首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shell rotating behavior of the hermit crabPagurus geminus was investigated. In preliminary observations, hermit crabs motivated to change shells rotated presented shells, filled with sand, in a way that dislodged the inside material. In order to determine if this behavior is stereotyped, or flexible and dependent on shell type, hermit crabs were tested with ordinary dextral shells ofLatirulus nagasakiensis and sinistral shells ofAntiplanes contraria. Sinistral shells are not normally encountered by hermit crabs. Their rotation of the dextral shell to the left was adequate for sand discharge. Sinistral shells were rotated in both directions. Analysis of recorded videotapes showed that variation in rotation direction could be attributed to variation in the position of the crab relative to the shell. When the crab faced the shell aperture from the inner lip, it rotated the sinistral shell to the right, and to opposite direction when it faced from the outer lip side. The crab always pushed the upper side of the horizontally laid shell, regardless of shell type or its own position.  相似文献   

2.
The bizarre watering pot shells of the clavagellid bivalve Brechites comprise a calcareous tube encrusted frequently with sand grains and other debris, the anterior end of which terminates in a convex perforated plate (the ‘watering pot’). It has not proved easy to understand how such extreme morphologies are produced. Previously published models have proposed that the tube and ‘watering pot’ are formed separately, outside the periostracum, and fuse later. Here we present the results of a detailed study of the structure and repair of the tubes of Brechites vaginiferus which suggest that these models are not correct. Critical observations include the fact that the external surface of the tube and ‘watering pot’ are covered by a thin organic film, on to the inner surface of which the highly organized aragonite crystals are secreted. There is no evidence of a suture between the tube and the ‘watering pot’ or that the periostracum of the juvenile shell passes through the wall of the tube. Live individuals of B. vaginiferus are able to repair substantial holes in the tube or ‘watering pot’ by laying down a new organic film followed by subsequent calcareous layers. Brechites vaginiferus displays Type C mantle fusion, with the result that the whole animal is encased by a continuous ring of mantle and periostracum, thereby making it possible to secrete a continuous ‘ring’ of shell material. On the basis of these observations we suggest that watering pot shells are not extra‐periostracal but are the product of simple modification of ‘normal’ shell‐secreting mechanisms.  相似文献   

3.
Summary Two populations (salt marsh and seagrass bed) of the hermit crab Pagurus longicarpus were sampled to examine associations between shell characteristics and egg production. Multivariate statistical analyses controlled for crab size and time of year, variables that otherwise could be confounded with shell effects. Although correlations between shell characteristics and reproduction existed in both populations, generalizations could not be made because associations varied within and between populations. Shell species was not associated with a female's reproductive state (i.e., whether or not she was barren when sampled) in either population. In the seagrass population, medium-large and large females occupying severely damaged or fouled shells were half as likely to be reproductive as females occupying other shell conditions. However, there was no association between shell condition and reproductive state for small and small-medium females in the seagrass population or among all females in the salt marsh population. In the seagrass population, small through medium-large reproductive females occupied shells more similar to their predicted shell size, regardless of whether the occupied shell was relatively small or large, than nonreproductive females. In contrast, relative shell sizes of reproductive and nonreproductive females were similar for large females in the seagrass population and all females in the salt marsh population. Clutch sizes were enhanced for females occupying Polinices duplicatus shells or shells larger than their predicted shell size in the seagrass population. Relative shell size also was associated with clutch size in the salt marsh population, but crabs occupying shells similar to their predicted shell size had the largest clutches.  相似文献   

4.
1. The topography of the organic components (conchiolin) has been investigated on positive, postshadow-cast, formvar, and carbon replicas of mother-of-pearl from shells of a Cephalopod, of two Gastropods, and of six Pelecypods. All these shells are characterized by a true nacreous inner shell layer. 2. The material included normal shell surfaces, fragments of cleavage obtained by fracture, and surfaces polished tangentially and transversally to the inner surface of the shells. Replicas of these surfaces were prepared before and after etching of graded heaviness, induced by a chelating agent (sequestrene NA 2, titriplex III). Micrographs of the successive steps of the process of corrosion have been recorded. 3. Corrosion unmasked, on the nacreous surfaces, organic membranes or sheets, running as continuous formations in between adjacent mineral lamellae, and separating the individual crystals of aragonite which are aligned in rows and constitute each lamella. 4. The interlamellar sheets of material exhibit a reticulated structure, which is especially visible in preparations orientated tangentially to the lamellae and to the tabular surface of the aragonite crystals. The pattern of this lace-like structure, different in the various species studied, appeared in the same species as closely similar to that reported previously in leaflets of thoroughly decalcified mother-of-pearl, dissociated by ultrasonic waves. The present results support former conclusions with regard to the existence of taxonomic differences between Cephalopods, Gastropods, and Pelecypods in the morphological organization of the organic phase within mother-of-pearl.  相似文献   

5.
The nacreous tablets in the Nautilus shell have similar crystalline structure as the tablets in the gastropod Gibbula shell. Etching with Mutvei’s solution reveals that each tablet is composed of vertical crystalline columns that are structurally similar to the acicular crystallites in the outer spherulitic-prismatic layer of the shell wall. The columns are attached to each other to form numerous vertical crystalline lamellae, oriented parallel to the longitudinal axis of the tablet. It is still unknown whether or not the orientation of the vertical lamellae corresponds to that of the crystallographic a- or b-axis. The orientation of the crystalline lamellae in the adjacent tablets is parallel in some nacreous laminae, but random in other laminae. Similar large variation was found in the nacreous tablets of the gastropod and bivalve shells. The nucleation sites of the nacreous tablets are predominantly situated on the peripheral portion of the upper surface of the preceding tablet, both in the shell wall and septa. The “aragonite-nucleating proteins” in the central portion of the crystal imprints of the organic interlamellar sheets, described by several writers, have therefore a negative correlation with the nucleation sites of the nacreous tablets.  相似文献   

6.
A complex microboring trace of fungal affinity is described in shells as a new ichnotaxon Saccomorpha stereodiktyon isp. nov. and compared with the earlier established ichnotaxon Saccomorpha terminalis Radtke, 1991. The new trace is characterized by a three-dimensional network of tunnels composed of a bifurcate horizontal (parallel to substrate surface) network with an upright (perpendicular to surface) system of tunnels and by the formation of cylindrical to multilobate terminal sporangial swellings. The new trace shares with Saccomorpha terminalis Radtke, 1991 the terminal position of sporangial swellings but differs from this ichnotaxon by its complexity in spatial arrangement, segmented construction, and ramification of tunnels. The horizontal parts of the network in the new taxon adhere to the substrate surface and regularly produce thinner tunnels that explore the interior of the substrate, allowing the producer to participate in digestion of organic lamellae incorporated in the shell. Microborings similar to the new trace fossil have been observed in modern bivalve shells of the Atlantic Ocean, North Sea, Adriatic Sea and Red Sea at depths ranging from the intertidal down to 1,550 m. The fossil record of the trace reaches back to the Jurassic and the type material stems from a Lower Oligocene oyster shell. The study shows that complex microboring traces reflect both behaviour and developmental strategy of their makers.  相似文献   

7.
We recorded, for the first time, byssal hairs in the Asian freshwater bivalve Limnoperna fortunei from the Paraná River system. We analysed the presence of hairs and their distribution on the shell in relation to habitat and shell size in 12 sites. Hairs were present in lentic habitats associated with macrophytes or organic matter, but were absent in lotic environments. The proportion of mussels with hairs was negatively correlated with current velocity. Hairs were more frequent and abundant in larger mussels. In general, the hairs are a similar length over the bivalve and almost entirely cover the shells in≥60% in lentic habitats. The projections allow L. fortunei to be camouflaged among the roots of macrophytes or coarse organic matter, assisting in avoiding visual predators. The clear-cut separation of L. fortunei populations into two different groups could be associated with phenotypic plasticity in this species.  相似文献   

8.
Shell formation in molluscs begins early in embryogenesis duringsome stage of archenteron formation. Ultrastructural informationon early formation of external shells is available from onlya few bivalves and gastropods. Secretion of the very first shellmaterial by shell field epithelial cells is preceded by an invaginationof the dorsal ectoderm in the region of the shell field. A centuryago, this invagination was termed the "shell gland." As a secretoryfunction for this invagination has not yet been demonstratedand as the term "shell gland" has taken on various meaningsin the literature, the invagination will be referred to as theshell field invagination. The opening into the shell field invaginationseems to be circular in gastropods and elongate in bivalves.Accordingly initial organic shell material seems to form a ringin gastropods and a saddle in bivalves. As in adult molluscs,shells of pre-metamorphic molluscs are composed of both organicand inorganiccomponents. Ultrastructural data from bivalvesand gastropods indicate that the initial organic shell materialis secreted just outside the shell field invagination (acrossthe pore). Initial inorganic shell materials have not been localizednor their pathway traced into or through any pre-metamorphicmolluscs. New SEM and TEM data show that the invagination inthe bivalve Spisula solidissima is composed of a wide outerregion and very narrow inner region with the first shell materialforming at the junction between the two. This is unlike ultrastructuraldata available for other species. Many sections give the falseimpressions that: 1) the shell field invagination is closedto the outside and, 2) that the first organic shell materiallines the innermost region of the invagination. It is not clearwhether the cells of the outer invagination in this speciesare shell field cells. It is suggested that they are not.  相似文献   

9.
C. R. Fletcher 《Hydrobiologia》1995,309(1-3):73-87
The strength of molluscan shells has been shown to vary in adaptive ways in a number of species and one of the main factors thought to be involved is shell-crushing by predators. A recent study found that the sibling species of flat periwinkle Littorina obtusata and Littorina mariae showed significant differences in the rates at which shell strength increased with shell length in specimens which had been collected from the same location, where the species were sympatric. This paper describes differences between the shells of the two species from a number of localities around Milford Haven in Dyfed, Wales, and local geographical variation in the shells. Littorina mariae, which is normally found at lower tidal levels than L. obtusata, matures at a smaller shell length. Both species reinforce the shell as they grow since shell strength, determined as the maximum force applied by a hydraulic tensile testing machine before the shell cracked, is strongly positively allometric; it increases at a rate close to the cube of shell length whilst isometric growth would result in strength increasing in proportion to the square of shell length. Because L. mariae matures earlier and reinforces the shell at a smaller size, the mature shell of L. mariae is substantially stronger on average than that of a similar sized but immature L. obtusata. At maturity the shell strengths of the two species are not very different despite the substantial difference in mean shell length. Strength varies significantly from shore to shore, and with the level of the shore from which the animals were collected. Strength increases down the shore in both species. Shell strength decreases with exposure to wave action in L. mariae but increases with exposure in L. obtusata; there is also substantial shore-to-shore variation which is not explained by exposure. Path analysis was used to explore the relationship between shell strength and other measured shell parameters (mass, length, height, thickness). The best predictor of shell strength in both species is a parameter which is heavily positively loaded on LN (shell mass) and strongly offset by negative loadings on LN (shell length) and LN (shell height). This is logical because for a given shell length a heavier shell will be thicker and stronger, whilst for a given shell mass a bigger shell will be thinner and therefore weaker. Such differential variation of shell mass and shell length explains most of the geographical variation observed in shell strength; shells are stronger in snails collected from one place than from another because, for the same shell length they are heavier or, to put it the other way, because at the same shell mass, they are smaller.  相似文献   

10.
1. We asked whether unionid mussels influence the distribution and abundance of co‐occurring benthic algae and invertebrates. In a yearlong field enclosure experiment in a south‐central U.S. river, we examined the effects of living mussels versus sham mussels (shells filled with sand) on periphyton and invertebrates in both the surrounding sediment and on mussel shells. We also examined differences between two common unionid species, Actinonaias ligamentina (Lamarck 1819) and Amblema plicata (Say 1817). 2. Organic matter concentrations and invertebrate densities in the sediment surrounding mussels were significantly higher in treatments with live mussels than treatments with sham mussels or sediment alone. Organic matter was significantly higher in the sediment surrounding Actinonaias than that surrounding Amblema. Actinonaias was more active than Amblema and may have increased benthic organic matter through bioturbation. 3. Living mussels increased the abundance of periphyton on shells and the abundance and richness of invertebrates on shells, whereas effects of sham mussels were similar to sediment alone. Differences in the amount of periphyton growing on the shells of the two mussel species reflected differences in mussel activity and shell morphology. 4. Differences between living and sham mussel treatments indicate that biological activities of mussels provide ecosystem services to the benthic community beyond the physical habitat provided by shells alone. In treatments containing live mussels we found significant correlations between organic matter and chlorophyll a concentrations in the sediment, organic matter concentrations and invertebrate abundance in the sediment and the amount of chlorophyll a on the sediment and invertebrate abundance. There were no significant correlations among these response variables in control treatments. Thus, in addition to providing biogenic structure as habitat, mussels likely facilitate benthic invertebrates by altering the availability of resources (algae and organic matter) through nutrient excretion and biodeposition. 5. Effects of mussels on sediment and shell periphyton concentrations, organic matter concentrations and invertebrate abundance, varied seasonally, and were strongest in late summer during periods of low water volume, low flow, and high water temperature. 6. Our study demonstrates that freshwater mussels can strongly influence the co‐occurring benthic community, but that effects of mussels are context‐dependent and may vary among species.  相似文献   

11.
Symbiont‐bearing and non‐symbiotic marine bivalves were used as model organisms to establish biosignatures for the detection of distinctive symbioses in ancient bivalves. For this purpose, the isotopic composition of lipids (δ13C) and bulk organic shell matrix (δ13C, δ34S, δ15N) from shells of several thiotrophic, phototrophic, or non‐symbiotic bivalves were compared (phototrophic: Fragum fragum, Fragum unedo, Tridacna maxima; thiotrophic: Codakia tigerina, Fimbria fimbriata, Anodontia sp.; non‐symbiotic: Tapes dorsatus, Vasticardium vertebratum, Scutarcopagia sp.). ?13C values of bulk organic shell matrices, most likely representing mainly original shell protein/chitin biomass, were depleted in thio‐ and phototrophic bivalves compared to non‐symbiotic bivalves. As the bulk organic shell matrix also showed a major depletion of δ15N (down to –2.2 ‰) for thiotrophic bivalves, combined δ13C and δ15N values are useful to differentiate between thio‐, phototrophic, and non‐symbiotic lifestyles. However, the use of these isotopic signatures for the study of ancient bivalves is limited by the preservation of the bulk organic shell matrix in fossils. Substantial alteration was clearly shown by detailed microscopic analyses of fossil (late Pleistocene) T. maxima and Trachycardium lacunosum shell, demonstrating a severe loss of quantity and quality of bulk organic shell matrix with time. Likewise, the composition and δ13C‐values of lipids from empty shells indicated that a large part of these compounds derived from prokaryotic decomposers. The use of lipids from ancient shells for the reconstruction of the bivalve's life style therefore appears to be restricted.  相似文献   

12.
The protein, chitin, calcium, and magnesium present in the shells of several species of cirripedes have been determined; the powdered shell material was also examined by differential thermal analysis (DTA). Chthamalus sp., in which lamina of epicuticular matter are present within the shell, show the greatest organic content. When the organic material is separated into its protein and chitin components the latter is present in similar quantities in all species; this reflects a similar quantity of the chitin-protein matrix. Reduction in the protein content of heavily eroded C. depressus seems to be due to the removal of protein by endolithic algae. The CaMg ratio increases from extreme hypobiotic to exposed C. depressus. There is a marked correlation between the CaMg ratio and the organic content and it is suggested that the magnesium is largely associated with protein rather than with the calcitic lattice. This receives support from the thermal analyses. Small quantities of quartz were detected by X-ray analysis.  相似文献   

13.
ABSTRACT. When grown in culture, the soil testate amoeba Phryganella acropodia constructs a shell with or without mineral grains, but of identical morphology. The availability of organic shells, from these cultures, allows for detailed examination of the formation of organic building units in the cytoplasm and their subsequent use as a network in the shell matrix. Organic building units are initially formed as spherical membrane bound vesicles at the margins of dictyosomes, but mature in the cytoplasm by incorporating additional material, some have an electron dense core. These units remain pliable until they are moulded into the shell matrix. Another series of vesicles indistinguishable during initial formation from the organic building units, when mature contain a mass of small elements. This material is discharged at the same time as the building units and is thought to be the binding cement. Inorganic chemical elements appear to be incorporated within the inner lining of the matrix and the alveoli of the organic building units; manganese being preferentially absorbed under culture conditions.  相似文献   

14.
TOPOGRAPHY OF THE ORGANIC COMPONENTS IN MOTHER-OF-PEARL   总被引:3,自引:0,他引:3       下载免费PDF全文
1. The topography of the organic components (conchiolin) has been investigated on positive, postshadow-cast, formvar, and carbon replicas of mother-of-pearl from shells of a Cephalopod, of two Gastropods, and of six Pelecypods. All these shells are characterized by a true nacreous inner shell layer. 2. The material included normal shell surfaces, fragments of cleavage obtained by fracture, and surfaces polished tangentially and transversally to the inner surface of the shells. Replicas of these surfaces were prepared before and after etching of graded heaviness, induced by a chelating agent (sequestrene NA 2, titriplex III). Micrographs of the successive steps of the process of corrosion have been recorded. 3. Corrosion unmasked, on the nacreous surfaces, organic membranes or sheets, running as continuous formations in between adjacent mineral lamellae, and separating the individual crystals of aragonite which are aligned in rows and constitute each lamella. 4. The interlamellar sheets of material exhibit a reticulated structure, which is especially visible in preparations orientated tangentially to the lamellae and to the tabular surface of the aragonite crystals. The pattern of this lace-like structure, different in the various species studied, appeared in the same species as closely similar to that reported previously in leaflets of thoroughly decalcified mother-of-pearl, dissociated by ultrasonic waves. The present results support former conclusions with regard to the existence of taxonomic differences between Cephalopods, Gastropods, and Pelecypods in the morphological organization of the organic phase within mother-of-pearl.  相似文献   

15.
Although geographical patterns of species' sensitivity to environmental changes are defined by interacting multiple stressors, little is known about compensatory processes shaping regional differences in organismal vulnerability. Here, we examine large‐scale spatial variations in biomineralization under heterogeneous environmental gradients of temperature, salinity and food availability across a 30° latitudinal range (3,334 km), to test whether plasticity in calcareous shell production and composition, from juveniles to large adults, mediates geographical patterns of resilience to climate change in critical foundation species, the mussels Mytilus edulis and M. trossulus. We find shell calcification decreased towards high latitude, with mussels producing thinner shells with a higher organic content in polar than temperate regions. Salinity was the best predictor of within‐region differences in mussel shell deposition, mineral and organic composition. In polar, subpolar, and Baltic low‐salinity environments, mussels produced thin shells with a thicker external organic layer (periostracum), and an increased proportion of calcite (prismatic layer, as opposed to aragonite) and organic matrix, providing potentially higher resistance against dissolution in more corrosive waters. Conversely, in temperate, higher salinity regimes, thicker, more calcified shells with a higher aragonite (nacreous layer) proportion were deposited, which suggests enhanced protection under increased predation pressure. Interacting effects of salinity and food availability on mussel shell composition predict the deposition of a thicker periostracum and organic‐enriched prismatic layer under forecasted future environmental conditions, suggesting a capacity for increased protection of high‐latitude populations from ocean acidification. These findings support biomineralization plasticity as a potentially advantageous compensatory mechanism conferring Mytilus species a protective capacity for quantitative and qualitative trade‐offs in shell deposition as a response to regional alterations of abiotic and biotic conditions in future environments. Our work illustrates that compensatory mechanisms, driving plastic responses to the spatial structure of multiple stressors, can define geographical patterns of unanticipated species resilience to global environmental change.  相似文献   

16.
Experimental analyses of hermit crabs and their preferences for shells are essential to understand the intrinsic relationship of the crabs' dependence on shells, and may be useful to explain their shell use pattern in nature. The aim of this study was to evaluate the effect of crab species and site on the pattern of shell use, selection, and preference in the south-western Atlantic hermit crabs Pagurus brevidactylus and Pagurus criniticornis, comparing sympatric and allopatric populations. Differently from the traditional approach to evaluate shell preference by simply determining the shell selection pattern (i.e., the number of shells of each type selected), preference was defined (according to [Liszka, D., Underwood, A.J., 1990. An experimental design to determine preferences for gastropod shells by a hermit-crab. J. Exp. Mar. Biol. Ecol., 137(1), 47–62]) by the comparison of the number of crabs changing for a particular shell type when three options were given (Cerithium atratum, Morula nodulosa, and Tegula viridula) with the number of crabs changing for this same type when only this type was offered. The effect of crab species was tested at Cabelo Gordo Beach, where P. brevidactylus was found occupying shells of C. atratum, M. nodulosa, and T. viridula in similar frequencies, whereas P. criniticornis occupied predominantly shells of C. atratum. In laboratory experiments the selection patterns of the two hermit-crab species for these three gastropods were different, with P. criniticornis selecting mainly shells of C. atratum, and P. brevidactylus selecting more shells of M. nodulosa. The shell preference was also dependent on crab species, with P. criniticornis showing a clear preference for shells of C. atratum, whereas P. brevidactylus did not show a preference for any of the tested shells. The effect of site was tested for the two species comparing data from Cabelo Gordo to Preta (P. brevidactylus) and Araçá beaches (P. criniticornis). The pattern of shell use, selection, and preference was demonstrated to be dependent on site only for P. brevidactylus. The results also showed that the shell use pattern of P. criniticornis can be explained by its preference at both sites, whereas for P. brevidactylus it occurred only at Cabelo Gordo, where the absence of preference was correlated with the similar use of the three gastropod species studied. Finally, the results showed that the shell selection pattern cannot be considered as a measure of shell preference, since it overestimates crab selectivity.  相似文献   

17.

Background  

Chitin self-assembly provides a dynamic extracellular biomineralization interface. The insoluble matrix of larval shells of the marine bivalve mollusc Mytilus galloprovincialis consists of chitinous material that is distributed and structured in relation to characteristic shell features. Mollusc shell chitin is synthesized via a complex transmembrane chitin synthase with an intracellular myosin motor domain.  相似文献   

18.
Ordovician trimerellacean brachiopod shell beds   总被引:1,自引:0,他引:1  
The large, thick-shelled, inarticulate brachiopod Eodinobolus forms many conspicuous deposits of shells in the Upper Ordovician limestones of central western New South Wales. Both in situ and reworked shell beds arc preserved at recurrent intervals through the successions, in similar facies of both transgressivc and regressive phases of deposition. In situ shell beds arc best developed in transgressivc sequences, with up to four generations of shells exhibited in the individual in situ beds. These monotypic and very low diversity shell beds are interpreted as having formed in marginal marine, quiet water conditions: (1) on the fringes of an offshore island (in part the Molong High of the Tasman Orogen), with the island still providing a fairly continuous supply of terrigenous material: and, (2) after submergence of the island, on the resulting terrigenous-free, major offshore Bahamas-like platform. This may imply that the shell beds developed in different salinity regimes. Possibly Eodinobolus was capable of tolerating a wider than normal range of salinity, from slightly brackish through normal marine, even to marginally hypersaline. However, in both settings, Eodinobolus, in its role as the dominant member of the respective pioneer community, colonized similar substrates in the low energy mud zone. This appears to suggest depositional environments most directly analogous to those of Palaeozoic virgianid pentamerides, and perhaps also comparable with some modern marginal marine oyster and mussel-bed occurrences. ?Ordovician, Brachiopoda, Eodinobolus, palaeoecology, facies, shell beds. New South Wales.  相似文献   

19.
Hyoliths are a group of Palaeozoic fossils with calcareous shells whose affinities remain controversial. As their shells were originally aragonitic, their fossils are usually coarsely recrystallized, and few data on their microstructure are available. We report hyoliths from the middle Cambrian (Drumian, Floran) Gowers Formation of the eastern Georgina Basin, Queensland. These are preserved as phosphatic internal moulds, often with the inner layers of the shell also partly replaced by phosphate. Microstructural details preserved by this early diagenetic phosphatization show that these hyolith conchs were originally composed of fibrous crystallites, c. 0.5 μm wide, parallel to one another and to the inner surface of the shell. In several species, the fibres are arranged in a plywood‐like structure composed of multiple lamellae with a different fibre orientation in each lamella: often they are transversely oriented (relative to the long axis of the conch) in the inner part of the wall and longitudinally oriented in the outer part. Opercula also show a microstructure of parallel fibres. The lamello‐fibrillar microstructure we report from hyoliths is reminiscent of microstructures of many Cambrian molluscs; that this microstructure is found in both conchs and opercula suggests that these structures are serial homologues of one another, and in this respect they resemble brachiopod valves. As with many other biological plywoods, the hyolith shell probably records self‐organization in a liquid‐crystal‐like organic matrix. This provided a straightforward way to construct a material that could resist stresses from different directions, offering an effective defence against predators.  相似文献   

20.
Acidic macromolecules, as a nucleation factor for mollusc shell formation, are a major focus of research. It remains unclear, however, whether acidic macromolecules are present only in calcified shell organic matrices, and which acidic macromolecules are crucial for the nucleation process by binding to chitin as structural components. To clarify these questions, we applied 2D gel electrophoresis and amino acid analysis to soluble shell organic matrices from nacre shell, non-nacre aragonitic shell and non-calcified squid shells. The 2D gel electrophoresis results showed that the acidity of soluble proteins differs even between nacre shells, and some nacre (Haliotis gigantea) showed a basic protein migration pattern. Non-calcified shells also contained some moderately acidic proteins. The results did not support the correlation between the acidity of soluble shell proteins and shell structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号