首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The crown-gap ratio C is defined as the mean distance between adjacent crowns divided by the mean crown diameter. Previous field studies have established that for a limited range of vegetation stands crown cover is related to C by a general function, viz. crown cover = k/(1 + C)2, where k is a constant. In the present study we investigated the general derivation of the function which relates crown cover to C. The function was then used to determine values for k, a range of point distributions being simulated from semi-regular to clumped, with mixtures of crown sizes. The relationship between crown cover and 1/(1 + C)2 was linear in all cases tested (R2= 1.0). The value of k was shown to depend on the sampling technique used, the degree of clumping, and the range in crown sizes permitted. The variation in k was reduced by using a specific sampling method and limiting the range of spatial distributions and crown sizes considered. The constraints imposed were:
  • 1 Sampling followed a zig-zag transect (Delaunay two-sided model).
  • 2 Point distributions were not overly clumped.
  • 3 The range of crown diameters approximated a Gaussian distribution with a relative range of 1–4.
Given these constraints the value of k was determined to be 0.806 with a variance of less than 2%. A table is given to convert values for C into crown cover percentages and, if required, to calculate foliage cover per cent. The constraints imposed are considered to be within conditions normally encountered in the field, making the use of C an accurate and simple method by which to estimate crown or foliage cover per cent.  相似文献   

2.
Tree hollows provide critical habitat for many species worldwide. The conservation of hollow-bearing trees presents a particular challenge for forest managers, partly due to difficulties in predicting their occurrence across a landscape. We trialled a novel approach for assessing relative hollow availability, by remotely estimating mature crown cover and senescence from aerial photographs in Tasmania, Australia. These estimates were tested against plot-based field assessments of actual occurrence of hollow-bearing trees. In dry forest we conducted ground-based surveys of hollows for all mature trees (>50 cm dbh) in 37 half-hectare plots. In wet forest, we conducted helicopter-based surveys of hollows for all mature trees in 45 oldgrowth plots (0.29–4.63 ha). Aerial photographs (1:10,000–1:25,000) were used to classify the senescence and cover of mature crowns in each plot. Regression analysis showed that, in dry forest, hollow-bearing tree densities were strongly related to the remote assessment of mature crown cover, with an 8% increase in variability explained if senescence was also included (R 2 = 0.50). In wet forest, mature crown cover alone was the best model (R 2 = 0.53 when outliers were removed). Assessing senescence was less important in dense wet forests than dry forest because trees take longer to form mature-shaped crowns and so mature-shaped crowns are more likely to have hollows. These results suggest that, with skilled photo-interpretation, aerial photographs can be useful for remotely assessing the relative density of hollow-bearing trees. This approach has the potential to greatly improve conservation planning for hollows and hollow-dependent fauna.  相似文献   

3.
We present a method to visually score 10 root architectural traits of the root crown of an adult maize plant in the field in a few minutes. Phenotypic profiling of three recombinant inbred line (RIL) populations of maize (Zea mays L.; B73xMo17, Oh43xW64a, Ny821xH99) was conducted in 2008 in a silt loam soil in Pennsylvania and in a sandy soil in Wisconsin, and again in 2009 in Pennsylvania. Numbers, angles and branching pattern of crown and brace roots were assessed visually at flowering. Depending on the soil type in which plants were grown, sample processing took from three (sand) to 8 min (silt-loam). Visual measurement of the root crown required 2 min per sample irrespective of the environment. Visual scoring of root crowns gave a reliable estimation of values for root architectural traits as indicated by high correlations between measured and visually scored trait values for numbers (r 2?=?0.46?C0.97), angles (r 2?=?0.66?C0.76), and branching (r 2?=?0.54?C0.88) of brace and crown roots. Based on the visual evaluation of root crown traits it was possible to discriminate between populations. RILs derived from the cross NY821 x H99 generally had the greatest number of roots, the highest branching density and the most shallow root angles, while inbred lines from the cross between OH43 x W64a generally had the steepest root angles. The ranking of genotypes remained the same across environments, emphasizing the suitability of the method to evaluate genotypes across environments. Scoring of brace roots was better correlated with the actual measurements compared to crown roots. The visual evaluation of root architecture will be a valuable tool in tailoring crop root systems to specific environments.  相似文献   

4.
Although local increases in woody plant cover have been documented in arid and semiarid ecosystems worldwide, there have been few long‐term, large‐scale analyses of changes in woody plant cover and aboveground carbon (C) stocks. We used historical aerial photography, contemporary Landsat satellite data, field observations, and image analysis techniques to assess spatially specific changes in woody vegetation cover and aboveground C stocks between 1937 and 1999 in a 400‐km2 region of northern Texas, USA. Changes in land cover were then related to topo‐edaphic setting and historical land‐use practices. Mechanical or chemical brush management occurred over much of the region in the 1940–1950s. Rangelands not targeted for brush management experienced woody cover increases of up to 500% in 63 years. Areas managed with herbicides, mechanical treatments or fire exhibited a wide range of woody cover changes relative to 1937 (?75% to + 280%), depending on soil type and time since last management action. At the integrated regional scale, there was a net 30% increase in woody plant cover over the 63‐year period. Regional increases were greatest in riparian corridors (33%) and shallow clay uplands (26%) and least on upland clay loams (15%). Allometric relationships between canopy cover and aboveground biomass were used to estimate net aboveground C storage changes in upland (nonriparian) portions of regional landscapes. Carbon stocks increased from 380 g C m?2 in 1937 to 500 g C m?2 in 1999, a 32% net increase across the 400 km2 region over the 63‐year period. These plant C storage change estimates are highly conservative in that they did not include the substantial increases in woody plant cover observed within riparian landscape elements. Results are discussed in terms of implications for ‘carbon accounting’ and the global C cycle.  相似文献   

5.
Whitmore  A.P.  Groot  J.J.R. 《Plant and Soil》1997,192(2):237-247
The leaves and crowns from 15N-labelled sugar beets were incubated in either a silty clay loam or sand soil for almost one year. Four additions of fresh, chopped residues mixed with soil were tested: 15N-labelled leaves alone, 15N-labelled leaves plus unlabelled crowns, unlabelled leaves plus 15N-labelled crowns, and 15N-labelled crowns alone; a control with no addition was also incubated. The C:N ratio of the leaves was 11 and that of the crowns 40. Incubations were carried out in pots kept at 20 °C and optimal moisture conditions. The leaves mineralized N from the start of the experiment but the addition of crowns to soil at first caused immobilization of nitrogen followed eventually by mineralization after 6 or 12 weeks depending on soil type. The extra amounts of mineral N found in soil at the end of the experiment where additions were made corresponded to the sum of the background mineralization and the addition; no priming effects were encountered. Very slight differences only were found between the initial rates of mineralization of C in all of the treatments. Although there was also little difference between the sand and silty clay loam soils in the direct mineralization of nitrogen from the sugar beet leaves, where N was first immobilized (i.e. from crowns or a mixture) re-release of N took place more quickly in the sand soil. The total recovery of15 N found in soils after 24 weeks incubation ranged from 70% to 90% with least being lost from the sugar-rich but N-deficient crowns. Where leaves plus crowns were incubated together both residues contributed to the microbial biomass N.In practice, immobilization of this magnitude and duration (expressed as a temperature sum) could exceed the growth period of a spring sown crop. The actual immobilization found in any one field is likely to depend on the C:N ratio of the residues and could account for much of the variation in the residual benefit of sugar beet residues reported in the literature.  相似文献   

6.
Background and AimsCrown shyness describes the phenomenon whereby tree crowns avoid growing into each other, producing a puzzle-like pattern of complementary tree crowns in the canopy. Previous studies found that tree slenderness plays a role in the development of crown shyness. Attempts to quantify crown shyness have largely been confined to 2-D approaches. This study aimed to expand the current set of metrics for crown shyness by quantifying the characteristic of 3-D surface complementarity between trees displaying crown shyness, using LiDAR-derived tree point clouds. Subsequently, the relationship between crown surface complementarity and slenderness of trees was assessed.MethodsFourteen trees were scanned using a laser scanning device. Individual tree points clouds were extracted semi-automatically and manually corrected where needed. A metric that quantifies the surface complementarity (Sc) of a pair of protein molecules is applied to point clouds of pairs of adjacent trees. Then 3-D tree crown surfaces were generated from point clouds by computing their α shapes.Key ResultsTree pairs that were visually determined to have overlapping crowns scored significantly lower Sc values than pairs that did not overlap (n = 14, P < 0.01). Furthermore, average slenderness of pairs of trees correlated positively with their Sc score (R2 = 0.484, P < 0.01), showing agreement with previous studies on crown shyness.ConclusionsThe characteristic of crown surface complementarity present in trees displaying crown shyness was succesfully quantified using a 3-D surface complementarity metric adopted from molecular biology. Crown surface complementarity showed a positive relationship to tree slenderness, similar to other metrics used for measuring crown shyness. The 3-D metric developed in this study revealed how trees adapt the shape of their crowns to those of adjacent trees and how this is linked to the slenderness of the trees.  相似文献   

7.
In post-core crown restorations, the significant mismatch between stiffness of artificial crowns and dental tissues leads to stress concentration at the interfaces. The aim of the present study was to reduce the destructive stresses by using a class of inhomogeneous materials called functionally graded materials (FGMs). For the purpose of the study, a 3-dimentional computer model of a premolar tooth and its surrounding tissues were generated. A post-core crown restoration with various crown materials, homogenous and FGM materials, were simulated and analyzed by finite element method. Finite element and statistical analysis showed that, in case of oblique loading, a significant difference (p < 0.05) was found at the maximum von Mises stresses of the crown margin between FGM and homogeneous crowns. The maximum von Mises stresses of the crown margin generated by FGM crowns were lower than those generated by homogenous crowns (70.8 vs. 46.3 MPa) and alumina crown resulted in the highest von Mises stress at the crown margin (77.7 MPa). Crown materials of high modulus of elasticity produced high stresses at the cervical region. FGM crowns may reduce the stress concentration at the cervical margins and consequently reduce the possibility of fracture.  相似文献   

8.
Tree crowns typically cover the vast majority of the surface area of trees, but they are rarely considered in diversity surveys of epiphytic bryophytes and lichens, especially in temperate Europe. Usually only stems are sampled. We assessed the number of bryophyte and lichen species on stems and in crowns of 80 solitary sycamore maple trees (Acer pseudoplatanus) at six sites in wooded pastures in the northern Alps. The total number of species detected per tree ranged from 13 to 60 for bryophytes, from 25 to 67 for lichens, and from 42 to 104 for bryophytes and lichens considered together. At the tree level, 29 % of bryophyte and 61 % of lichen species were recorded only in the crown. Considering all sampled trees together, only 4 % of bryophyte, compared to 34 % of lichen species, were never recorded on the stem. Five out of 10 red-listed bryophyte species and 29 out of 39 red-listed lichen species were more frequent in crowns. The species richness detected per tree was unexpectedly high, whereas the proportion of exclusive crown species was similar to studies from forest trees. For bryophytes, in contrast to lichens, sampling several stems can give a good estimation of the species present at a site. However, frequency estimates may be highly biased for lichens and bryophytes if crowns are not considered. Our study demonstrates that tree crowns need to be considered in research on these taxa, especially in biodiversity surveys and in conservation tasks involving lichens and to a lesser degree also bryophytes.  相似文献   

9.
Trichon  Valérie 《Plant Ecology》2001,153(1-2):301-312
This paper assesses the potential of large-scale aerial photographs for the identification of rain forest trees. Colour slides at 1: 3000 scale were acquired in French Guiana, above the canopy of a 25 ha study site where trees had already been identified. Firstly, the stereoscopic analysis of photographic prints served to establish a typology of the crowns, based on seven main classes of criteria: crown size, crown status, crown contour, crown architecture, foliage cover, foliage texture and colour, completed where possible by information on phenology. The terminology chosen was based on those proposed in previous studies. Secondly, a smaller area of 5 ha was delimited in the field, on which 15 tree categories (vernacular names) represented by 5 crowns or more on the photographs were selected. For each category, a standard crown was described using terminology previously defined. Twelve tree categories, including first and second class commercial timbers, displayed specific characteristics allowing them to be identified on aerial photographs. Further analyses will be undertaken in the future to measure the success of this identification method. This method may be applied for the recognition of particular species of interest: commercial, rare, endemic or key-stone species. Phenological data, as well as information on crown architectural development, can also be retrieved from aerial photographs, bringing new prospects for a better knowledge of crowns biology and their functional role in the forest ecosystem.  相似文献   

10.
We tested the hypothesis that fruit quantity and quality vary vertically within trees. We quantified intratree fruit production before exploitation by frugivores at different heights in 89 trees from 17 species fed on by primates in Kibale National Park, Uganda. We also conducted a pilot study to determine if the nutritional value of fruit varied within tree crowns. Depending on the species and crown size, we divided tree canopies into 2 or 3 vertical layers. In 2-layered trees, upper crowns produced fruits that were 9.6–30.1% bigger and 0.52–140 times the densities of those from lower crowns, with one exception. Among 2-layered trees, upper crowns produced a mean of 46.9 fruits/m3 (median 12.1), while lower crowns produced a mean of 14.1 fruits/m3 (median 2.5). Among 3-layered trees, upper crowns produced a mean density of 49.9 fruits/m3 (median 12.5), middle crowns a mean of 16.8 fruits/m3 (median 6.6), and lower crowns a mean of 12.8 fruits/m3 (median 1.8). Dry pulp and moisture were systematically greater per fruit in the highest compared to the lowest canopy layers (22.4% and 16.4% respectively in 2-layered trees, 49.7% and 21.8% respectively in 3-layered trees). In 1 tree of Diospyros abyssinica, a pilot nutritional study showed that upper crown ripe fruit contained 41.9% more sugar, 8.4% more crude proteins, and 1.8 times less of the potentially toxic saponin than lower crown ripe fruit, but the result needs to be verified with more individuals and species of trees. We discuss the consequences of intratree variations in fruit production with respect to competition among frugivorous primates.  相似文献   

11.
Three methods for estimating crown cover of woody vegetation were compared, in three mapped field sites and one theoretical map of randomly distributed individuals, by computer simulated sampling. The effect of plant size on the performance of the methods was investigated by varying the size of individuals in the theoretical map. Using the line-intercept and point-sampling techniques according to standard procedures, the net crown cover of a species is estimated and overlapping areas are not recognized. The variable plot or Bitterlich gauge technique estimates the total crown cover of individuals, and areas of overlap are thus recorded more than once. Consequently, Bitterlich gauge estimates will always be greater whenever individuals intermingle or overtop one another. Line-intercept and point-sampling techniques produced highly variable estimates when plants were small, but were not prone to greater variability when plant distribution departed from randomness. The Bitterlich gauge estimates were no more variable with small than with large plants, but were affected by the degree of plant aggregation. The problem is overcome by selecting a sample point spacing and a half-angle for the gauge that optimizes plant counting. The advantages of the variable plot method over the other two are discussed in terms of speed and operator differences, and it is recommended as a monitoring technique for woody vegetation in arid rangelands.  相似文献   

12.
Woody encroachment, a spatially explicit process of land-cover change, is known to affect the biophysical and biogeochemical properties of ecosystems. However, little information is available on the impacts of woody encroachment on N oxide emissions from savanna regions. We combined hyperspectral remote sensing and field measurements to quantify spatial patterns and estimate regional fluxes of soil N oxide emissions as they covary with vegetation cover and soil type across a semiarid rangeland in north Texas. Soil nitric oxide (NO) emissions were highly correlated with Prosopis canopy cover, allowing the extrapolation of NO fluxes from hyperspectral observations of woody cover. NO emissions were highly variable, ranging from 0 to 550 kg NO-N km–2 y–1 across the region, with the lowest emissions from shallow clay soils and highest from deeper upland clay loams. An estimate of annual NO emissions based on remotely derived Prosopis cover, temperature, and precipitation was 160 kg NO-N km–2 y–1, almost twice that of the value derived from traditional averaging of field measurements. We conclude that relationships between NO emissions and remotely sensed structure and composition are advantageous for quantifying NO emissions at the regional scale. This study also provides new insight into the role of woody encroachment on biogeochemical processes that are highly variable and otherwise difficult to measure at the regional scale.  相似文献   

13.
Previous studies suggest that forest regeneration in grasslands is often slow because of grass competition and fire and that regeneration may be dependent on fire‐resistant savannah trees. To examine the potential of savannah trees in facilitating regeneration, species diversity, number and total abundance of species of woody plants were determined below and away from Acacia sieberiana and Erythrina abyssinica tree crowns. Additionally, crown size and distance from a natural forest were estimated to determine their influence on natural regeneration. Results showed that the environment under tree crowns positively influence diversity compared to that outside crowns: including for biodiversity (3.08 versus 2.82), the number of species and total abundance (P < 0.001). However, distance from the forest to trees in the grassland had no influence on these parameters. Vertebrate animals were found to be the major seed dispersers in grasslands of Kibale. We concluded that forests that establish below crowns of savannah trees will be more diverse than those in treeless areas and that crown size is more important than distance from natural forest in facilitating regeneration. Furthermore, A. sieberiana could be more suitable in facilitating natural regeneration, while animals have proved to be vital for regeneration.  相似文献   

14.
Knowledge of the quantitative relationship between plant cover and its corresponding biomass for shrubs is not well known, especially for those on the Tibetan Plateau. Based on investigations of 35 sites, 90 plots and 95 standard individuals for two typical shrub species (Rhododendron nivale Hook. f. and Sophora moorcroftiana (Benth.) Baker) across Tibet, we developed allometric models for biomass estimation from measurements of crown diameter and/or height. We found that the parameters of crown projection area (CPA), height and their product (volume) were all significantly (p < 0.01) correlated with dry mass of different organs for both species at individual level. The CPA rather than volume best predicted aboveground dry mass. This is because that the bulk density declined significantly with increasing plant height, leading to the inappropriateness for plant height itself being employed as a parameter in biomass estimation, especially for shrubs in smaller size groups. At community level, cover was tightly correlated with the aboveground, belowground and total biomass (R2 = 0.97–0.99). Therefore, biomass for the two shrubs can be simply estimated by measuring plant cover, which enables rapid estimation of shrubland carbon stock at large scales by using satellite data and repeated experiments over time. This non-destructive method using cover to estimate shrub biomass can be applied not only in arid ecosystems but also in alpine or subalpine environment.  相似文献   

15.
Four types of indices of canopy characteristics were compared to estimate understory light conditions using crown projection maps and topographic data. Crown area (CA) was formulated from the crowns in a focal sub-block (20 m×20 m). Canopy shade index (CSI) was formulated from the crowns in a focal sub-block and the surrounding sub-blocks with topographic effect. Site shade index (SSI) incorporated the shade of the slopes into CSI and represented the total physical closure of the site. Site light index (SLI) incorporated the azimuth of the site into SSI and evaluated the light condition of the understory. We tested the methods using the data on steep old-growth Cryptomeria japonica forests on Yakushima Island and the three-dimensional canopy structures of the forests were digitized on a geographic information system. The results were validated by the basic indices obtained by hemispherical photographs: canopy openness (CO) and gap light index (GLI). The three-dimensional structure of the surrounding canopies and topography had significant effects on the understory light conditions. CA had no significant correlation with CO, whereas CSI and SSI had significant negative correlations with CO. Although SLI had the highest negative correlation with GLI (R2=0.69), CSI had practical utility in the estimation of GLI (R2= 0.65). Our method is applicable to past crown projection maps that have been recorded at many forest research sites, thus making it possible to reconstruct past understory light conditions and to compare them with present conditions.  相似文献   

16.
北京地区侧柏人工林密度效应   总被引:9,自引:2,他引:9  
密度是影响森林尤其是人工林生长的重要因素,林冠层是森林生态系统与其他系统进行能量和物质交换的重要场所,树木及树冠生长对林分密度的响应关系可以看作是生物对环境变化产生的适应性现象。林分密度效应是生态学和森林培育学的重要研究内容之一。以23块8种不同密度梯度的北京山区侧柏人工幼龄林林分为研究对象分析其树木生长及树冠生长对密度的响应关系,其中树冠指标使用了参照了美国林务局(USDA)的树冠调查指标。研究结果表明:(1)林分平均胸径、平均树高和平均冠幅生长均随密度增大而减小,林分密度大于3000株/hm2时各指标减小的趋势变缓,使用异速生长模型可以很好地拟合这种变化关系;(2)随密度增加,树冠水平方向和垂直方向生长均到显著地抑制作用,树冠外形表现出由饱满冠型向狭长冠型变化的适应性现象;(3)使用树冠二维、三维指标与密度进行相关性分析可知树冠长度、树冠率等指标与林分密度呈负相关关系,树冠圆满度及树冠生产效率与密度表现出极显著正相关关系;(4)采用枝解析的方法研究了树枝长度、材积的平均生长量、连年生长量与密度的关系,结果表明幼龄期各生长量差异不大;(5)在建立冠幅模型时考虑了自变量间的多重共线性问题,所建的胸径单自变量二次方模型能够很好地预测侧柏人工幼龄林冠幅生长过程,模型相关系数R2为0.961。  相似文献   

17.
Encroachment of woody plants has been among the major threats to the livelihoods of Borana pastoralists and their ecosystem. An approach that integrated vegetation survey and pastoralists’ perception was followed to study the impacts of encroachment of woody plants in the Borana lowlands, Ethiopia. Density of woody species was determined in 192 plots of 500 m2. Canopy cover of woody plants was estimated in 123 quadrates of 400 m2. Pastoralists’ perception was assessed through group discussions and a semi‐structured questionnaire. Results showed that plant density was 3014 woody plants ha?1. Cover of woody plants was 52%, indicating an increasing trend from ≤40% cover reported in the early 1990s. It was concluded that the increase of woody plants density and cover has crossed the critical threshold and has entered into the encroached condition. Principal components analysis (PCA) and redundancy analysis (RDA) also showed that woody plants were negatively correlated with herbaceous biomass. Commiphora africana, Acacia melliphera, A. drepanolobium, A. brevispica and Lannea rivae were among the dominant encroachers. RDA revealed that soil nutrients were positively correlated with woody plants density and cover. The pastoralists perceived that encroachment of woody plants had decreased the production of their grazingland. A ban on fire was perceived as the major factor that caused encroachment of woody plants. Re‐utilization of fire and strengthening of traditional rangeland management strategies are recommended.  相似文献   

18.
Yan CF  Han SJ  Zhou YM  Wang CG  Dai GH  Xiao WF  Li MH 《PloS one》2012,7(4):e35076
For both ecologists and physiologists, foliar physioecology as a function of spatially and temporally variable environmental factors such as sunlight exposure within a tree crown is important for understanding whole tree physiology and for predicting ecosystem carbon balance and productivity. Hence, we studied concentrations of nitrogen (N), non-structural carbohydrates (NSC = soluble sugars + starch), and δ13C in different-aged needles within Pinus koraiensis tree crowns, to understand the needle age- and crown position-related physiology, in order to test the hypothesis that concentrations of N, NSC, and δ13C are needle-age and crown position dependent (more light, more photosynthesis affecting N, NSC, and δ13C), and to develop an accurate sampling strategy. The present study indicated that the 1-yr-old needles had significantly higher concentration levels of mobile carbohydrates (both on a mass and an area basis) and Narea (on an area basis), as well as NSC-N ratios, but significantly lower levels of Nmass (on a mass basis) concentration and specific leaf area (SLA), compared to the current-year needles. Azimuthal (south-facing vs. north-facing crown side) effects were found to be significant on starch [both on a mass (STmass) and an area basis (STarea)], δ13C values, and Narea, with higher levels in needles on the S-facing crown side than the N-facing crown side. Needle Nmass concentrations significantly decreased but needle STmass, STarea, and δ13C values significantly increased with increasing vertical crown levels. Our results suggest that the sun-exposed crown position related to photosynthetic activity and water availability affects starch accumulation and carbon isotope discrimination. Needle age associated with physiological activity plays an important role in determining carbon and nitrogen physiology. The present study indicates that across-scale sampling needs to carefully select tissue samples with equal age from a comparable crown position.  相似文献   

19.
The physical characteristics of habitats shape local community structure; a classic example is the positive relationship between the size of insular habitats and species richness. Despite the high density and proximity of tree crowns in forests, trees are insular habitats for some taxa. Specifically, crown isolation (i.e. crown shyness) prevents the movement of small cursorial animals among trees. Here, we tested the hypothesis that the species richness of ants (Sa) in individual, isolated trees embedded within tropical forest canopies increases with tree size. We predicted that this pattern disappears when trees are connected by lianas (woody vines) or when strong interactions among ant species determine tree occupancy. We surveyed the resident ants of 213 tree crowns in lowland tropical forest of Panama. On average, 9.2 (range = 2–20) ant species occupied a single tree crown. Average (± SE) Sa was ca 25% higher in trees with lianas (10.2 ± 0.26) than trees lacking lianas (8.0 ± 0.51). Sa increased with tree size in liana‐free trees (Sa = 10.99A0.256), but not in trees with lianas. Ant species composition also differed between trees with and without lianas. Specifically, ant species with solitary foragers occurred more frequently in trees with lianas. The mosaic‐like pattern of species co‐occurrence observed in other arboreal ant communities was not found in this forest. Collectively, the results of this study indicate that lianas play an important role in shaping the local community structure of arboreal ants by overcoming the insular nature of tree crowns.  相似文献   

20.
The present study investigates the utility of cervical measurements in deciduous teeth and how they correlate with traditional measurements of the crown. First, this study establishes definitions by which these measurements could reliably be taken. Next, deciduous cervical and traditional crown diameters were taken on three distinct skeletal samples: a Neolithic assemblage from Central Anatolia (Çatalhöyük, n = 85), a precontact sample from Northern California (CA‐ALA‐329, n = 34), and a group of intrusive burials interred at Çatalhöyük that date between AD 60 and 1650 (n = 38). Across the dentition there are positive correlations between crown and cervical measurements, which tend to be higher in anterior teeth than in posterior teeth. Both measurements show low correlations with age; however, cervical measurements show fewer negative correlations with age. An intraobserver error study found low levels of error for both types of measurements. On a subset of the Çatalhöyük sample (n = 9), a principal components and biological distance analysis were conducted comparing the two types of measurements. Also, all three samples were subject to a canonical discriminant function analysis and the results from cervical and crown measurements were compared. All analyses produced slightly different results for each type of data suggesting that crown and cervical measurements capture different aspects of tooth shape. While cervical and crown measurements provide different statistical results, cervical measurements can provide information relevant to anthropological studies and may allow for larger datasets to be used by allowing the inclusion of teeth with modified crowns. Am J Phys Anthropol 149:299–306, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号