首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is commonly observed in hypotrichs that new ciliary rudiments arise directly from or in close juxtaposition to certain pre-existing ciliary elements. Oral primordia often are initiated near specific cirri, cirral rudiments frequently arise as a result of the disaggregation of certain old cirri, and new dorsal ciliature is formed within pre-existing ciliary rows. In the first 2 situations it has been demonstrated experimentally that neither the old ciliature in question nor the specific cortical site marked by that ciliature is essential for the appearance of the new cirral rudiment. The experimental analysis done thus far suggests that the positions of oral and cirral primordia are determined by interacting gradients established in relation to certain reference points. The nature of the reference points is not fully elucidated; in some cases at least these points appear to be more closely related to topographic features of the cell than to specific pre-existing cortical structures. In the dorsal ciliary rows of Euplotes new ciliary units are formed usually and perhaps invariably in close proximity to old ones, and are generally oriented along the axis of the pre-existing row. The result is a tendency to perpetuate the preexisting row number across cell generations. Changes in row number, however, can occur as a result of occasional formation of new units at right angles to the row, a process that is much enhanced in certain homozygous segregants (basal body deficient). The optimal row number (stability range) as well as the number of ciliary units are under genic control. In addition, the spatial pattern of distribution of ciliary units among rows is invariant in all of the material examined. This pattern is presumed to result from an underlying field whose geometry is independent of both the number of units and the number of rows.  相似文献   

2.
Summary The unique monoclonal antibody FXXXIX 12G9 obtained againstTetrahymena cortices was used to label cytoskeletal structures related to basal body proliferation inParaurostyla weissei. The antibody binds to an amorphous material interconnecting basal bodies in compound ciliary structures: dorsal units, cirri and membranelles in interfission cells, and filamentous structures supporting the primordia of ciliary structures and fission line in dividing cells. The antibody visualized meridional filaments preceding proliferation of new basal bodies in the oral primordium and structures accompanying all developing ciliary primordia. It congregated in differentiating new procirri and membranelles, whereas another population of transient meridional structures accompanied the final distribution of new structures. A meridional filament connecting transverse cirri with the oral apparatus, marking the future stomatogenic meridian, persisted in both division products until completion of cell elongation. The fission line was found to originate from an anterior extension of the pre-oral filament toward the parental oral structures. It then encircled the cell's midbody demarcating the boundary between daughter cells; two additional circumferential structures bordering the anterior and posterior ends of differentiating division products participate in formation of the new poles. They disappear after separation of daughter cells and completion of resorption of parental ciliature. In the enhanced multi-left-marginal mutant expressing gross hyperduplication of basal bodies, the location of the 12G9 antigen corresponded to that in wild-type cells. The sequence of formation of meridional filaments in the mutant was found to be altered. The filaments in the left lateral domain preceded the formation of the preoral filament, yet the temporal pattern of basal body assembly was not modified. The fission line, as in wild-type cells, originated in connection with the oral primordium. We conclude that the nucleation of the filamentous structures bearing the 12G9 antigen and the basal body assembly occur by independent mechanisms reading the same cell cycle signals. We suggest that the 12G9-antigen-bearing protein might be similar to septins: involved in signaling the position of the oral primordium and the fission line and functioning in establishing and maintaining the asymmetric cortical domain characteristics.Abbrevations AZM zone of adorai membranelles - bb basal bodies - CC caudal cirri - FC frontal cirri - Fmf frontal meridional filament - FTV the primordia of fronto-ventro-transverse cirri - LD, RD dorsal rows of bristle units - LM, RM left or right marginal cirral row - OA oral apparatus - OP primordium of the adoral membranelles - pLM, pRM primordium of the left or right marginal cirri - pLD, pRD primordia of the left or right dorsal bristle rows - pUM primordium of the undulating membranes - TC transverse cirri - UM undulating membranes - VC ventral cirral rows  相似文献   

3.
The pattern of proliferation of new basal bodies in ciliary rows (somatic proliferation) in Tetrahymena was observed. Starved and refed cells were used, because proliferation in these cells is more pronounced than that under other circumstances. The formation of new basal bodies is locally determined by the position of "old" pre-existing basal body (short range determination). However, the probability of proliferation associated with any given "old" basal body differs very much. This probability is determined by the spatial coordinates of the particular region of the cell (long range determination); however some randomness in this process was also observed. Two different gradients of proliferation were found. The first gradient is circumferential with a maximum number of new basal bodies added in ciliary rows n, 1, 2 and 3 and the minimum number added in ciliary rows 7, 8 and 9. The second is an antero-posterior gradient with the highest number of new basal bodies added in the midbody region. Moreover, at least in some cases, new oral primordia first appear, as a random proliferation of new basal bodies adjacent to a few old cilia of ciliary row No. 1, resembling somatic proliferation. Then 2,3 or even more clumps of basal bodies appear, each having one old cilium posteriorly. These clumps, however, are not linear groups within the ciliary row but instead they form small fields of basal bodies. These findings suggest, that the same two-gradient system for new basal body addition operates during somatic proliferation and also determines the position of the new oral primordium as the site of the highest gradient value at the intersection of two gradients.  相似文献   

4.
ABSTRACT. The sequence of formation and ciliation of basal bodies and the subsequent organization of compound ciliary structures of the oral apparatus of Tetrahymena thermophila was reanalyzed with the aid of scanning electron microscopy of cells in which the epiplasmic layer was exposed, as well as by light microscopy of protargol-impregnated specimens. This combination of methods allowed the delineation of numerous steps in the patterning of the oral ciliature, some of which have received little or no previous attention. Highlights include: the initial formation of “strings” of nonciliated new basal bodies in juxtaposition to relatively few basal bodies of the stomatogenic kinety; generation of basal body pairs, roughly oriented along the anteroposterior axis of the cell, that later align side-by-side to assemble promembranelles; condensation and reorientation of promembranelles simultaneous with addition of a third row of basal bodies anterior to the original two rows; production of a very short fourth row of basal bodies at the anterior right end of each developing membranelle; generation of the outer basal body row of the undulating membrane (UM) after alignment of the inner row, with transient ciliation of the inner row preceding permanent ciliation of the outer row; limited basal body resorption at the ends of membranelles; and sculpturing of the right ends of membranelles by a movement of basal bodies associated with formation of the ribbed wall adjacent to the UM. In the old anterior oral apparatus a repetition of the processes of generation of a new outer UM row and sculpturing of right ends of membranelles takes place in synchrony with the corresponding events in the oral primordium, following prior shedding of the old outer UM row and loss of the sculptured pattern in association with temporary regression of the ribbed wall micro-tubules. Oral development is complex, with different processes involved in the assembly of the membranelles and the UM, and with a sequence of distinct events involved in the generation of each of these structures. Speaking comparatively, membranelle development follows the same pathway in many, perhaps all, ciliates in which these structures or their homologues develop from a common stomatogenic field.  相似文献   

5.
The cell surface of Tetrahymena thermophila is made up of an anterior region in which virtually all basal bodies of ciliary rows are ciliated, and the remainder in which ciliated and unciliated basal bodies are fairly irregularly interspersed. This pattern persists through interfission development until the stage of appearance of the equatorial ring of gaps in the ciliary rows that marks the fission zone. The ciliation pattern then becomes subdivided, in large part through the rapid ciliation of contiguous basal bodies located posterior to the fission zone. We interpret this process as a wave of ciliation of preexisting basal bodies that propagates posteriorly from the site of the fission zone. The location, extent, and timing of the ciliation process are the same in inverted as in normally oriented ciliary rows, in spite of the fact that in inverted rows the visible fission zone gap is tardily formed and the local configuration of ciliature around this gap is abnormal. The putative ciliation wave thus does not depend directly upon the local manifestations of the fission zone. However, in a cell-division-arrest mutant, cdaA1, analyzed under conditions in which formation of fission-zone gaps is permanently prevented in some ciliary rows but not in all, it is found that the ciliation pattern becomes subdivided in those ciliary rows that express fission-zone gaps and fails to become subdivided in neighboring rows that fail to manifest gaps. We interpret this combination of findings to indicate that a signal localized at the cell equator initiates a set of polarized developmental events that simultaneously create and demarcate two cellular fields within what was previously one. We further suggest that the characteristic tandem cell division pattern of ciliates is fundamentally a process of segmentation, which might involve mechanisms of gradient subdivision analogous to those taking place during segmentation of insects and other multicellular organisms.  相似文献   

6.
Ciliated protozoa possess cellular axes reflected in the arrangement of their ciliature. Upon transverse fission, daughter cells develop an identical ciliary pattern, ensuring perpetuation of the cellular phenotype. Experimentally manipulated cells can be induced to form atypical phenotypes, capable of intraclonal propagation and regeneration after encystment. One such phenotype in the ciliate Tetmemena pustulata (formerly Stylonychia pustulata) is the mirror-imaged doublet. These cells possess two distinct sets of ciliature, juxtaposed on the surfaces in mirror image symmetry, with a common anterior-posterior axis. We have examined whether individual ciliary components of Tetmemena mirror-image doublets are mirror imaged. Ultrastructural analysis indicates that despite global mirror imaging of the ciliature, detailed organization of the membranelles is reversed in the mirror-image oral apparatus (OA), such that the ciliary effective stroke propels food away from the OA. Assembly of compound ciliary structures of both OAs starts out identically, but as the structures associated with the mirror-image OA continue to form, the new set of membranelles undergoes a 180° planar rotation on the ventral surface relative to the same structures in the typical OA. The overall symmetry of the OA thus appears to be separable from the more localized assembly of individual basal bodies. True mirror imagery of the membranelles would require new enantiomorphic forms of the individual ciliary components, particularly the basal bodies, which is never observed. These observations suggest a mechanistic hypothesis with implications for the development of left-right asymmetry not only in ciliates, but perhaps also in development of left-right asymmetry in general.  相似文献   

7.
The present study reveals a deficiency in the number of ciliated basal bodies along 180° rotated ciliary rows (IRs) in Tetrahymena. This feature is common to IRs recently generated in young clones with stable corticotypes (total number of ciliary rows per cell), irrespective of the number of IRs present per cell or their cellular location, and is found before the cell loses any of the IRs. In cells bearing three IRs, the IRs on the two sides of the inversion immediately next to normal ciliary rows (junctures) exhibit an even greater deficiency in ciliated basal bodies, compared to the IR located internally between two other IRs; the normal ciliary rows flanking the inversion are also somewhat deficient. These observations show that the IRs of Tetrahymena are structurally deficient, hence developmentally defective, and suggest that they are intrinsically unstable. We propose that basal body development along IRs tends to be truncated before the stage of ciliation; such basal bodies would fail to acquire the potential to serve as nucleating centers for new basal body development in the next round of basal body proliferation, leading to the eventual loss of the IRs. © 1992 Wiley-Liss, Inc.  相似文献   

8.
The present work describes the morphology and infraciliature of a new hypotrichous ciliate, Clapsiella magnifica gen. n., sp. n., found in rewetted soil from a temporal pond in Argentina. It was studied by means of live observation and protargol impregnation. Its main diagnostic features are: Flexible hypotrich measuring 250–320 μm × 70–140 μm in vivo; two macronuclear nodules and 4–6 micronuclei. Single contractile vacuole. Cytoplasm transparent, cortical granules absent. Somatic ciliature composed of a tricorona of cirri, three buccal(?) cirri, 6–9 ventral rows, 3–5 right marginal(?) rows, one left marginal row, and 12–17 transverse cirri. Dorsal pattern rather complicated, with about 14 kineties and kinety fragments, with scattered kinetids among them; 17–28 caudal cirri arranged in three rows on dorsal kineties 1, 3, and 7. Remarkably, dorsal kinetids have two or four basal bodies, bearing a stiff bristle arising from left anterior basal body. Adoral zone composed of 70–92 membranelles, occupying about 40% of body length in protargol preparations; paroral and endoral curved, resembling a cyrtohymenid pattern. The peculiar dorsal ciliary arrangement and the unique combination of other characters require the establishment of a new genus for this new species, which is considered incertae sedis in the Hypotricha but possibly related to the oxytrichids.  相似文献   

9.
Abstract. Ciliary filter-feeding structures of gymnolaemate bryozoans—adults of Flustrellidra hispida and Alcyonidium gelatinosum , larvae of Membranipora sp.—were studied with SEM. In F. hispida and A. gelatinosum , the distal part of each tentacle has a straight row of stiff laterofrontal cilia which carry out "ciliary sieving" to capture suspended food particles that are subsequently transported downward towards the mouth by tentacle flicking; both structure and function resemble those of stenolaemate tentacles. The proximal part of the tentacle and of the ciliary ridge of a cyphonautes larva have strikingly similar structures, except that the laterofrontal cells are monociliate in the adults and biciliate in the larvae. The laterofrontal cells of the tentacles are arranged in a zigzag row and their cilia form two parallel rows, a frontal and a lateral row. The latter probably forms the sieve of stiff filter cilia in front of the water-pumping lateral cilia, whereas the frontal row appears to be held close to the frontal ciliary band of the tentacle. The biciliate laterofrontal cells of the cyphonautes larva have the cilia arranged in similar rows. The detailed morphological similarities between the ciliary bands of adult and larval filtering structures suggest that the feeding mechanisms are similar, contrary to what has been previously thought.  相似文献   

10.
ABSTRACT. Ultrastructural studies of the trophont of the epizooic loricate peritrich, Circolagenophrys ampulla, show that the body conforms to the basic peritrich pattern. The lorica is dome-shaped, and the trophont is joined to it by attachment organelles. A single row of barren aboral kinetosomes is present. In telotroch formation, as cytokinesis proceeds, a band of aboral kinetosomes develops, running posteroventrally in an arc from the base of the epistomial disc. In one instance, postciliary microtubules were seen associated with the kinetosomes of the adoral polykinety in a dividing organism. In the fully developed telotroch there are several distinctive structures. In the midaboral region there is a scopula with numerous barren kinetosomes in the epiplasm underlying the pellicle. Surrounding the rim of the aboral surface is a tripartite fringe which overlies the base of the aboral ciliary girdle. The outer layer of this fringe contains regularly spaced electron-dense striations and the middle region contains microfilaments. The aboral ciliary girdle forms a complete ring. It is composed of diagonal rows of kinetosomes, 8–9 in each row. Striated fibers run between the rows of kinetosomes. They bend at the ends of the rows and continue for some distance below the outer rim of the aboral surface. Running beside each striated fiber is a band of paracrystalline material. Several distinctive structures are associated with the kinetosomes and striated fibers of the aboral girdle. In the telotroch many of the adoral cilia are absent but the adoral kinetosomes are still present. The possible functions of the specializations of the aboral surface in settlement of the telotroch, and the relationship between telotroch formation and the molting behavior of the crustacean host are discussed.  相似文献   

11.
SYNOPSIS. The structure and morphogenesis of the ventral ciliature of Paraurostyla hymenophora (Stokes) are described. The oral primordium apparently originates in association with transverse cirrus #6, from which it migrates anteriorly simultaneous with kinetosomal proliferation. The primordium eventually forms an elongate ciliary field from which the future opisthe's fronto-ventro-transverse (FVT) and undulating membrane primordial fields arise. Concomitantly, the future proter's FVT primordial field is initiated by the disaggregation of frontal cirri #4, #5, and #6. Primordia then develop simultaneously within marginal and ventral cirral rows by a disaggregation of cirri within the respective rows, and do not give rise to new cirri until the FVT fields complete segregation into discrete cirri. Near the completion of cirral production from the FVT primordia, each ventral cirral primordium (VCP) forms the 2 rightmost transverse cirri. Segregation of new cirri within the marginal cirral primordia and VCP then occurs, eventually replacing all old cirri within their respective marginal and ventral cirral rows. At the end of cortical morphogenesis, all old ciliary organelles, with the exception of the adoral zone of membranelles, are either reorganized or replaced. These results suggest an evolutionary affinity between the ventral and marginal cirral rows and raise questions about the control of the developmental competence of individual primordia.  相似文献   

12.
包囊游仆虫休眠包囊中,各类纤毛器的纤毛基体上方的大部分纤毛杆退化,或仅保留毛基体,有时部分额腹棘毛的毛基体也瓦解消失。残留纤毛的纤毛杆周围微管和中央微管仍具有“9 2”结构特征,也有少数纤毛杆出现2套“9 2”微管共处于一层纤毛膜内的现象。毛基体中周围三联体微管的中央形成微管形结构聚合体,基体附属结构仅存在基体间连接及纤毛器托架的残余物;非纤毛区皮层表膜下未见微管层。纤毛区皮层含纤毛器腔周围微管层(相当于表膜下微管层)、纤毛器深部及附近的微管束和分散的微管群。并且,纤毛区皮层囊泡内含有呈不同形态的纤毛杆结构;大核核孔明显变大,核孔数目减少,核孔内膜附着染色质。  相似文献   

13.
SYNOPSIS. The adult Tokophrya infusionum does not possess cilia, but has 20–30 barren basal bodies arranged in 6 short rows adjacent to the contractile vacuole pore. During reproduction, which is by internal budding, the contractile vacuole sinks into the parent along with the invaginating membranes that form the embryo and the wall of the brood pouch. The 6 rows of basal bodies radiate away from the pore and elongate to form 5 long ciliary rows, that encircle the anterior half of the embryo, and 1 short row at the posterior end. The contractile vacuole pore, along with several barren basal bodies, remains in the parent when the embryo is completed. The pore rises to the surface when the embryo is born. New basal bodies are then formed in the parent to replace those which were incorporated into the embryo, and formation of another embryo may begin. The cilia of the embryo are partially resorbed 10 min after the start of metamorphosis, with depolymerization of the ciliary microtubules. Later, the cilia and most of the basal bodies disappear completely, except for a group of barren basal bodies near the embryo's contractile vacuole pore, which form 6 rows and serve as an anlage for the basal bodies and cilia that arise during embryogenesis. There is, therefore, an organized infraciliature in Suctoria throughout their life cycle, and a distinct continuity of basal bodies across the generations.  相似文献   

14.
Ctenophores, or comb jellies, are a distinct phylum of marine zooplankton with eight meridional rows of giant locomotory comb plates. Comb plates are the largest ciliary structures known, and provide unique experimental advantages for investigating the biology of cilia. Here, I review published and unpublished work on how ctenophores exploit both motile and sensory functions of cilia for much of their behavior. The long‐standing problem of ciliary coordination has been elucidated by experiments on a variety of ctenophores. The statocyst of ctenophores is an example of how mechanosensory properties of motile cilia orient animals to the direction of gravity. Excitation or inhibition of comb row beating provides adaptive locomotory responses, and global reversal of beat direction causes escape swimming. The diverse types of prey and feeding mechanisms of ctenophores are related to radiation in body form and morphology. The cydippid Pleurobrachia catches copepods on tentacles and undergoes unilateral ciliary reversal to sweep prey into its mouth. Mnemiopsis uses broad muscular lobes and ciliated auricles to capture and ingest prey. Beroë has giant smooth muscles and toothed macrocilia to rapidly engulf or bite through ctenophore prey, and uses reversible tissue adhesion to keep its mouth closed while swimming. Ciliary motor responses are calcium‐dependent, triggered by voltage‐activated calcium channels located along the length (reversed beating) or at the base (activation of beating) of ciliary membranes. Ciliary and muscular responses to stimuli are regulated by epithelial and mesogleal nerve nets with ultrastructurally identifiable synapses onto effector cells. Post‐embryonic patterns of comb row development in larval and adult stages are described and compared with regeneration of comb plates after surgical removal. Truly, cilia and ctenophores, like love and marriage, go together like a horse and carriage.  相似文献   

15.
The morphogenesis of the outer segments of retinal rods was studied mainly in the kitten before the opening of the eye, and the probable sequence of the morphogenetic stages is deduced. Since the development of retinal rods is not synchronous, the deductions were based on observations of many single and serial sections. One centriole extends ciliary tubules of about 0.5 µ long, in the growing primitive cilium. Beyond this length, each ciliary tubule becomes a row of small vesicles (called "ciliary vesicles" in this paper), which penetrate into the distal region of the cilium. Where the ciliary vesicles establish contact with the plasma membrane of the distal region of the cilium, more or less deep infoldings of the plasma membrane are observed. In the distal region can be seen rows of tubular or vesicular structures. A few of these membranous structures are continuous with the bottoms of the infoldings. At the following stage, the infoldings disappear and the ciliary vesicles lose contact with the distal plasma membrane. Nonetheless, the formation of the tubular structures continues in the distal region of the primitive outer segment. The tubular structures appear to be transformed into the primitive rod sacs by sidewise enlargement. At a subsequent time, presumably, these primitive rod sacs flatten and are rearranged into a position perpendicular to the long axis of the outer segment. The detailed structure of the basal body of the connecting cilium was also studied by means of serial sections.  相似文献   

16.
The ciliary (kinetid) structures of the ciliate Strobilidium velox have been examined with scanning and transmission electron microscopes. Somatic kineties consist of a linear row of kinetosomes (monokinetids) and short cilia lying partially beneath a thin fold of cytoplasm. The only fibrillar kinetid structure extending from the kinetosomes is a transverse ribbon of microtubules. The paroral membrane is a single-file polykinetid possessing a possible transverse ribbon of microtubules and a nematodesma. The oral polykinetids or membranelles are complex, with microtubules extending from both anterior and posterior rows of cilia. While the kinetid structures do not satisfy the criteria for the order Choreotrichida, they are similar to the tintinnids in several other relevant ways. Strobilidium velox is proposed to be an unusual ciliate that is an exception to the concept that somatic kinetids are conservative and reliable phylogenetic indicator structures.  相似文献   

17.
A terrestrial oxytrichid ciliate Paraparentocirrus sibillinensis n. gen., n. sp., which was found in soil samples of a beech forest stand within the National Park of Sibillini Mountains, Italy, was investigated using live observation and protargol impregnation. The morphology of interphase, morphogenesis, and molecular phylogeny inferred from SSU rDNA sequences of this ciliate were studied. Paraparentocirrus n. gen., is mainly characterized by a semirigid body, an undulating membrane in the Oxytricha pattern, six fronto‐ventral (FV) rows, the absence of transverse cirri, one right and one left row of marginal cirri, four dorsal kineties, two dorsomarginal rows, and caudal cirri at the end of dorsal kinety 4. During morphogenesis, oral primordia develop through the proliferation of basal bodies from some cirri of FV rows 4 and 5, and FV row 6 takes part in the anlagen formation of the proter. The dorsal morphogenesis was typical of oxytrichids, with simple fragmentation of dorsal kinety 3, and the dorsomarginal rows developed from the right marginal row. Phylogenetic analyses based on the SSU rDNA sequences support the classification of this new genus in the stylonychines.  相似文献   

18.
The number of basal bodies and cilia along pole-to-pole ciliary rows was enumerated in Tetrahymena thermophila cells sampled during the rapid-exponential phase of culture growth in three different media that supported generation times ranging from 2 to 4 hr. The time required for oral development was nearly constant in the three media, and thus most of the differences in generation time were accounted for by differences in the interval prior to the onset of oral development (stage 0), which ranged from 50% of the generation time in the “poorest” medium to 20% in the “richest.” There was very little increase in number of basal bodies and of cilia along ciliary rows during stage 0, irrespective of the duration of this stage. The bulk of the increase took place during oral development, following a time course suggestive of coordination wth oral development. The same temporal pattern of increase was found in several ciliary rows, although the proportion of basal bodies that were ciliated differed among rows. There is no simple relationship between the number of basal bodies along ciliary rows and cell length, surface area, or volume. However, a large and constant proportion of the total division-to-division cell growth took place during the interval prior to the onset of oral development, suggesting that an ensemble of developmental events, including oral development and an associated activation of the remainder of the cell surface, may be triggered by attainment of a threshold cell size.  相似文献   

19.
SYNOPSIS The cortical infraciliature of Kuklikophrya dragescoi gen. n., sp. n. is composed of double kinetosomes. Each kinetosome has transverse fibers. The anterior transverse fibers are associated with a sheet of dense material and the posterior transverse fibers are directed toward the posterior part of the body. The posterior kinetosome of a pair has only a short protuberance in the position of the kinetosomal fiber. The cortex has a well developed alveolar layer and a thick ecto-endoplasmic boundary. A distinctive characteristic of the buccal ciliature is the circumoral ciliature whose infraciliature is made up of pairs of cilia-bearing kinetosomes. The antero-posterior polarity of the paroral segment is in inverse relationship to that of the remaining ciliature of the organism. The adoral and preoral ciliary organelles consist of 2 rows of kinetosomes, each of which bears postciliary fibers. A frame of nematodesmata surrounds the cytopharynx which is supported by microtubular bands which impart to it a very specific laminated appearance. The “phagoplasm” is formed by “vermicelli”-like vesicles. The micronucleus is found in the perinuclear area of the macronucleus.  相似文献   

20.
The stigmatal cells in the branchial basket of ascidians from a number of genera have been examined as to the nature and distribution of their intercellular junctions. The branchial wall consists of ciliated and parietal cells; the ciliated cells are arranged in seven rows and are associated by junctions with other cells in the same row as well as with those in adjacent rows. They are also associated by junctions with peripheral parietal cells. Junctions between adjacent ciliated cells in all cases exhibit tight junctions or zonulae occludentes. However, these cell borders also possess fasciae or zonulae adhaerentes if they are in the same row and the ciliary rootlets insert-into these junctions. If the cells are in adjacent rows they exhibit adhaerentes junctions only in species belonging to the orders Phlebobranchiata and Aplousobranchiata. In contrast, if the cells in adjacent rows belong to the order Stolidobranchiata. they never exhibit any adhaerentes junctions and the ciliary rootlets of the basal bodies from the cilia insert instead into the tight junctions and the non-junctional membrane below them. At the homologous junctional borders between adjacent parietal cells and also at heterologous junctional borders between parietal and ciliated cells, tight junctions alone occur, with no co-existing adhaerentes junctions along their lateral borders. Again, fibrils from ciliary rootlets insert into zonulae occludentes. This shows that tight junctions are capable both of forming permeability barriers, in that they can be seen to prevent the entry of exogenous tracers such as lanthanum, and of acting as adhesive devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号