcium channel blockers (such as lanthanides), inhibitors of intracellular Ca2+ release (such as ruthenium red and neomycin), and inhibitors of T-type calcium channels (such as NNC 55-0396, 1-octanol and Ni2+). However, L-type calcium channel inhibitors such as nimodipine, nifedipine, verapamil, diltiazem and Cd2+ showed no inhibitory action. This may be the first implication for the involvement of T-type calcium channels in protozoan cellular movements.  相似文献   

2.
The effects of the four calcium channel blockers flunarizine, verapamil, diltiazem and nimodipine on motility and phototaxis of Chlamydomonas reinhardtio have been tested with a fully automated and computerized population system. Flunarizine inhibits motility transiently by causing the detachement of the flagella which, however, are regenerated during some hours. Phototaxis is inhibited to the same extent, but this is simply the result of the decreased motility and, hence, a non-specific effect. Verapamil causes also a detachement of the flagella with following regeneration, but in addition motility and phototaxis are inhibited by this drug to different extents, indicating the involvement of calcium channels in both processes. Diltiazem and nimodipine inhibit phototaxis without impairing motility, indicating that both processes are regulated in different ways. If diltiazem and nimodipine are applied simultaneously, no additive inhibitory effect can be observed. However, the combination of both blockers with verapamil causes and additive inhibitory effect as if verapamil is applied alone. By increasing the external calcium concentration from 10-4 M to 10-3 M the optimum of positive phototaxis is shifted to higher fluence rates. This shifting occurs also in the presence of channel blockers, but the strength of the positive reaction is influenced. These results point to the involvement of calcium channels in both phototaxis and motility, but simultaneously demonstrate the different sensitivity of the two processes to these drugs.Abbreviations DIL diltiazem (=benzothiazepine) - FLU flunarizine (=(E)-1-(bis-(4-fluorophenyl(methyl)-4-(3-phenyl-2-propenyl)piperazinex2HCl) - NIM nimodipine (=1,4-dihydropyridine) - VER verapamil (=diphenylalkylamine) CaM, calmodulin - PDE phosphodiesterase - DMSO dimethylsulfoxide  相似文献   

3.
The inhibitory effects of different calcium antagonists on contractions of isolated porcine detrusor muscle were investigated. Suppression of the maximum potassium-induced contraction and electrically generated contractions by nifedipine, verapamil and diltiazem were investigated. Furthermore, concentration–response curves of carbachol after pretreatment with the L-type antagonists nifedipine, verapamil, diltiazem, nimodipine and the T-type antagonist mibefradil at different concentrations were performed. Nifedipine significantly reduced the potassium-induced maximum contraction to 89, 60, 21, 8 and 4% (10−9–10−5 M). Verapamil and diltiazem significantly reduced it to 64, 30 and 5% (10−7–10−5 M) or 79, 27, 7 and 1% (10−7–10−4 M), respectively. Nifedipine, verapamil and diltiazem significantly reduced the electrically generated contraction to 55, 36, 34 and 25% (10−7–10−4 M), 71, 32 and 2% (10−6–10−4 M), 96, 78, 38 and 5% (10−7–10−4 M), respectively. pD2 values of nifedipine, verapamil and diltiazem amounted to 7.07, 5.56 and 5.40 and differed significantly. After pretreatment with nifedipine at 10−6 M, the concentration–response curve of carbachol was nearly suppressed. The effects of nimodipine, verapamil and diltiazem were smaller. Mibefradil caused only at 10−5 M a significant reduction. All investigated L-type calcium antagonists were strong inhibitors of the examined contractions. Nifedipine showed the biggest inhibitory effect.  相似文献   

4.
The effects of Ca2+ channel antagonists on the motility and acrosome reaction of guinea pig spermatozoa were examined by incubating the spermatozoa continuously in Ca2+-containing capacitating media with 10?6 M to 10?4 M antagonist. Antagonists tested were four voltage-gated Ca2+ channel antagonists (verapamil, nifedipine, nimodipine, and FR–34235) and two ligand-gated channel antagonists (NaNO2 and Na-nitroprusside). None of these antagonists could block the acrosome reaction. Instead, three antagonists (verapamil, nimodipine, and FR-34235, each at 10?4 M) accelerated the onset of the acrosome reaction with a subsequent decrease in sperm motility. Nifedipine and Na-nitroprusside at the same concentration caused a complete loss of sperm motility by 4 hr of incubation with no substantial effect on the rate of acrosome reaction. The detrimental effect of antagonists on the motility of spermatozoa appears to be due to a direct, Ca2+-independent, membrane-perturbing action of the reagents. The acrosome reaction was not inhibited when guinea pig spermatozoa were precapacitated in Ca2+-free medium (with a low concentration of lysolecithin) in the continuous presence of antagonists. An acceleration of the onset of the acrosome reaction by verapamil (10?4 M) was also demonstrated in the golden hamster. These results may be interpreted as indicating that the entry of extracellular Ca2+ into spermatozoa, which triggers the acrosome reaction of guinea pig and hamster spermatozoa, is not mediated by Ca2+ channels. This is in marked contrast with the case reported in invertebrate spermatozoa. Possible mechanisms by which some of the antagonists stimulate the acrosome reaction and affect the motility of mammalian spermatozoa are discussed.  相似文献   

5.
Comparison of verapamil and nifedipine in thrombosis models   总被引:5,自引:0,他引:5  
Calcium blockers and calmodulin antagonists have been reported to inhibit the aggregation of blood platelets in vitro. In the present study, the effects of two calcium blockers, verapamil and nifedipine, were compared in several rodent thrombosis models. In rat and mouse platelet-rich plasma, preincubation with either verapamil or nifedipine had a dose-dependent inhibitory effect on collagen-induced aggregation (P less than 0.01). The concentration required for 50% inhibition of rat platelet aggregation was 0.91 X 10(-4) M for verapamil and 1.77 X 10(-4) M for nifedipine. In in vivo thrombosis models in mice, acute pretreatment with nifedipine had a significant, dose-dependent protective effect (P less than 0.05). At a dose of 500 micrograms/kg, nifedipine inhibited thrombotic sudden death provoked by arachidonic acid, a thromboxane agonist (U46619), or a combination of collagen and epinephrine. In vivo platelet depletion induced by U46619 was also inhibited by this calcium blocker. Thus, nifedipine is protective against a variety of thrombotic stimuli, and its antiplatelet aggregatory effect apparently extends to the in vivo situation. In contrast, no in vivo antithrombotic activity was observed for verapamil. Two additional calcium blockers, perhexilene and diltiazem, and three calmodulin antagonists, W-7, chlorpromazine, and trifluoperazine, were also tested in the U46619-induced thrombotic sudden death model. Of these, only diltiazem (5 and 10 mg/kg) had an acute protective effect.  相似文献   

6.
The effects of the calcium channel blockers, verapamil, diltiazem and lanthanum ions and the Ca2+ dependency on motility as well as the photophobic response (stop-response) of Gyrodinium dorsum were studied. At Ca2+ concentrations below 10-3 M, motility was inhibited. La3+ inhibits the stop-response, in contrast to verapamil and diltiazem. The only calcium channel blocker that increased the amount of non-motile cells was verapamil. The results indicate that motility are Ca2+ dependent and that the stop-responses of G. dorsum could be affected by extracellular Ca2+. Effects of the photosythesis inhibitor (DCMU) on the stop-response was also determined. With background light of different wavelength (614, 658 and 686 nm) the stop-response increased. DCMU inhibited this effect of background light. Negative results with the monoclonal antibody Pea-25 directed to phytochrome and the results with DCMU, indicate that the stop-response of G. dorsum is coupled to photosynthesis rather than to a phytochrome-like pigment. Oxygen evolution, but not cell movement, was completely inhibited by 10-6 M DCMU.Abbreviations DCMU 3-(3,4-dichlorophenyl)-1,1-methylurea - DILT diltiazem - DMSO dimethylsulfoxide - SDS-PAGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis - VER verapamil  相似文献   

7.
急性低氧下钙阻断剂对左,右心泵功能的影响   总被引:1,自引:0,他引:1  
周兆年  顾磊敏 《生理学报》1992,44(3):237-243
在20条麻醉开胸狗上,用RM-6000多道仪同步记录左心室内峰压(LVP)、左室压力变化率(L+dP/dt_(max))、右心室内峰压(RVP)、右室压力变化率(R±dp/dt_(max))、肺动脉压力(P_(Pa))、主动脉血流每搏峰值(Fa)、心率(HR)等各项生理指标,观察钙通道阻断剂Nife-dipine,Diltiazem和Verapamil对左、右心室功能影响。在钙通道阻断剂处理后,左室的LVP,L±dp/dt_(max)下降,而Fa增加;右室的RVF,R±dp/dt_(max)和P_(Pa)均有升高趋势,显示钙通道阻断剂对左、右心泵功能的影响不同。这可能提示左、右心室功能对钙离子的依赖程度不同。在急性低氧状态下,此三种钙阻断剂均使急性低氧引起LVP的增加反应消失,Fa增加明显,Verapamil和Diltiazem有减轻急性低氧引起的RVP和P_(Pa)的增压作用。从这些钙通道阻断剂对左右心泵功能影响的比较来看,Diltiazem比Verapamil和Nifedipine对急性低氧状态下的心泵功能有较好的作用。  相似文献   

8.
In primary cultures of cerebellar granule cells, [3H]nitrendipine binds with high affinity to a single site (KD 1 nM and Bmax 20 fmol/mg protein). The 1,4-dihydropyridine (DHP) class of compounds such as nitrendipine, nifedipine, and BAY K 8644 displace [3H]nitrendipine binding at nanomolar concentrations. Verapamil partially inhibits whereas diltiazem slightly increases the [3H]nitrendipine binding. In these cells, the calcium influx that is induced by depolarization is very rapid and is blocked by micromolar concentrations of inorganic calcium blockers such as cadmium, cobalt, and manganese. The calcium influx resulting from cell depolarization is potentiated by BAY K 8644 and partially inhibited (approximately 40%) by nitrendipine and nifedipine. Other non-DHP voltage-sensitive calcium channel (VSCC) antagonists, such as verapamil and diltiazem, completely blocked the depolarization-induced calcium influx. This suggested that nitrendipine and nifedipine block only a certain population of VSCCs. In contrast, verapamil and diltiazem do not appear to be selective and block all of VSCCs. Perhaps some VSCCs can be allosterically modulated by the binding site for the DHPs, whereas verapamil and diltiazem may block completely the function of all VSCCs by occupying a site that differs from the DHP binding site.  相似文献   

9.
Calcium channel blockers inhibit galvanotaxis in human keratinocytes   总被引:1,自引:0,他引:1  
Directed migration of keratinocytes is essential for wound healing. The migration of human keratinocytes in vitro is strongly influenced by the presence of a physiological electric field and these cells migrate towards the negative pole of such a field (galvanotaxis). We have previously shown that the depletion of extracellular calcium blocks the directional migration of cultured human keratinocytes in an electric field (Fang et al., 1998; J Invest Dermatol 111:751-756). Here we further investigate the role of calcium influx on the directionality and migration speed of keratinocytes during electric field exposure with the use of Ca(2+) channel blockers. A constant, physiological electric field strength of 100 mV/mm was imposed on the cultured cells for 1 h. To determine the role of calcium influx during galvanotaxis we tested the effects of the voltage-dependent cation channel blockers, verapamil and amiloride, as well as the inorganic Ca(2+) channel blockers, Ni(2+) and Gd(3+) and the Ca(2+) substitute, Sr(2+), on the speed and directionality of keratinocyte migration during galvanotaxis. Neither amiloride (10 microM) nor verapamil (10 microM) had any effect on the galvanotaxis response. Therefore, calcium influx through amiloride-sensitive channels is not required for galvanotaxis, and membrane depolarization via K(+) channel activity is also not required. In contrast, Sr(2+) (5 mM), Ni(2+) (1-5 mM), and Gd(3+) (100 microM) all significantly inhibit the directional migratory response to some degree. While Sr(2+) strongly inhibits directed migration, the cells exhibit nearly normal migration speeds. These findings suggest that calcium influx through Ca(2+) channels is required for directed migration of keratinocytes during galvanotaxis and that directional migration and migration speed are probably controlled by separate mechanisms.  相似文献   

10.
1. The longitudinal muscle of the body wall (LMBW) of the holothurian, Isostichopus badionotus contracted when treated with acetylcholine (ACh). The threshold concentration for initiating a contraction was 10−8M ACh.2. Inward calcium (Ca2+) current blockers, diltiazem and verapamil, blocked contractions induced by ACh suggesting that Ca2+ channels are involved. Verapamil caused small rhythmic contractions to occur in some muscle preparations.3. Caffeine initiated contractions only at the high concentration of 10 mM and caused rhythmic contractions in otherwise non-spontaneously beating muscle. The caffeine-contractions were partially blocked by verapamil.  相似文献   

11.
S J Mustafa  A O Askar 《Life sciences》1986,38(10):877-885
The mechanism(s) by which adenosine causes dilation of the vascular smooth muscle is not properly understood. Several mechanisms including the inhibition of calcium influx and intracellular translocation have been suggested for its action. This study is an attempt to further elucidate the site of action of adenosine in relation to calcium by making use of calcium entry blockers. Large (1 +/- 0.2 mm, o.d.) and small (0.5 +/- 0.2 mm, o.d.) branches of bovine left anterior descending coronary artery (LADCA) contracted with 50 mM K+ were used as a model for these studies. Concentration-response curves for various calcium entry blockers were obtained and the order of potency was found to be: D-600 greater than nifedipine greater than verapamil greater than diltiazem greater than lidoflazine for large branches and nifedipine greater than D-600 greater than verapamil greater than lidoflazine greater than diltiazem for small branches of LADCA. The concentration-response relationship for adenosine (10(-6)-10(-4) M) in the presence and absence of these drugs (10(-9)-10(-7) M) was unchanged. 8-phenyltheophylline (2 X 10(-5) M), an adenosine receptor antagonist was without an effect on the relaxations induced by various calcium entry blockers, however, it antagonized the relaxing response to adenosine. Lidoflazine at concentrations of 7 X 10(-7) M and 2 X 10(-7) M potentiated the effect of adenosine in relaxing the large and small LADCA, respectively. In summary, the data show an increased sensitivity of small coronary vessels to nifedipine, D-600 and lidoflazine. The data further suggest a different site of action for adenosine and calcium entry blockers.  相似文献   

12.
Haloperidol is a classical neuroleptic drug that is still in use and can lead to abnormal motor activity such as tardive dyskinesia (TD) following repeated administration. TD has no effective therapy yet. There is involvement of calcium in triggering the oxidative damage and excitotoxicity, both of which play central role in haloperidol-induced orofacial dyskinesia and associated alterations. The present study was carried out to investigate the protective effect of calcium channel blockers [verapamil (10 and 20 mg/kg), diltiazem (10 and 20 mg/kg), nifedipine (10 and 20 mg/kg) and nimodipine (10 and 20 mg/kg)] against haloperidol induced orofacial dyskinesia and associated behavioural, biochemical and neurochemical alterations in rats. Chronic administration of haloperidol (1 mg/kg i.p., 21 days) resulted in a significant increase in orofacial dyskinetic movements and significant decrease in % retention, coupled with the marked increase in lipid peroxidation and superoxide anion generation where as significant decrease in non protein thiols and endogenous antioxidant enzyme (SOD and catalase) levels in rat brain striatum homogenates. All these deleterious effects of haloperidol were significantly attenuated by co-administration of different calcium channel blockers. Neurochemically, chronic administration of haloperidol resulted in significant decrease in levels of catecholamines (dopamine, serotonin) and their metabolites (HVA and HIAA) but increased turnover of dopamine and serotonin. Co-administration of most effective doses of verapamil, diltiazem, nifedipine and nimodipine significantly attenuated these neurochemical changes. Results of the present study indicate that haloperidol-induced calcium ion influx is involved in the pathogenesis of tardive dyskinesia and calcium channel blockers should be tested in clinical trials with nifedipine as the most promising one.  相似文献   

13.
K K Hui  J L Yu 《Life sciences》1988,42(20):2037-2045
We have investigated the effects of clinically available calcium channel blockers (nifedipine, verapamil and diltiazem) on isoproterenol stimulated cyclic adenosine 3',5'-monophosphate (cyclic AMP) generation in intact human lymphocytes. After preincubation of various calcium antagonists with intact lymphocytes at 37 degrees C for 15 minutes, 10 microM nifedipine or verapamil partially inhibited isoproterenol induced cyclic AMP generation in the presence of cyclic AMP phosphodiesterase inhibitor (3-isobutyl-1-methylxanthine) while they alone had no effect on cyclic AMP level at a concentration of up to 100 microM. In contrast, 10 nM-1.0 microM nifedipine, verapamil or diltiazem potentiated cyclic AMP generation induced by isoproterenol in a dose dependent manner. Similar results were observed in the time course studies of cyclic AMP generation. These effects are somewhat similar to the effect of phenothiazine, a calmodulin inhibitor, which, at 10 microM (close to IC50), also potentiated the effects of isoproterenol. In contrast, lanthanum chloride (LaCl3), an extracellular inorganic calcium antagonist, at 1.0 mM, inhibited isoproterenol induced cyclic AMP generation. The biochemical mechanisms underlying these potentiating effects are unknown. It may be partly related to the effect of calcium channel blockers (at least for nifedipine) on preventing beta 2 adrenergic receptor desensitization. This may provide a potential mechanism for the synergistic effect between calcium channel blockers and beta 2 adrenoceptor agonists on bronchial dilatation.  相似文献   

14.
The present study was undertaken to investigate the role of calcium ions (Ca2+) in the induction and secretion of the dengue type 2 virus induced cytotoxic factor and the cytotoxin. This was done by using calcium channel blocking drugs such as verapamil, nifedipine or diltiazem hydrochloride. The production of cytotoxic factor was significantly reduced by treatment of dengue type 2 virus infected mice with verapamil. Similarly, a dosedependent inhibition of the secretion of cytotoxic factor was observed, when spleen cells of the virus-primed mice were treatedin vitro with the 3 calcium channel blockers. The production of cytotoxin by macrophages was abrogated by pretreatment with calcium channel blockers but had little effect on its secretion as shown by treatment of macrophages with verapamil at 1 h after the induction to later periods up to 18 h. The findings thus show that in the induction of both the cytokines Ca2+ plays a critical role; on the other hand it is required for the secretion of the cytotoxic factor but not for that of the cytotoxin.  相似文献   

15.
When a Euglena, in a medium containing ATP, is microinjected with 7 × 10?14 l of 0.02 M EDTA, which binds Ca2+ and Mg2+, flagellar motility stops. Flagellar arrest in Chlamydomonas occurs with the injection of 2 × 10?14 l of 0.02 M EDTA. The injection of similar amounts (7 × 10?14 l in Euglena and 3 × 10?14 l in Chlamydomonas) of 0.02 M EGTA, which preferentially binds Ca2+, did not significantly alter flagellar motility. This suggests that a decrease in the internal Ca2+ concentration in Euglena or Chlamydomonas did not stimulate flagellar beating. Further, flagellar motility decreased when internal Mg2+ was chelated. The microinjection of Zn2+ into these cells caused a decrease in flagellar frequency analogous to the decrease in frequency caused by the injection of Ca2+ and EDTA. The microinjection of 7 × 10?14 l of 0.2 M Mn2+ caused an approx. 1.5-fold increase in Euglena flagellar motility. Chlamydomonas flagella, which cease to beat upon impalement in an Mg2+-free medium, resume a flagellar frequency of 18 Hz when injected with 3 × 10?14 l of 0.2 M Mn2+. In the experiments reported here, Mn2+ acts as an analog of Mg2+.  相似文献   

16.
Vicia faba plants were grown under drought conditions and variously supplemented with calcium. Drought stress markedly inhibited the growth of Vicia faba plants. Ca2+ ameliorated to a large extent this inhibition; fresh weight, dry mass, chlorophyll and water contents were variably improved. Membranes were, also, negatively affected by drought stress and percentage leakage was elevated. Concomitantly, the efflux of K+ and Ca2+ was enhanced by drought but lowered by supplemental Ca2+. In addition, membranes of droughted plants were sensitive to the Ca2+ channel blockers lanthanum, nifedipine or verapamil more than those of control plants. These blockers significantly increased the efflux of K+ and Ca2+ as well as percentage leakage particularly in those of droughted plants. The above results indicated that the functioning of the calcium channels was negatively affected when Vicia faba was grown under drought conditions. However, much of the drought-induced disorders including sensitivity towards the applied calcium channel blockers could be ameliorated by supplemental Ca2+.  相似文献   

17.
The stimulation of production of inositol phosphates in rat cortical slices by KCl depolarization and the effects of calcium channel active drugs were investigated. Elevation of K+ in the medium up to 48 mM KCl caused a linear concentration-dependent increase in [3H]inositol phosphate accumulation. The KCl stimulated response was not significantly inhibited in the presence of muscarinic or 1-adrenergic antagonists. KCl stimulated the production of inositol trisphosphate at 60 min but not 10 min. Addition of peptidase inhibitors did not significantly affect KCl-stimulated PI hydrolysis. The KCl-stimulated response was still observed in the absence of extracellular calcium, although the net accumulation of inositol phosphates was greater in the presence of 0.1 or 0.5 mM calcium. KCl (48 mM) inhibited [3H]inositol uptake into phospholipids of cortical slices. The dihydropyridine calcium channel agonist BAY K 8644 stimulated PI hydrolysis in cortical slices in a concentration dependent manner in the presence of 19 mM KCl. The BAY K 8644-stimulated PI response was partially inhibited by 1M atropine but not by 1M prazosin. Calcium channel blockers nitrendipine, verapamil, flunarizine, and nifedipine slightly inhibited the PI response stimulated by 19 mM KCl in the presence or absence of BAY K 8644. The effects of the calcium channel antagonists were attenuated in the presence of 1 M atropine. The peptide calcium channel blocker -conotoxin did not affect KCl-stimulated PI hydrolysis. These results suggest that endogenous muscarinic or adrenergic neurotransmitters are not involved in KCl-stimulated PI hydrolysis in cortical slices. Although extracellular calcium is necessary for optimal KCl-stimulated PI hydrolysis, it is not required for the expression of the KCl-evoked response suggesting that depolarization is the primary trigger for this stimulant.  相似文献   

18.
In the present study, the neuroprotective effect of blockers of voltage-dependent calcium channels (VDCC) and intracellular calcium stores on retinal ischemic damage induced by oxygen deprivation-low glucose insult (ODLG) was investigated. Retinal damage induced by ODLG was dependent on the calcium concentration in the perfusion medium. When incubated in medium containing 2.4 mM CaCl2, cell death in ischemic retinal slices treated with blockers of VDCC, ω-conotoxin GVIA (1.0 μM), ω-conotoxin MVIIC (100 nM) and nifedipine (1.0 μM), was reduced to 62 ± 2.3, 46 ± 4.3 and 47 ± 3.9%, respectively. In the presence of blockers of intracellular calcium stores, dantrolene (100 μM) and 2-APB (100 μM), the cell death was reduced to 46 ± 3.2 and 55 ± 2.9%, respectively. Tetrodotoxin (1.0 μM), reducing the extent of the membrane depolarization reduces the magnitude of calcium influx trough VDCC causing a reduction of the cell death to 55 ± 4.3. Lactate dehydrogenase content of untreated ischemic retinal slices was reduced by 37% and treatment of ischemic slices with BAPTA-AM (100 μM) or 2-APB (100 μM) abolished the leakage of LDH. Dantrolene (100 μM) and nifedipine (1.0 μM) partially blocked the induced reduction on the LDH content of retinal ischemic slices. Histological analysis of retinal ischemic slices showed 40% reduction of ganglion cells that was prevented by BAPTA-AM or dantrolene. 2-APB partially blocked this reduction whilst nifedipine had no effect, p > 0.95. Conclusion Blockers of VDCC and intracellular calcium-sensitive receptors exert neuroprotective effect on retinal ischemia.  相似文献   

19.
We previously demonstrated that verapamil inhibits serotonin uptake by bovine pulmonary arterial endothelial cells by a mechanism not involving alterations in calcium fluxes. In this study, we determine whether verapamil inhibition of serotonin uptake occurs in other pulmonary cell types (bovine pulmonary artery smooth muscle cells), in cells from other organs and species (rat epididymal endothelial cells), and in intact organs (isolated rat lungs). We also compare the effects of verapamil with those of nifedipine and diltiazem. At concentrations of 10(-6) M or greater, verapamil is an inhibitor of serotonin uptake by cultured cells and isolated lungs. Nifedipine and diltiazem are weak inhibitors of serotonin uptake by cultured bovine cells only at suprapharmacologic doses and have no effect on serotonin uptake by isolated lungs. Surprisingly, nifedipine stimulates serotonin uptake by rat epididymal endothelial cells. We conclude that inhibition of serotonin uptake by verapamil is a generalized phenomenon, occurring in a variety of cell types, in intact organs, and in different species that does not occur consistently with other calcium channel blockers.  相似文献   

20.
Effects of the calcium channel blockers nifedipine and verapamil on spino-bulbo-spinal (SBS) reflexes were studied in rats anesthetized with a mixture of urethane and chloralose; the reflexes evoked by activation of the high-threshold and low-threshold (tactile) somatic afferents were tested. The blockers were microinjected into then. reticularis gigantocellularis, the main structure where the SBS reflexes are relayed. Nifedipine (10–4 M) evoked fast (with a latency of 1–2 min) and significant (20%–60%) suppression of both the high-threshold and low-threshold SBS reflexes. The reflexes recovered within 40 to 90 min. Lower concentrations of nifedipine (10–5 M) either did not modify both types of the SBS reflexes (in 25% of experiments) or facilitated these reflexes by 16%–40% within 15–20 min. Microinjections of verapamil affected the SBS reflexes in a similar manner, but the effects were shorter. Possible ways by which the L-type calcium channels are involved in the transmission of afferent impulsation of different modalities (nociceptive and non-nociceptive) are discussed.Neirofiziologiya/Neurophysiology, Vol. 26, No. 4, pp. 270–275, July–August, 1994.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号