首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Nuphar lutea is an amphibious plant with submerged and aerial foliage, which raises the question how do both leaf types perform photosynthetically in two different environments. We found that the aerial leaves function like terrestrial sun-leaves in that their photosynthetic capability was high and saturated under high irradiance (ca. 1,500 μmol photons m−2 s−1). We show that stomatal opening and Rubisco activity in these leaves co-limited photosynthesis at saturating irradiance fluctuating in a daily rhythm. In the morning, sunlight stimulated stomatal opening, Rubisco synthesis, and the neutralization of a night-accumulated Rubisco inhibitor. Consequently, the light-saturated quantum efficiency and rate of photosynthesis increased 10-fold by midday. During the afternoon, gradual closure of the stomata and a decrease in Rubisco content reduced the light-saturated photosynthetic rate. However, at limited irradiance, stomatal behavior and Rubisco content had only a marginal effect on the photosynthetic rate, which did not change during the day. In contrast to the aerial leaves, the photosynthesis rate of the submerged leaves, adapted to a shaded environment, was saturated under lower irradiance. The light-saturated quantum efficiency of these leaves was much lower and did not change during the day. Due to their low photosynthetic affinity for CO2 (35 μM) and inability to utilize other inorganic carbon species, their photosynthetic rate at air-equilibrated water was CO2-limited. These results reveal differences in the photosynthetic performance of the two types of Nuphar leaves and unravel how photosynthetic daily rhythm in the aerial leaves is controlled.  相似文献   

2.
The photosynthetic development of pedunculate oak ( Quercus robur L.) sun leaves in a mature woodland canopy in Oxfordshire, southern England, was investigated in situ during 3 years with contrasting weather conditions. Development of full photosynthetic capacity (indicated by light-saturated net assimilation rates, A(max), typical of the summer period) took between approximately 50 and 70 days after budbreak in different years. This slow development means that these leaves do not utilise a substantial fraction of the seasonal peak of solar irradiance. During the late autumn senscence period the photosynthetic capacity declined over a 2-week period, but as this is a time of low irradiance, the loss of potential photosynthesis was relatively small. The consequences of these developmental changes and differences in bud break dates for daily and seasonal leaf carbon balance were investigated through a simple light-response photosynthetic model. Seasonal changes in photosynthetic capacity would decrease annual carbon uptake per unit leaf area by about 23% compared to that potentially possible if leaves photosynthesised at peak rates throughout the growing season. This difference is likely to be up to 30% larger in years with late budburst and as low as 18% in years with early budburst.  相似文献   

3.
Net phytoplankton (> 20 μm) comprised 51 ± 9% of the total chlorophyll (Chl) in a Skeletonema costatum– dominated spring bloom in Delaware Bay. The net phytoplankton had low C:N and high protein: carbohydrate ratios, indicating that their growth was nutrient-replete. Their photosynthetic responses were characterized by low specific absorption, low light-limited and light-saturated rates of photosynthesis, and high quantum yields, indicative of acclimation to low irradiance and internal self-shading. High fucoxanthin: Chi ratios also indicated low light acclimation, but high photoprotective xanthophyll: Chi ratios suggested a high capacity for photoprotective energy dissipation. Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) could be activated and deactivated in response to changes in irradiance and was fully activated at the surface of the water column and fully deactivated in aphotic deep water. Maximum Rubisco activity was correlated with Rubisco content and bulk protein content of the phytoplankton and with light-saturated rates of photosynthesis measured in short (< 20-min) incubations. Long (60-min) incubations caused a decrease in the light-saturated rate of photosynthesis, possibly because of feedback limitation. While feedback limitation is unlikely to occur in the water column, it should be considered when estimating productivity in well-mixed waters from fixed light-depth incubations.  相似文献   

4.
Summary During five different periods between Nov. 1982 and Aug. 1983, the diurnal patterns exhibited in photosynthetic CO2 uptake and stomatal conductance were observed under natural conditions on twigs of Cistus salvifolius, a Mediterranean semi-deciduous shrub which retains a significant proportion of its leaves through the summer drought. During the same periods, net photosynthesis at saturating CO2 partial pressure was measured on the same twigs as a function of irradiance at different temperatures. From these data, photosynthetic capacity, defined here as the CO2- and light-saturated net photosynthesis rate, was obtained as a function of leaf temperature. C. salvifolius is a winter growing species, shoot growth being initiated in Nov. and continuing through May. Photosynthetic capacity was quite high in Nov., March and June, exceeding 40 mol m-2 s-1 at optimum temperature. In Dec., photosynthetic capacity was somewhat reduced, perhaps due to low night-time temperatures (<5°C) during the measurement period. In Aug., capacity in oversummering shoots at optimum temperature fell to less than 8 mol m-2 s-1, due to water trees and perhaps leaf aging. Seasonal changes in maximal photosynthetic rates under ambient conditions were similar, and like those found in co-occurring evergreen sclerophylls. Like the evergreens, Cistus demonstrated considerable stomatal control of transpirational water loss, particularly in oversummering leaves. During each measurement period except Aug. when capacity was quite low, the maximum rates of net photosynthesis measured under ambient conditions were less than half the measured photosynthetic capacities at comparable temperatures, suggesting an apparent excess nitrogen investment in the photosynthetic apparatus.  相似文献   

5.
F. Yoshie  S. Kawano 《Oecologia》1986,71(1):6-11
Summary Seasonal changes in photosynthetic capacity, and photosynthetic responses to intercellular CO2 concentration and irradiance were investigated under laboratory conditions on intact leaves of Pachysandra terminalis. Photosynthetic capacity and stomatal conductance under saturating light intensity and constant water vapor pressure deficit showed almost the same seasonal trend. They increased from early June just after the expansion of leaves, reached the maximum in late-Septemer, and then decreased to winter. In over-wintering leaves they recovered and increased immediately after snow-melting, reached a first maximum in late April, and then decreased to early July in response to the reduction of light intensity on the forest floor. There-after, they increased from mid August, reached a second maximum in late September, and then decreased to winter. The parallel changes of photosynthesis and stomatal conductane indicate a more or less constant intercellular CO2 concentration throughout the year. The calculated values of relative stomatal limitation of photosynthesis were nearly constant throughout the year, irrespective of leaf age. The results indicate that the seasonal changes in light-saturated photosynthetic capacity are not due to a change of stomatal conductance, but to a change in the photosynthetic capacity of mesophyll. Indeed, carboxylation efficiency assessed by the inital slope of the Ci-photosynthesis curve changed in proportion to seasonal changes of the photosynthetic capacity in both current-year and over-wintered leaves. High photosynthetic capacity in current-year leaves as compared with one-year-old leaves was also due to the high photosynthetic capacity of mesophyll. Nevertheless, stomatal conductance changed in proportion to photosynthetic capacity, indicating that stomatal conductance is regulated by the mesophyll photosynthetic capacity such that the intercellular CO2 concentrations are maintained constant. The quantum yield also changed seasonally parallel with that in the photosynthetic capacity.Contribution No. 2893 from the Institute of Low Temperature Science  相似文献   

6.
Plants of Solidago virgaurea L. from exposed and shaded habitats differ with respect to the response of the photosynthetic apparatus to the level of irradiance during growth. An analysis was carried out on leaf characteristies which might be responsible for the differences established in the rates of Hght-saturated CO2 uptake. The clones were grown in controlled environment chambers at high and low levels of irradiance. Light-saturated rates of photosynthesis and transpiration were measured at natural and lower ambient CO2 concentrations. A low temperature dependence of light-saturated CO2 uptake at natural CO2 concentrations, and a strong response to changes in stomatal width, suggested that the rate of CO2 transfer from ambient air towards reaetion sites in chloroplasts was mainly limiting the pholosynthetic rate. Resistances to transfer of CO2 for different parts of the pathway were calculated. There was a weak but significant correlation between stomatal conductance and the product stomatal frequency ± pore length. Mesopbyll conductance and dry weight per unit area were highly correlated in leaves not damaged by high irradiance. This suggests that mesophyll conductance increases with increasing cross sectional area (per unit leaf area) of the pathways of CO2 transfer in the mesophyll from cell surfaces to reaction sites. The higher light-saturated photosynthesis in clones from exposed habitats when grown at high irradiance than when grown at low irradiance was attributable mainly to a lower mesophyll resistance. In shade clones the effect upon CO2 uptake of the increase in leaf thickness when grown at high irradiance was counteracted by the associated inactivation of the photosynthetic apparatus. The difference in CO2 uptake present between clones from exposed and shaded habitats when preconditioned to high irradiance resulted from differences in both mesophyll and stomatal resistances. A few hybrid clones of an F1-population from a cross between a clone from an exposed habitat and a clone from a shaded habitat reacted, on the whole, in the same way as the exposed habitat parent. When grown at high irradiance, the hybrid clones showed higher photosynthetic rates than either parent; this was largely attributable to the unusually low stomatal resistance of the hybrid leaves.  相似文献   

7.
TL Pons 《Photosynthesis research》2012,113(1-3):207-219
The effect of temperature and irradiance during growth on photosynthetic traits of two accessions of Arabidopsis thaliana was investigated. Plants were grown at 10 and 22?°C, and at 50 and 300?μmol photons?m(-2)?s(-1) in a factorial design. As known from other cold-tolerant herbaceous species, growth of Arabidopsis at low temperature resulted in increases in photosynthetic capacity per unit leaf area and chlorophyll. Growth at high irradiance had a similar effect. However, the growth temperature and irradiance showed interacting effects for several capacity-related variables. Temperature effects on the ratio between electron transport capacity and carboxylation capacity were also different in low compared to high irradiance grown Arabidopsis. The carboxylation capacity per unit Rubisco, a measure for the in vivo Rubisco activity, was low in low irradiance grown plants but there was no clear growth temperature effect. The limitation of photosynthesis by the utilization of triose-phosphate in high temperature grown plants was less when grown at low compared to high irradiance. Several of these traits contribute to reduced efficiency of the utilization of resources for photosynthesis of Arabidopsis at low irradiance. The two accessions from contrasting climates showed remarkably similar capabilities of developmental acclimation to the two environmental factors. Hence, no evidence was found for photosynthetic adaptation of the photosynthetic apparatus to specific climatic conditions.  相似文献   

8.
The main objective of the present work was to examine the effects of the red:far-red ratio (R:FR) prevailing during leaf development on the photosynthetic capacity of mature leaves. Plants of Phaseolus vulgaris L. cv. Balin de Albenga were grown from time of emergence in a controlled environment room, 25 ± 3°C, 12-h photoperiod, with different light treatments:a) high photosynthetic photon flux density (PPFD) = 800 μmol m−1 s−1+ high R:FR= 1.3;b) low PPFD= 300 μmol m−2 s−1+ high R:FR= 1.3; c) high PPFD=800 μmol m−2 s−1+ low R:FR= 0.7; d) low PPFD= 300 μmol m−2s−1+ low R:FR=0.7. With an R:FR ratio of 1.3, a decrease in irradiance during leaf growth reduced photosynthesis when measured at moderate to high PPFD; but when measured at low PPFD, leaves expanded under low irradiance actually had photosynthesis rates higher than those of leaves grown in high irradiance. A low R:FR ratio during development reduced the photosynthetic capacity of the leaves. In leaves expanded under R:FR = 0.7 and high irradiance photosynthesis was reduced by 42 to 89%, depending on the PPFD at which measurements were made, whereas for leaves developed at R:FR = 0.7 and low irradiance photosynthesis decreased by 21 to 24%, compared to leaves under R:FR = 1.3 and similar irradiance. The reduced photosynthetic capacity under R:FR = 0.7 and high irradiance. In natural environments, leaves may experience low R:FR conditions temporarily during their development, and this may affect their future photosynthetic capacity in full sunlight.  相似文献   

9.
This review summarizes current understanding of the mechanisms that underlie the response of photosynthesis and stomatal conductance to elevated carbon dioxide concentration ([CO2]), and examines how downstream processes and environmental constraints modulate these two fundamental responses. The results from free-air CO2 enrichment (FACE) experiments were summarized via meta-analysis to quantify the mean responses of stomatal and photosynthetic parameters to elevated [CO2]. Elevation of [CO2] in FACE experiments reduced stomatal conductance by 22%, yet, this reduction was not associated with a similar change in stomatal density. Elevated [CO2] stimulated light-saturated photosynthesis (Asat) in C3 plants grown in FACE by an average of 31%. However, the magnitude of the increase in Asat varied with functional group and environment. Functional groups with ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco)-limited photosynthesis at elevated [CO2] had greater potential for increases in Asat than those where photosynthesis became ribulose-1,5-bisphosphate (RubP)-limited at elevated [CO2]. Both nitrogen supply and sink capacity modulated the response of photosynthesis to elevated [CO2] through their impact on the acclimation of carboxylation capacity. Increased understanding of the molecular and biochemical mechanisms by which plants respond to elevated [CO2], and the feedback of environmental factors upon them, will improve our ability to predict ecosystem responses to rising [CO2] and increase our potential to adapt crops and managed ecosystems to future atmospheric [CO2].  相似文献   

10.
SUMMARY. 1. The common pennate diatom (Bacillaryiophyta) Fragilaria crotonensis Kitton showed strong periodicity in its photosynthesis -irradiance (P—I) relationship under summer conditions of high irradiance and temperature which damped progressively throughout the growth phase. Under winter conditions of low irradiance and temperature, weak periodicity was observed.
2. The amplitude of diel oscillations in photosynthesis as a function of irradiance under winter conditions showed only slight variation throughout the growth phase. Under summer conditions, however, amplitudes for both α and Pmax were highest in the early exponential phase, declining progressively during growth.
3. These results indicate that the occurrence of periodicity is dependent, in part, on the growth phase of the cells and, in part, on environmental parameters of irradiance and temperature variations under simulated summer and winter conditions.  相似文献   

11.
When nitrogen fixing cell cultures of Synechococcus RF-1 were subjected to an alternating lightdark regime (12 h:12 h), a cyclic decrease in the photosynthetic oxygen evolution potential was observed during the dark periods. This rhythm of net photosynthesis rate was maintained for at least two days after transition to continuous light. The decrease in net photosynthesis was accompanied by a stimulation of dark respiration. However, the magnitude of oxygen uptake was considerably smaller than the observed decrease in oxygen evolution. The photosynthetic activity of cells taken from the dark period was characterized by (i) a significantly lower quantum yield and (ii) a strong reduction in the light-saturated rate of photosynthesis. Growing the cultures on nitrate or under continuous light completely suppressed this rhythm. Protein synthesis was not necessary for the recovery of the light-saturated rate of photosynthesis during the light period. The cellular content of chlorophyll a and of phycobiliproteins did not vary between light and dark period, indicating that quantitative changes in the composition of the photosynthetic apparatus are not the basis for the observed oscillations. Regulatory modifications of the photosynthetic efficiency are proposed as an adaptation mechanism to adjust the intracellular oxygen concentration to the needs for nitrogenase activity.Abbreviation Chl chlorophyll  相似文献   

12.
BACKGROUND AND AIMS: Acclimation of photosynthesis to light and its connection with canopy nitrogen (N) distribution are considered. An interpretation of a proportionality between light-saturated photosynthesis and local averaged leaf irradiance is proposed by means of a simple model. MODEL: The model assumes (a) local irradiance drives synthesis of photosynthetic protein from metabolic N; (b) photosynthetic N is slowly degraded over approx. 5-7 d; (c) metabolic N is equally available through the canopy. CONCLUSIONS: The kinetics of acclimation at different light levels may provide a way of parameterizing and testing the model. The model provides a rationale for the proportionality assumption mentioned above, which, while it is consistent with much experimental work, is valuable because it allows canopy photosynthesis to be calculated analytically.  相似文献   

13.
Photosynthetic acclimation was studied in seedlings of three subtropical rainforest species representing early (Omalanthus populifolius), middle (Duboisia myoporoides) and late (Acmena ingens) successional stages in forest development. Changes in the photosynthetic characteristics of pre-existing leaves were observed following the transfer of plants between deep shade (1–5% of photosynthetically active radiation (PAR), selectively filtered to produce a red/far-red (R/FR) ratio of 0.1) and open glasshouse (60% PAR and a R/FR ratio of 1.1–1.2), and vice versa. The extent and rate of response of the photosynthetic characteristics of each species to changes in light environment were recorded in this simulation of gap formation and canopy closure/overtopping. The light regimes to which plants were exposed produced significant levels of acclimation in all the photosynthetic parameters examined. Following transfer from high to low light, the light-saturated rate of photosynthesis was maintained near pre-transfer levels for 7 days, after which it decreased to levels which closely approximated those in leaves which had developed in low light. The decrease in photosynthetic capacity was associated with lower apparent quantum yields and stomatal conductances. Dark respiration was the parameter most sensitive to changes in light environment, and responded significantly during the first 4–7 days after transfer. Acclimation of photosynthetic capacity to increases in irradiance was significant in two of the three species studied, but was clearly limited in comparison with that of new leaves produced in the high light conditions. This limitation was most pronounced in the early-successional-stage species, O. populifolius. It is likely that structural characteristics of the leaves, imposed at the time of leaf expansion, are largely responsible for the limitations in photosynthetic acclimation to increases in irradiance.  相似文献   

14.
This study was designed to understand the high variability characterizing primary production rates of microphytobenthos. The photosynthetic efficiency (αB) and photosynthetic capacity (PBmax) of the microphytobenthos were measured at different times of the day on two different dates (8 May and 7 July 1990). In July, unusually low light conditions were caused by the development of a brown tide (chrysophytes). Both light-limited and light-saturated photosynthesis changed at hourly and monthly scales. There was a linear relationship between αB and PBmax, suggesting a common response to environmental factors [αB= 0.0075(±0.00063)·PBmax+ 0.00097(±0.0071), R2= 0.94]. Incident irradiance at the sediment-water interface was the primary physical factor that explained variability of both αB (84%) and PBmax (92%). Temperature had a negative but minor effect that explained an extra 8% and 2% of the variance, respectively. There was no diel rhythm of αB and PBmax and incident irradiance was regulated by wind-induced currents. Therefore, microphytobenthos photosynthesis seemed to be primarily controlled by wind events in Baffin Bay.  相似文献   

15.
Pentaclethra macroloba (Willd.) Kuntze (Mimosaceae) is a dominant late-successional tree species in the Atlantic lowland forests of Costa Rica. Leaves of P. macroloba from three heights in the forest canopy were compared with leaves of seedlings grown in controlled environment chambers under four different irradiance levels. Changes in leaf characteristics along the canopy gradient paralleled changes resulting from the light gradient under controlled conditions. The effect of light or canopy position on light-saturated photosynthesis was small, with maximum photosynthesis increasing from 5 to 6.5 μmol m−-2 s−-1 from understory to canopy. Both chamber grown and field leaves showed large adjustments in photosynthetic efficiency at low light via reductions in dark respiration rates and increases in apparent quantum yields. Light saturation of all leaves occurred at or below 500 μmol m−-2 s−-1. Leaf thickness, specific leaf weight, and stomatal density increased to a greater extent than saturated photosynthesis with higher irradiance during growth or height in the canopy. As a result, there was a poor correspondence between leaf thickness and light-saturated photosynthesis on an area basis. It is concluded that Pentaclethra macroloba possesses the characteristics of a typical shade-tolerant species.  相似文献   

16.
Application of photorespiration concepts to whole stream productivity   总被引:1,自引:0,他引:1  
We conducted two-station diel surveys of dissolved oxygen content to estimate whole-stream productivity in the experimental streams of the Monticello Ecological Research Station for two years following channel reconstruction. Community productivity measurements compare well to previous measurements in these streams, but apparent hysteresis in the P/I relation was measured in over two-thirds of the diel surveys. Apparent hysteresis in photosynthesis with solar irradiance is a characteristic of photorespiration, and modeling the effect of light on whole-stream respiratory rates reduced the magnitude of P/I curve hysteresis and improved the predictions of dissolved oxygen content (DO) in the stream. Stream productivity models normally assume respiratory rates measured at night are constant throughout the day, but when this assumption yields apparent hysteresis in the P/I curve, the inclusion of a photorespiration model in the analyses of whole-stream productivity facilitates the comparison of photosynthesis and respiratory rates between different streams. The computed total daily consumption of oxygen by photorespiratory processes is proportional to the total daily photosynthetic production of oxygen in the streams. We also found that the diel DO curves occurring in the experimental streams are best described by a photorespiration model that utilizes a four hour moving average of irradiance. Accounting for photorespiration in the streams increases the apparent efficiency of photosynthesis, improves the accuracy of DO predictions, and reduces uncertainty in photosynthesis and respiratory rate estimates. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
F. Yoshie  S. Yoshida 《Oecologia》1987,72(2):202-206
Summary Seasonal changes in the photosynthetic characteristics of intact involucral leaves of Anemone raddeana were investigated under laboratory conditions. Net photosynthesis and constant water vapor pressure deficit showed almost the same seasonal trend. They increased rapidly from mid-April immediately after unfolding of the leaves and reached the maximum in late-April, before the maximum expansion of the leaves. They retained the maximum values until early-May and then decreased toward late-May with a progress of leaf senescence. The calculated values of intercellular CO2 concentration and relative stomatal limitation of photosynthesis showed no significant change throughout the season. The carboxylation efficiency as assessed by the initial slope of Ci-photosynthesis curve and the net photosynthesis under a high Ci regime varied seasonally in parallel with the change of the light-saturated photosynthesis. The results indicate that the seasonal changes in light-saturated net photosynthesis are not due to a change of stomatal conductance, but to a change in the photosynthetic capacity of mesophyll. Nevertheless, leaf conductance changed concomitantly with photosynthetic capacity, indicating that the seasonal change in stomatal conductance is modulated by the mesophyll photosynthetic capacity such that the intercellular CO2 concentrations is maintained constant. The shape of light-photosynthesis curve was similar to that of sun-leaf type. The quantum yield also changed simultaneously with the photosynthetic capacity throughout the season.Contribution No. 2965 from the Institute of Low Temperature Science  相似文献   

18.
We studied the diel migrations of several species of microorganisms in a hypersaline, layered microbial mat. The migrations were quantified by repeated coring of the mat with glass capillary tubes. The resulting minicores were microscopically analyzed by using bright-field and epifluorescence (visible and infrared) microscopy to determine depths of coherent layers and were later dissected to determine direct microscopic counts of microorganisms. Microelectrode measurements of oxygen concentration, fiber optic microprobe measurements of light penetration within the mat, and incident irradiance measurements accompanied the minicore sampling. In addition, pigment content, photosynthesis and irradiance responses, the capacity for anoxygenic photosynthesis, and gliding speeds were determined for the migrating cyanobacteria. Heavily pigmented Oscillatoria sp. and Spirulina cf. subsalsa migrated downward into the mat during the early morning and remained deep until dusk, when upward migration occurred. The mean depth of the migration (not more than 0.4 to 0.5 mm) was directly correlated with the incident irradiance over the mat surface. We estimated that light intensity at the upper boundary of the migrating cyanobacteria was attenuated to such an extent that photoinhibition was effectively avoided but that intensities which saturated photosynthesis were maintained through most of the daylight hours. Light was a cue of paramount importance in triggering and modulating the migration of the cyanobacteria, even though the migrating phenomenon could not be explained solely in terms of a light response. We failed to detect diel migration patterns for other cyanobacterial species and filamentous anoxyphotobacteria. The sulfide-oxidizing bacterium Beggiatoa sp. migrated as a band that followed low oxygen concentrations within the mat during daylight hours. During the nighttime, part of this population migrated toward the mat surface, but a significant proportion remained deep.  相似文献   

19.
Diel patterns of photosynthate biosynthesis by Antarctic freshwaterphytoplankton growing under the variable but continuous sunlightof summer were found to be similar in many respects to thosereported from other aquatic environments where light/dark periodsalternate. Lipid synthesis by freshwater phytoplankton in LakesVanda and Fryxell predominated during periods when solar radiationand photosynthesis were most intense; the inverse was generallytrue of the protein and polysaccharide fractions. The majorphotosynthetic end-products in both lakes were protein and polysaccharide,which together accounted for 60–81% of the total cellularcarbon incorporation. Less than 4% of the carbon was incorporatedinto lipid in Lake Vanda; >12% appeared in the lipid fractionin Lake Fryxell. The Lake Fryxell populations showed evidenceof photoinhibition of complete photosynthesis during ‘midday’when irradiance was most intense. Ik values, computed from thephotosynthesis irradiance relationships in Lake Fryxell, corroborateother studies suggesting that the phytoplankton populationsin permanently ice-capped Antarctic lakes are among the mostshade-adapted yet reported.  相似文献   

20.
Deciduous and evergreen species are segregated on northeast and southwest slopes of the southern Appalachian Mountains. The segregated distributions of three ericaceous shrubs (Rhododendron maximum valley positions; Rhododendron periclymenoides on northeast slopes; Kalmia latifolia on southwest slopes) were compared to the respective irradiance environments. Growth patterns of field plants, and photosynthetic acclimation of each species to three irradiance treatments in a phytotron were studied. Rhododendron maximum, an evergreen species, was found to be most sensitive to high radiation. In phytotron experiments, quantum yield, light saturated photosynthetic capacity, photosynthesis per chlorophyll, and water use efficiency decreased at high ambient irradiance for R. maximum. These characteristics limit the growth of R. maximum on high irradiance southwestern slopes. Both K. latifolia and R. periclymenoides were able to improve their photosynthetic performance at high ambient irradiance. Rhododendron periclymenoides, a deciduous species, was found to continue increasing leaf conductance at high irradiance without an increase in photosynthesis indicating a possible limitation by water in high light environments such as southwest slopes. Kalmia latifolia, an evergreen species, had reduced photosynthetic capacity and reduced water use efficiency when grown in low irradiance conditions which coincides with the higher K. latifolia abundance on high light, southwestern slopes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号