首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 602 毫秒
1.
A chimeric plant was observed in the F2 generation of a cross between a mutant cultivar, Ife BPC, and a germplasm line, TVu 2, in cowpea, Vigna unguiculata (L.) Walp. The chimeric plant had four lateral branches, one of which was intensely variegated, while the others were mostly green with few white sectors. F3 progeny from the intensely variegated branch of this plant were all variegated, while seed derived from the mostly green branches produced only green progeny. In subsequent generations, the descendants of the variegated branch bred true for the variegated trait, while those of the mostly green branches were also true-breeding for green colour. No pure-green or pure-white shoots were observed in any of the variegated plants examined in this study. Consequently, no pure-green or pure-white seedlings were produced from seeds harvested from the variegated plants. The results of reciprocal crosses between variegated and normal green plants indicate that variegation is inherited in a strictly uniparental maternal fashion. This is the first report of a cytoplasmically inherited mutation affecting foliage colour in cowpea. Received: 10 March 2000 / Accepted: 16 May 2000  相似文献   

2.
Fundamental genetic studies were initiated for the monoecious red alga Gelidium vagum. Color and sterility mutants were isolated and characterized to provide genetic tools, initially to identify hybrid plants when they occurred in crosses, and secondarily to eliminate self-fertilization altogether. When fertility phenotypes were scored, rapid onset of reproduction in culture was favored by long day-length, moderately high irradiance levels from fluorescent lights, warm temperature and the addition of Tris buffer to the medium. A recessive green mutant (designated grn 1) was characterized and used in subsequent crosses to allow a clear distinction between non-hybrid (green) and hybrid (red) offspring. Additional color mutants and a variety of reproductive mutants were also isolated and characterized. Male-sterile mutants had phenotypes ranging from apparently normal plants to those that produced no spermatia. Female-sterile mutants also included a variety of phenotypes, some plants having post-fertilization malfunctions during the development of the carposporophyte. Only a fraction of the sterility mutations have been phenotypically or genetically characterized, but some are straightforwardly inherited as stable, nuclear, single-gene defects. From the genetic recombination pattern, one female-sterile mutant may be loosely linked (39 cMorgans) to the grn 1 marker gene. Male sterility very effectively eliminated selfing without affecting the production of carpospores in crosses, thereby overcoming one of the most serious genetic difficulties in working with this monoecious species.  相似文献   

3.
Porphyra yezoensis Ueda artificial pigmentation mutants, yel (green), fre (red‐orange) and bop (pink), obtained by treatment with /V‐methyl‐/V′‐nitro‐N‐nitrosoguanidine, were genetically analysed. The mutations associated with color phenotypes are recessive because all of the heterozygous conchocelis resembled the wild type color when they were crossed with the wild type (wt). In the reciprocal crosses of yel × wt, both parental colors and eight types of blades appeared in the F1 gametophytic blades from the heterozygous conchocelis. Both colors segregated in the sectored F1 blades in a 1:1 ratio, indicating that the color pheno‐type of yel resulted from a single mutation in the nuclear gene. In the reciprocal crosses of fre × wt, however, four colors and more than 40 types of blades appeared in the F1 blades from the heterozygous conchocelis, indicating that the color phenotype of fre resulted from two mutations in different genes. In the reciprocal crosses of bop×wt, three colors and 12 types of blades were observed in the F1 blades from the heterozygous conchocelis. Both parental colors appeared far more frequently than the third new color. These results indicated that the color phenotype of bop resulted from two closely linked mutations in different genes, and the epistasis occurred in the F1 blades. The mutants, yel, fre and bop, differ from the spontaneous green (C‐O), the red (H‐25) and the violet (V‐O) mutants of P. yezoensis, respectively.  相似文献   

4.
Genetic analysis of crosses between two induced, ineffectivelynodulating mutants of common bean, NOD238 and NOD109, revealedthat their mutated nodulation phenotype is under the controlof the same locus in both mutants. The two mutants also resultedallelic for poor pod fertility, the other trait common to themutants. F1 plants from crosses with their wild types nodulatedeffectively and had wild type pod fertility. Ineffective nodulationand poor pod fertility traits co-segregated in the F2generationin which plants with the mutant nodulation and pod fertilityphenotypes represented 12.5% of the total population. Analysisin F3confirmed that these plants were homozygous for both mutatedcharacters. The results indicated both mutant traits studiedare determined by a single recessive allele, named sym-2, whoseinheritance is negatively affected by its pleiotropic effecton pod fertility determining a deficit of ineffectively nodulatingcombinations. In an allelism test with the non-nodulating mutantof common bean NOD125 it was found that ineffective nodulationis controlled at a different locus and that the two loci arenot linked. Key words: Phaseolus valgaris, nitrogen fixation, nodulation mutants, genetics  相似文献   

5.
Many morphologically similar, but chemically distinct, populations have been found in the marine red alga Laurencia nipponica Yamada (Rhodomelaceae, Ceramiales) growing in Japan. Each chemical type is characterized by a specific end-product of halogenated secondaly metabolite synthesis: chamigrane-type sesquiterpenoids such as prepacifenol and halochamigrene epoxide and C15 bromoethers such as laurencin, laureatin, isoprelaurefucin, epilaurallene, and kumausallene. These seven types of secondary metabolite syntheses remained the same in the wild and under various culture conditions. Because bromoethers and terpenoids are probably synthesized by different metabolic pathways, it is virtually certain that different sets of enzymes participate in their synthesis. Prepacifenol- and laureatin-producing populations were selected as representatives of terpenoid and bromoether groups, respectively. F1 tetrasporophytes derived from crosses between reciprocal, female and male gametophytes of prepacifenol- and laureatin-producing strains bore both types of metabolites, suggesting that the genes Producing these enzyme systems are encoded by nuclear genomes. The F1 gametophytes resulting from the reciprocal crosses produced either prepacifenol or laureatin, and the four individuals derived from spore tetrads (a set of tetraspores derived from a single tetrasporangium) produced either prepacifenol or laureatin in a 1:1 ratio, indicating that genes participating in terpenoid synthsis and those participating in bromoether synthesis are on different loci of homologous chromosomes and are segregated at meiosis (tetrasporogenesis). One individual of this interpopulational F1 gamtophyte produced both parental types of metabolite, perhaps indicating the occurrence of a recombination type. Natural hybrid individuals, including such recombination-type gametophytes, were found in a sympatric locality at which these two chemical types occur. F1 tetrasporophytes derived from crosses between respective prepacifenol- and laureatin-producing strains and their F1 gametohytes produced only parental-type metabolite-producing plants. These results indicate that the diverse chemical types can be referred to as races (chemical races).  相似文献   

6.
A male done of the red alga Gracilaria tikvahiae McLachlan spontaneously produced a bisexual frond which remained bisexual in subsequent subcultures. Both male and female components of bisexual fronds were functional; however, some unusual results were obtained in crosses. When bisexual fronds were crossed with a normal haploid male, the resulting carpospores all developed into diploid male gametophytes. When bisexual plants were self fertilized, all the carpospores yielded diploid bisexual gametophytes. Only when bisexual plants were crossed to normal haploid females, did carpospores develop into diploid tetrasporophytes as they normally do. The F1 gametophyte generation obtained from these tetrasporophytes, however, included not only females and males but also bisexual plants, in a 2:1:1 ratio. These results are consistent with the interpretation that bisexual plants have a recessive mutation of a gene other than the primary sex determining locus, and that this mutation is expressed only in male plants. It is suggested that the altered gene may ordinarily have a regulatory function in the maintenance of the dioecious condition.  相似文献   

7.
8.
Summary By selecting for germinating seeds in the progeny of mutagen-treated non-germinating gibberellin responsive dwarf mutants of the ga–1 locus in Arabidopsis thaliana, germinating lines (revertants) could be isolated. About half of the revertants were homozygous recessive for a gene (aba), which probably regulates the presence of abscisic acid (ABA). Arguments for the function of this gene were obtained from lines homozygous recessive for this locus only, obtained by selection from the F2 progeny of revertant X wild-type crosses. These lines are characterized by a reduced seed dormancy, symptoms of withering, increased transpiration and a lowered ABA content in developing and ripe seeds and leaves.Abbreviations ABA Abscisic acid - GA4+7 Mixture of gibberellin A4 and A7 - EMS Ethylmethanesulfonate - NG Non-germinating - G Germinating  相似文献   

9.
The dominant mutant genes responsible for the spring habit were studied in seven rye plants according to the developed scheme of two-step crosses and analysis of the F2 progeny. The genotypes with a particular genetic formula (heterozygote) were obtained by crossing the studied plants with the winter rye Korotkostebel’naya 69 carrying the recessive genes that control the winter habit of plants. Heterozygotes yielded by different combinations were crossed with each other. The F1 hybrids were either self-pollinated to obtain F2 progeny or crossed with the winter rye. Analysis of the progeny suggests that all seven plants carry the same gene.  相似文献   

10.
Genetic variation in the synthesis of halogenated secondary metabolites in the Japanese marine red alga Laurencia nipponica Yamada (Rhodomelaceae, Ceramiales) has been investigated in laboratory crossing experiments and chemical analyses, F1 tetrasporophytes and F1 gametophytes resulting from crosses within chemical races produced major metabolites characteristic of these races. F1 tetrasporophytes derived from reciprocal interracial crosses produced: (i) both parental types of secondary metabolites; (ii) either of the parental types; or (iii) a further major compound in addition to both parental types or in addition to either of the parental types. The latter cases suggest that hybrid-specific products were formed by the combined enzymatic complements of the parents, as F1 gametophytes derived from these interracial F1 tetrasporophytes yielded one or other of their parental products in an approximate 1:1 ratio. The population structure was analyzed at localities in Hokkaido, where two of the chemical races occur sympatrically. At Usujiri (Minami-kayabe), where the prepacifenol race and the laureatin race were sym-patric, hybrid gametophytes (recombination type) were found in high frequency in addition to hybrid tetra sporophytes, which strongly suggests that a new, pre-pacifenol/laureatm race is beginning to be produced by natural hybridization and recombination. By contrast, at Oshoro Bay, where the laurencin race and the epi-lauraliene race grew together, the interracial hybrids were rare: only a few tetrasporophytes (probably F1 generation) were found, suggesting that racial integrity may be retained by habitat segregation and/or the absence of recombination-type gametophytes.  相似文献   

11.
Putative homozygous mutations in regenerated plants of rice   总被引:1,自引:0,他引:1  
Summary Both normal and putative homozygous mutant (dwarf mutant) rice plants were regenerated from diploid seed callus, cultured in the presence of 1% NaCl. This trait was transmitted at least through the eighth genration (D8) of regenerated plants (D1) by self-pollination, as a homozygous mutation. However, the trait disappeared in the F1, F2, F3 and F4 obtained by reciprocal crosses of mutant plants with either control plants or with progeny of normal regenerated plants. Chimeric reversion of the homozygous mutant trait was observed and the revertant phenotype was transmitted stably to at least three successive generations. Similar dwarf types of homzygous mutation were observed independently in the two varieties, Norin 8 and Nipponbare, in an experimental series of ca. 3000 D1 plants. The frequency of mutations among regenerated plants was calculated to be 1.8×10-2. The mechanism responsible for these phenomena may be heritable gene inactivation induced by in vitro culture.  相似文献   

12.
A new allele, SC148, of thesulfurea locus inLycopersicon esculentum was detected in a line derived after repeated selfing of plants that had been regenerated from tissue culture. Like the originalsulf mutant, SC148 displayed two mutant phenotypes: green-yellow speckled plants in which thesulf vag allele is present and pure yellow plants homozygous for thesulf tpura allele. Although the mutant alleles are recessive to wild-type, an unpredictable number of variegated and pura plants appeared in F1 progenies that had been derived from crosses between SC148 and wild-type tomato plants. The presence of the wild-typesulf + allele in these variegated heterozygotes was demonstrated using a cytological marker that is linked tosulf. It is concluded that the mutantsulf allele of SC148, imposes its variegated expression state on the wild-typesulf + allele present insulf +/sulfvag heterozygotes. This behaviour, known as paramutation, has also been described for the originalsulf allele. The SC148 allele, however, seems to induce changes at an earlier stage in development. The analogy of this paramutagenic system to dominant position effect variegation inDrosophila is discussed.  相似文献   

13.
Inheritance of reduced linolenic acid content in soybean seed oil   总被引:2,自引:0,他引:2  
 Linolenic acid is the unstable component of soybean [Glycine max (L.) Merr.] oil that is responsible for the undesirable odors and flavors commonly associated with poor oil quality. Two mutants, M-5 and KL-8, have been identified that have lower linolenic acid levels in the seed oil than the ‘Bay’ cultivar. Our objective was to determine the relationships between the genetic systems controlling linolenic acid in these mutants. Reciprocal crosses were made between the mutants and ‘Bay’, and between the two mutants. No maternal effect for linolenic acid content was observed from the analysis of F1 seeds in any of the crosses. The data for linolenic acid content in F2 seeds of M-5בBay’ and KL-8בBay’ crosses satisfactorily fit a 1 : 2 : 1 and 3 : 1 ratio, respectively. For the M-5×KL-8 cross, segregation observed from the analysis of F2 seeds for linolenic acid content satisfactorily fit a ratio of 3 more than either mutant: 12 within the range of the two mutants: 1 less than either mutant. The segregation ratio of F2 seeds and the segregation of F3 seeds from F2 plants indicated that M-5 and KL-8 have alleles at different loci that control linolenic acid content. The allele in KL-8 has been designated as fanx (KL-8) to distinguish it from fan (M-5). The low linolenic acid segregates with the genotype fanfanfanxfanx provide additional germplasm to reduce the linolenic acid content from the seed oil of soybean. Received: 18 December 1995 / Accepted: 12 July 1996  相似文献   

14.
A spontaneous bisexual mutant of Gracilaria tikvahiae McLachlan has been further characterized. Female plants that are carriers for the mutation, but do not themselves express bisexuality, have been identified among progeny derived from the original bisexual male plant. In crosses to normal males these carrier females yielded normal tetrasporophytes which in the subsequent gametophyte generation produced a 2 female: 1 male: 1 bisexual segregation. In crosses to bisexual males the carrier females produced unusual tetrasporophytes that formed cystocarps in addition to tetraspores. The gametophyte generation obtained from the tetraspores of these tetrasporophytes included only females and bisexuals, these being present in a 1:1 ratio. Other crosses, using bisexual male progeny, indicated that these have the same characteristics as the original bisexual mutant. All of the results are consistent with the genetic interpretation made previously that bisexuality results from a single recessive mutation, designated bi, in a gene distinct from the mt locus controlling male vs. female differentiation. From the phenotypes that have been observed it appears that the mutation does not cause bisexuality per se but rather results in unregulated female expression in males and tetrasporophytes where female-specific genes are normally repressed. It is suggested that the normal bi+ allele plays an important role in that repression process. The origin of the bisexual mutation has been re-examined by studying the progenitor stock of the mutation and stocks related to it. It appears that the bisexual mutation arose in a two-step process, first to a low level of expression that is found in the progenitor stocks and then to the high level of expression found in mutant clone 1045(bi) and its descendants.  相似文献   

15.
A rice (Oryza sativa L.) mutant with an excessive tiller number, designated ext-M1B, was found in the F2 progenies generated from the cross between M1B and GMS-1 (a genetic male sterile), whose number of tillers was 121. The excessive tillering mutant also resulted in significant changes in plant height, flag leaf, stem, filled grains per panicle, and productive panicles per plant. The inbreeding progenies of ext-M1B exhibited the same mutant phenotype. The crosses from ext-M1B/M1B, M1B/ext-M1B, 2480B/ext-M1B, D62B/ext-M1B, G46B/ext-M1B, and G683B/ext-M1B expressed normal tillering in F1, and segregated into two different phenotypes of normal tillering type and excessive tillering type in a ratio of 3:1 in F2. Inheritance analysis indicated that the excessive tillering character was controlled by a single recessive nucleic gene. By BSA (bulked segregants analysis) and microsatellite makers with the F2 population of 2480B/ext-M1B as the mapping population, RM197, RM584, and RM225, all of which were located on the short arm of rice chromosome 6, were identified to be linked with the excessive tillering gene with genetic distance of 3.8 cM, 5.1 cM, and 5.2 cM, respectively. This gene is probably a new excessive tillering gene in rice and is designated tentatively ext-M1B (t).  相似文献   

16.
Crossing experiments were carried out between artificial pigmentation mutants and the wild type in Porphyra haitanensis Chang et Zheng to ascertain where meiosis occurs in its life history by confirming whether the color segregation and the color-sectored blades appear in F1 gametophytic blades developed from conchospores which are released from heterozygous conchocelis. Two red-type pigmentation mutants (R-10 and SPY-1) were used as the female parent. Their blades are red or red orange in color, thinner than the wild type and weak in elasticity, and have no denticles on their margins. The wild type (W) was used as the male parent; its blades are light brown in color, thick and good in elasticity, and have many marginal denticles. The F1 gametophytic blades developed from conchospores which were released from heterozygous conchocelis produced in the crosses of R-10(♀)×W(♂) and SPY-1(♀)×W(♂) showed two parental colors (R and W) and two new colors (R', lighter in color than R; W', wild-type-like color and redder than W). Linear segregation of colors occurred in the F1 blades, forming color-sectored blades with 2–4 sectors. In the color-sectored blades, R and R' sectors were thinner than W and W' sectors, and had weak elasticity and no denticles on their margins, whereas W and W' sectors were thick and had good elasticity and many marginal denticles. Of the F1 gametophytic blades, 95.2–96.7% were color-sectored and only 3.3–4.8% were unsectored. These results indicate that meiosis of P. haitanensis occurs during the first two cell divisions of a germinating conchospore, and thus it is considered that the initial four cells of a developing conchosporeling constitute a linear genetic tetrad leading to the formation of a color-sectored blade. The new colors of R' and W' were recombinant colors due to the chromosome recombination during the first cell division in meiosis. It is considered that color phenotypes of the two mutants used in this paper were result of two (or more) recessive mutations in different genes, and that they also have mutations concerned with blade thickness and formation of marginal denticles, which are linked with the color mutations.  相似文献   

17.
Summary The interaction between three non-nodulation mutants (nod49, nod772 and nod139) and a supernodulation mutant (nts382) of soybean was studied by analysing the progeny from crosses between these mutants. Previously it had been shown that the non-nodulation mutants arose from single mutation events and that nod49 and nod772 are allelic, whereas nod139 represents another gene required for nodulation. Analysis of progeny from crosses between nts382 and the wild type showed that this mutant also arose from a single mutation. Complementation tests demonstrated that the mutation responsible for supernodulation in nts382 is not allelic to either of these non-nodulation characters, and that it segregates independently. Progeny were identified that were homozygous for both supernodulation and non-nodulation, and these plants were incapable of nodulation. Thus, non-nodulation is epistatic over supernodulation and this is discussed in terms of the developmental blockage in the two mutant types. The identification and confirmation of these double mutants of the supernodulation and non-nodulation mutations are described. Although the non-nodulation mutations behave as recessive characters in a wild-type background, these mutations are incompletely dominant in a genetic background homozygous for supernodulation. The significance of these results to the understanding of nodule ontogeny is discussed.  相似文献   

18.
A mutant, which derived from the restorer line Jinhui10 treated with EMS, showed completely yellow green leaves, and it had low chlorophyll content and poor agronomic characteristics during the growing stage. The F1 plants from the cross between normal × the mutant showed normal green leaves, and the segregation ratio of normal to yellow green leaves was 3 : 1 in F2 population. It indicated that the trait was controlled by a single recessive nuclear gene, temporarily designated asygl3. The geneygl3 was mapped between RM468 and RM3684 with genetic distances 8.4 cM and 1.8 cM on chromosome 3. This result would be used as genetic information for fine mapping and map-based cloning ofygl3 gene.  相似文献   

19.
Zelitch I 《Plant physiology》1990,92(2):352-357
The increase in net photosynthesis in M4 progeny of an O2-resistant tobacco (Nicotiana tabacum) mutant relative to wild-type plants at 21 and 42% O2 has been confirmed and further investigated. Self-pollination of an M3 mutant produced M4 progeny segregating high catalase phenotypes (average 40% greater than wild type) at a frequency of about 60%. The high catalase phenotype cosegregated precisely with O2-resistant photosynthesis. About 25% of the F1 progeny of reciprocal crosses between the same M3 mutant and wild type had high catalase activity, whether the mutant was used as the maternal or paternal parent, indicating nuclear inheritance. In high-catalase mutants the activity of NADH-hydroxypyruvate reductase, another peroxisomal enzyme, was the same as wild type. The mutants released 15% less photorespiratory CO2 as a percent of net photosynthesis in CO2-free 21% O2 and 36% less in CO2-free 42% O2 compared with wild type. The mutant leaf tissue also released less 14CO2 per [1-14C]glycolate metabolized than wild type in normal air, consistent with less photorespiration in the mutant. The O2-resistant photosynthesis appears to be caused by a decrease in photorespiration especially under conditions of high O2 where the stoichiometry of CO2 release per glycolate metabolized is expected to be enhanced. The higher catalase activity in the mutant may decrease the nonenzymatic peroxidation of keto-acids such as hydroxypyruvate and glyoxylate by photorespiratory H2O2.  相似文献   

20.
An unstable mutation for anthocyanin pigmentation in soybean (Giycine max [L.] Merr.) was identified in 1983. The mutability is conditioned by an allele at the w4 locus that is recessive to wild type. The population containing the mutable allele is known as the w4-mutable line. Most plants in the line have chimeric flowers with purple sectors on a near-white background. The mutable allele yields germinal revertants at a rate that varies from 5 to 10% per generation, and the revertant alleles are stable. Approximately 1% of the progenies derived from germinal revertant plants contain mutations at other loci These features, as well as the occurrence of pale flower phenotypes and changes of state, suggest that a transposable element system is producing the unstable phenotype. Several new mutants were isolated in an experiment designed to tag loci. The first three chlorophyll-deficient mutants found (CD-1, CD-2, and CD-3) are inherited as single-gene recessives. Each of the mutants lacks the same two mitochondrial malate dehydrogenase (MDH) bands. No recombination has been detected between the MDH phenotype and the chlorophyll-deficient phenotype. Genetic data indicate that the three mutants are allelic, and additional evidence suggests that each of the CD mutants is the result of a deletion. In the CD-1, CD-2, and CD-3 mutants, the deletions result in the silencing of an MDH locus, atypical chloroplast development, and an altered chlorophyll composition. Additional mutants for root necrosis, partial and near sterility, chlorophyll deficiency, and flower color isolated from the transposon tagging study have provided material for future research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号