首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Correlational selection favors combinations of traits and is a key element of many models of phenotypic and genetic evolution. Multiple regression techniques for measuring selection allow for the direct estimation of correlational selection gradients, yet few studies in natural populations have investigated this process. Color patterns and antipredator behaviors of snakes are thought to function interactively in predator escape and therefore may be subject to correlational selection. To investigate this hypothesis, I studied the survivorship of juvenile garter snakes, Thamnophis ordinoides, as a function of a suite of escape behaviors and color pattern. The only natural selection detected favored opposite combinations of stripedness of the color pattern and the tendency to perform during escape evasive behaviors called reversals. This selection presumably results from optical illusions created by moving patterns and their effects on visually foraging predators. Analysis of the bivariate selection surface shows that pure correlational selection can be thought of as a series of linear selection functions on one trait whose slopes depend on the value of the second trait. Alternatively, viewing the selection surface along its major axes reveals stabilizing and disruptive components of correlational selection. It is further shown that correlational selection alone can promote genetic variance and covariance within a generation. This phenomenon may be partially responsible for the extreme variation in color pattern and the genetic covariance between color pattern and behavior observed in natural populations of T. ordinoides.  相似文献   

2.
Quantitative genetic models of evolution rely on the genetic variance-covariance matrix to predict the phenotypic response to selection. Both prospective and retrospective studies of phenotypic evolution across generations rely on assumptions about the constancy of patterns of genetic covariance through time. In the absence of robust theoretical predictions about the stability of genetic covariances, this assumption must be tested with empirical comparisons of genetic parameters among populations and species. Genetic variance-covariance matrices were estimated for a suite of antipredator traits in two populations of the northwestern garter snake, Thamnophis ordinoides. The characters studied include color pattern and antipredator behaviors that interact to facilitate escape from predators. Significant heritabilities for all traits were detected in both populations. Genetic correlations and covariances were found among behaviors in both populations and between color pattern and behavior in one of the populations. Phenotypic means differed among populations, but pairwise comparisons revealed no heterogeneity of genetic parameters between the populations. The structure of the genetic variance-covariance matrix has apparently not changed significantly during the divergence of these two populations.  相似文献   

3.
The time-scale for the evolution of additive genetic variance-covariance matrices (G-matrices) is a crucial issue in evolutionary biology. If the evolution of G-matrices is slow enough, we can use standard multivariate equations to model drift and selection response on evolutionary time scales. We compared the G-matrices for meristic traits in two populations of gaiter snakes (Thamnophis elegans) with an apparent separation time of 2 million years. Despite considerable divergence in the meristic traits, foraging habits, and diet, these populations show conservation of structure in their G-matrices. Using Flury's hierarchial approach to matrix comparisons, we found that the populations have retained the principal components (eigenvectors) of their G-matrices, but their eigenvalues have diverged. In contrast, we were unable to reject the hypothesis of equal environmental matrices (E-matrices) for these populations. We propose that a conserved pattern of multivariate stabilizing selection may have contributed to conservation of G- and E-matrix structure during the divergence of these populations.  相似文献   

4.
5.
6.
How and why cooperation evolves, particularly among nonrelatives, remains a major paradox for evolutionary biologists and behavioral ecologists. Although much attention has focused on fitness consequences associated with cooperating, relatively little is known about the second component of evolutionary change, the inheritance of cooperation or reciprocity. The genetics of behaviors that can only be expressed in the context of interactions are particularly difficult to describe because the relevant genes reside in multiple social partners. Indirect genetic effects (IGEs) describe the influence of genes carried in social partners on the phenotype of a focal individual and thus provide a novel approach to quantifying the genetics underlying interactions such as reciprocal cooperation. We used inbred lines of guppies and a novel application of IGE theory to describe the dual genetic control of predator inspection and social behavior, both classic models of reciprocity. We identified effects of focal strain, social group strain, and interactions between focal and group strains on variation in focal behavior. We measured ψ, the coefficient of the interaction, which describes the degree to which an individual's phenotype is influenced by the phenotype of its social partners. The genetic identity of social partners substantially influences inspection behavior, measures of threat assessment, and schooling and does so in positively reinforcing manner. We therefore demonstrate strong IGEs for antipredator behavior that represent the genetic variation necessary for the evolution of reciprocity.  相似文献   

7.
Twitch and slow muscle fibers, identified morphologically in the garter snake, have been examined in the electron microscope. The transverse tubular system and the sarcoplasmic reticulum are separate entities distinct from each other. In twitch fibers, the tubular system and the dilated sacs of the sarcoplasmic reticulum form triads at the level of junction of A and I bands. In the slow fibers, the sarcoplasmic reticulum is severely depleted in amount and the transverse tubular system is completely absent. The junctional folds of the postsynaptic membrane of the muscle fiber under an "en grappe" ending of a slow fiber are not so frequent or regular in occurrence or so wide or so long as under the "en plaque" ending of a twitch fiber. Some physiological implications of these differences in fine structure of twitch and slow fibers are discussed. The absence of the transverse tubular system and reduction in amount of sarcoplasmic reticulum, along with the consequent disposition of the fibrils, the occurrence of multiple nerve terminals, and the degree of complexity of the post junctional folds of the sarcolemma appear to be the morphological basis for the physiological reaction of slow muscle fibers.  相似文献   

8.
9.
10.
Sex in Daphnia is environmentally determined, and some obligately parthenogenetic clones of D. pulex have retained the ability to produce males. In the present study, males from 13 such clones were crossed to sexual females from closely related cyclical parthenogens both to determine whether the males were capable of producing viable hybrids and to determine the mode of reproduction of the hybrids. A total of 178 genetically confirmed hybrids were produced, with each of the 19 attempted crosses resulting in some viable hybrids. On average, only 34% of the hybrid eggs that initiated development survived to the reproductive stage, suggesting some incompatibility between the parents. The absence of any association between survivorship and parental or hybrid genotype indicated, however, that there is no specific genetic incompatibility associated with the marker loci used. The inability of most hybrids to produce normal resting eggs is further evidence of a general genomic incompatibility between the parents. Ten of the hybrids produced viable resting eggs, permitting tests to determine their mode of reproduction. Six of the 10 hybrids reproduced by cyclical parthenogenesis, like their maternal parent. The remaining four hybrids reproduced by obligate parthenogenesis, like their paternal parent, demonstrating that the genes suppressing meiosis can be transmitted by the male parent. These results support a model for the generation of new clones that involves the spread of genes suppressing meiosis and provide evidence that the high genotypic diversity observed in obligately parthenogenetic populations of D. pulex is a result of the multiple origin of new clones from the cyclical parthenogens. Evidence was also obtained suggesting that the obligately parthenogenetic clones carry a load of recessive deleterious genes.  相似文献   

11.
12.
13.
The polychaete Streblospio benedicti is unusual in that several field populations consist of individuals that exhibit either planktotrophic or lecithotrophic larval development. Planktotrophy in this species involves production of many small ova that develop into feeding larvae with a two- to three-week planktonic period. Lecithotrophy involves production of fewer, larger ova that develop into nonfeeding larvae that are brooded longer and have a brief planktonic stage. Reciprocal matings were performed to investigate genetic variance components and the correlation structure of life-history traits associated with planktotrophy and lecithotrophy. Our objective was to better understand persistence of this developmental dichotomy in Streblospio benedicti, and among marine invertebrates in general. Substantial additive genetic variation (75–98% of total) was detected for the following characters at first reproduction: female length; position of the first gametogenic setiger and first brood pouch; ovum diameter; three traits related to fecundity (numbers of ova per ovary, larvae per brood pouch, and larvae per brood); median larval planktonic period and the presence of larval swimming setae; but not for total number of brood pouches; larval length; larval feeding; and larval survivorship. Based on the unusual geographic distribution of development modes in this species, we hypothesize that the developmental traits have evolved in allopatry and have only recently come into contact in North Carolina. The high additive contribution to variance observed for many traits may be inflated due to (a) nonrandom breeding in nature, and (b) examination of only one component of an age-structured population at one time. Nuclear interaction variance and maternal variance accounted for 84% of the total variation in larval survivorship. This observation supports other empirical studies and theoretical predictions that nonadditive components of variance will increase in importance in individual traits that are most closely tied to fitness. A network of life-history trait correlations was observed that defines distinct planktotrophic and lecithotrophic trait complexes. Negative genetic correlations were present between fecundity and egg size, between fecundity and position of the first gametes, and between larval survivorship and median planktonic period. Positive genetic correlations were detected between fecundity and female size at first reproduction and between planktonic period and the presence of swimming setae. Intergenerational product-moment correlations were negative for larval length and fecundity, planktonic period and egg size, female size and larval survivorship, and fecundity and larval survivorship. If the genetic correlation structure observed in the laboratory persists in the field, it may constrain responses of individual characters to directional selection, and indirectly perpetuate the dichotomies associated with planktotrophy and lecithotrophy.  相似文献   

14.
Douglas fir (Pseudotsuga menziesii (Mirb.) Franco) ovules were used to study the method of pollen tube formation and penetration of the nucellus, the movement of the body cell down the pollen tube and development of the archegonia. No pollination drop forms but nucellar tip cells produce a minute secretion that may initiate pollen tube formation. Pollen tubes penetrate the nucellus causing degeneration of nucellar cells in contact with the pollen tube tip. The body cell becomes highly lobed and the tube cytoplasm forms thin sheets between the lobes. This may be the mechanism by which the large body cell is pulled down the narrow pollen tube. Body cell plastids and mitochondria remain unaltered during pollen tube growth, whereas tube cell organelles show signs of degeneration. The pollen tube penetrates the megaspore wall and settles in the archegonial chamber. During pollen elongation and pollen tube growth the egg matured. Egg cell plastids were transformed into large inclusions which filled the periphery of the egg while mitochondria migrated to the perinuclear zone. The neck cells, ventral canal cell and archegonial jacket cells are described. The significance of the body cell and egg cell ultrastructure is discussed in light of recent restriction fragment length polymorphism studies of plastid and mitochondrial inheritance in the Pinaceae.  相似文献   

15.
To understand the hierarchy of life in evolutionary terms, we must explain why groups of one kind of individual, say cells, evolve into a new higher level individual, a multicellular organism. A fundamental step in this process is the division of labor into nonreproductive altruistic soma. The regA gene is critical for somatic differentiation in Volvox carteri, a multicellular species of volvocine algae. We report the sequence of regA‐like genes and several syntenic markers from divergent species of Volvox. We show that regA evolved early in the volvocines and predict that lineages with and without soma descended from a regA‐containing ancestor. We hypothesize an alternate evolutionary history of regA than the prevailing “proto‐regA” hypothesis. The variation in presence of soma may be explained by multiple lineages independently evolving soma utilizing regA or alternate genetic pathways. Our prediction that the genetic basis for soma exists in species without somatic cells raises a number of questions, most fundamentally, under what conditions would species with the genetic potential for soma, and hence greater individuality, not evolve these traits. We conclude that the evolution of individuality in the volvocine algae is more complicated and labile than previously appreciated on theoretical grounds.  相似文献   

16.
Abstract— Cottonmouth moccasin snake venom (SV) was applied to the innervated membrane of the isolated single cell of the Sachs electric organ (electroplax) of the electric eel, Electrophorus electricus. Concentrations as low as 0.05 μg/ml irreversibly antagonized depolarization by carbamylcholine, whereas concentrations of 0.1 mg/ml or higher were required to directly and irreversibly depolarize and block electrical excitation. The active component of the venom was stable to boiling at acid pH, destroyed by boiling at alkaline pH and nondialyzable and corresponded to those fractions containing maximum phospholipase A activity demonstrable when isolated by paper electrophoresis and Sephadex filtration. Phospholipase C and lysolecithin in concentrations of 1 mg/ml and 0.2 mg/ml, respectively, depolarized and blocked electrical excitation, whereas lower concentrations did not antagonize depolarization by carbamylcholine. Triton X-100 (0.01 mg/ml) antagonized carbamylcholine, whereas 10-fold higher concentrations directly blocked electrical excitation. Hyaluronidase had no effect on resting or action potential but decreased the depolarizing response to carbamylcholine. At minimal concentrations which blocked the depolarizing response to carbamylcholine, SV caused only slight splitting of phospholipids in single cells of the Sachs organ. A concentration (1 mg/ml) of SV which blocked electrical excitation caused 80–100 per cent splitting of lecithin, phosphatidylethanolamine and phosphatidylserine, the three principal phospholipids of the electric tissue. Similar percentages of splitting of the latter two phospholipids but only about one-third of the lecithin occurred at SV concentration of 0.1 mg/ml. These results indicate that electrical excitability in the eel electroplax can be maintained in the presence of extensive phospholipid splitting. Depolarization and block of electrical excitation by relatively high concentrations of SV may have resulted from splitting of phospholipids, especially lecithin, or may have reflected action of lysophosphatide detergents produced as a result of the action of phospholipase A upon membranal phospholipids.  相似文献   

17.
The hypothesis that local isolated populations differed in the genetic basis for life-history traits was tested in the salamander Ambystoma talpoideum. Genetic basis was defined as the specific genetic architecture (additive and nonadditive) that contributes, along with maternal and environmental factors, to the phenotype. All crosses within and between three populations were made to produce nine F1 populations. Nine within-population crosses produced the F2 generation. This design does not permit an estimation of the exact nature of the genetic basis (e.g., additive, nonadditive) for any trait within populations. However, hybrid dissimilarity in the F2 generation was taken as evidence of a different genetic basis for a trait in each population. The genetic basis of life-history pathway (metamorphosis vs. paedomorphosis) and per capita fecundity differed between two populations. The genetic basis of life-history pathway, per capita fecundity, survival, and growth rate was similar between the remaining sets of populations. This study and related ones (Semlitsch and Wilbur, 1989; Semlitsch et al., 1990) suggest that a heterochronic shift that causes rapid morphological evolution between metamorphosis and paedomorphosis (a macroevolutionary pattern) can evolve independently and does not require a macromutation or other nonmicroevolutionary mechanisms.  相似文献   

18.
19.
Wing dimorphisms exist in a wide range of insects. In wing-dimorphic species one morph is winged has functional flight muscles (LW), and is flight-capable, whereas the other has reduced wings (SW) and cannot fly The evolution and maintenance of wing dimorphisms is believed to be due to trade-offs between flight capability and fitness-related traits. Although there are well-established phenotypic trade-offs associated with wing dimorphism in female insects, there only exist two studies that have established a genetic basis to these trade-offs. The present study provides the first evidence for a genetically based trade-off in male insects, specifically in the sand cricket Gryllus firmus. Because they have to expend energy to maintain the flight apparatus (especially flight muscles), LW males are predicted to call less and therefore to attract fewer females. To be of evolutionary significance, call duration wing morph, and wing muscle condition (size and functionality) should all have measurable heritabilities and all be genetically correlated. Differences between morphs in male G. firmus in the likelihood of attracting a female were tested in the laboratory using a T-maze where females chose between a LW male and a SW male. Call duration for each male was recorded on the sixth day of adult life. A significant difference in call duration was found between SW and LW males (SW = 0.86 ± 0.01, LW = 0.64 ± 0.01 h). SW males attracted significantly more females than did LW males (63% vs. to 37%). All the traits involved in the trade-off had significant heritabilities (call = 0 75 ± 0 33; wing morph = 0.22 ± 007; muscle weight = 0.38 ± 0.09) and genetic correlations (call and wing morph = -0.46 ± 0.20 for SW, -0.68 ± 0.16 for LW; LW call and muscle weight = -0.80 ± 0.14). These results provide the first documented evidence that trade-offs between a dimorphic trait and a fitness-related character in males has a genetic basis and hence can be of evolutionary significance.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号