首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 53 毫秒
1.
Using restriction enzyme analysis, mitochondrial DNA fragment patterns from seven strains of pathogenic and nonpathogenic Naegleria and one strain of Vahlkampfia were compared to estimate nucleotide sequence divergence. Significantly high levels of estimated genetic variation between strains of N. gruberi, N. fowleri, and N. jadini support the current taxonomic level of the individual Naegleria species and suggest a distinct phylogeny for each group. Naegleria lovaniensis, strain TS, was shown to have significant nucleotide sequence homology with N. gruberi, strain EGs, suggesting that the two groups share a close taxonomic relationship. The pathogenic strain MB-41 of N. fowleri exhibited distinct genetic divergence from the highly homologous, pathogenic strain Nf66 and the drug-cured strain 6088. Morphologically distinct strains EGs and 1518/la of N. gruberi exhibited significantly large sequence divergence consistent with a more distant taxonomic relationship. Amoebae from the genus Vahlkampfia expressed genetic similarity with strains of N. gruberi.  相似文献   

2.
ABSTRACT. The purpose of this research was to determine whether mice could be protected from lethal challenge with Naegleria fowleri by prior intranasal exposure to pathogenic and nonpathogenic Naegleria. Mortality ranged from 0 to 100% for mice inoculated intranasally (i.n.) with 5 × 103 amebae of 13 human isolates of N. fowleri. Mice were immunized and challenged i.n. using live amebae of strains of low, medium, and high virulence. The greatest protection against lethal challenge was afforded by three immunizing doses of 103 amebae per dose of the strain of medium virulence. Nonpathogenic N. gruberi also was used to immunize mice i.n. against lethal challenge with N. fowleri. Protection was greater following immunization with N. gruberi than it was after immunization with N. fowleri, suggesting that nonpathogenic N. gruberi may be a better immunogen in protecting mice against lethal naeglerial challenge.  相似文献   

3.
SYNOPSIS. Isoenzyme electrophoresis of 7 different enzyme systems was used to compare 24 strains of Naegleria fowleri and 6 strains of N. gruberi. The 30 strains could be grouped into 4 distinct categories based upon zymogram patterns. No interstrain band variation in all enzyme systems was demonstrated in pathogenic strains of N. fowleri. Three nonpathogenic high temperature-tolerant strains of Naegleria had similar zymograms. Four of the 5 remaining nonpathogenic Naegleria strains had no interstrain band variation. Based upon zymograms, the 22 pathogenic strains constitute a homogenous species. Similarly the high temperature-tolerant nonpathogenic strains formed a cohesive group. The remaining nonpathogenic strains could be separated into 2 groups.  相似文献   

4.
Using isoelectric focusing, the zymograms of 23 pathogenic and nonpathogenic Naegleria strains were studied for the activity of 16 enzymes. Certain enzymes (lactate dehydrogenase, L-threonine dehydrogenase, superoxide dismutase, acid phosphatase, malic enzyme, and leucine aminopeptidase) proved particularly useful from a practical point of view as they allow easy and reliable identification of pathogenic N. fowleri and N. australiensis as well as nonpathogenic N. lovaniensis strains. Genetic interpretation of these zymograms gave estimates of genetic distances that largely confirmed the taxonomic position of the Naegleria species. In addition, the genetic data suggest that there are two main phylogenetic groups in the genus Naegleria.  相似文献   

5.
Six Naegleria strains, isolated previously in association with N. fowleri from thermal waters, were studied to further determine their antigenic relationship to N. fowleri and other Naegleria species. Results of immunofluorescent antibody and immunoelectrophoretic studies clearly established the antigenic divergence of the variants from N. fowleri, N. gruberi, and N. jadini. The variants were further distinguished from known Naegleria species by several ultrastructural characteristics, which included the complete enclosure of their nuclei with one or several layers of rough endoplasmic reticulum (RER) and extrusion of their nuclear material. Extruded nuclear material was observed in the cytoplasm completely sequestered by cisternae of the RER. The variants were also shown to be sensitive to agglutination induced by concanavalin A but not by wheat germ agglutinin. Based on the differences in the antigenicity, morphology, and lectin sensitivity between these six variants and established Naegleria species, we proposed that they should be established as a new species.  相似文献   

6.
ABSTRACT. Naegleria fowleri amebae, but not those of N. australiensis, N. gruberi, or N. lovaniensis, demonstrated enhanced motility when placed in proximity to mammalian cells. Amebae of nonpathogenic species of Naegleria, however, were more motile in cell culture medium than the amebae of N. fowleri. The locomotory response of highly pathogenic mouse-passaged N. fowleri amebae to nerve cells was greater than axenically cultured amebae. The enhanced mobility elicited by whole nerve cells or disrupted nerve cells was not directed migration but chemokinetic. Naegleria fowleri responded to disrupted neuroblastoma cells more vigorously than to disrupted African green monkey kidney (Vero) cells.  相似文献   

7.
The human pathogenic amoeboflagellate Naegleria fowleri and the nonpathogenic species N. gruberi can be cultivated axenically but usually in different media. Naegleria fowleri 6088 has been adapted to grow in Balamuth H-4 medium, usually used to propagate N. gruberi nB81. and nB81 has been adapted to grow in supplemented Nelson's medium, usually used to propagate N. fowleri. N. gruberi nB81. grown in either medium, enflagellated 135 to 150 min after subculture to non-nutrient amoeba saline, whereas 6088 required 225 min. Naegleria gruberi nB81 grown in either medium was agglutinated by 100 ug concanavalin A/ml, whereas N. fowleri 6088 was not. Naegleria fowleri and N. gruberi grown in Nelson's medium became rounded to a greater extent upon chilling at 5° C and remained rounded longer than Naegleria grown in Balamuth medium. The specificity of the surface antigens was an inherent characteristic of each species and not dependent upon the propagating medium. but Naegleria grown in Nelson's medium was agglutinated more reproducibly and more effectively by antiserum. N. gruberi was somewhat more resistant to acriflavine, actinomycin D, cycloheximide, or tetracycline than N. fowleri, regardless of the culture medium. Naegleria fowleri 6088 grown in Nelson's medium, however, was more resistant to actinomycin D, daunomycin. mithramycin. sulfamethoxazole, or tyrocidine than 6088 grown in Balamuth medium. There are limitations on the validity of comparisons of N. fowleri and N. gruberi based upon cultures grown in different media.  相似文献   

8.
ABSTRACT. Isoenyme electrophoresis of three different enzymes was used to compare 16 strains of vahlkampfiid amoebae and a strain identified as a slime mold. The strain designated as an Echinostelium sp. was found to be an isolate of Naegleria fowleri on the basis of zymogram type and other characters, confirming Cursons & Brown's similar conclusion drawn in 1975. The N. fowleri strains examined expressed the typical zymograms of the species. The N. gruberi strains in this study presented two distinctive groups of patterns that were different from the two previously reported types for N. gruberi. Each of the remaining species studied formed single distinctive groups by which they could be identified.  相似文献   

9.
A study of amebas of the genera Naegleria, Acanthamoeba, Polysphondylium, and Didymium shows that a cytopathogenic agent that is filterable and passageable is present only in the strains of the Naegleria whether they are obtained free-living from soil samples (N. gruberi) or as pathogens from humans (N. fowleri). The agents obtained from the different Naegleria strains are similar in amount and in their cytopathogenic interaction with chick cultures. The agent has characteristics that distinguish it from the known viruses.  相似文献   

10.
SYNOPSIS. Ultrastructure of cysts of Naegleria gruberi, Naegleria fowleri, and Naegleria jadini was compared by transmission electron microscopy. Pores in the cyst wall were observed in all 3 species. In N. gruberi they were surrounded by a collar and sealed with a relatively large mucoid plug; no such collar was seen around the pores in the other 2 species, in which the plug was smaller than that in N. gruberi. An electron-dense plaque serving as an additional pore closure was present in all 3 species. In N. gruberi, the cyst wall consisted of an inner thick and an outer thin layer; however, only the inner component was present in cysts of N. fowleri and N. jadini, which had a smooth appearance. At the ultrastructural level, excystment of N. fowleri involved digestion of the mucoid plug and emergence of the trophozoite through the pore. Some digestion of the cyst wall also appeared to take place during excystment.  相似文献   

11.
Trophozoites of several isolates from one location in Australia have failed consistently to transform into flagellates, although they display all other characteristics of the genus Naegleria. When changing the standard transformation test, flagellates were produced. In phylogenetic trees derived from partial small subunit ribosomal DNA (SSUrDNA) sequences, one of these strains branches close to a cluster comprising N. clarki, N. australiensis, N. italica and N. jadini. It is proposed that these Australian isolates represent a new species, named N. fultoni (strain NG885). Failing to form flagellates since their isolation, even when different transformation procedures are used, are two Naegleria strains from Chile and Indonesia. In SSUrDNA-based phylogenetic trees the Chilean strain clusters with N. pussardi and the Indonesian strain clusters with N. galeacystis, but the degree of sequence difference from these described species (3.5% and 2.2%, respectively) is sufficient to propose that both of the strains represent new species, named N. chilensis (strain NG946) and N. indonesiensis (strain NG945), respectively. The close relationships between each of the new species and the Naegleria species with which they cluster in SSUrDNA-based trees were confirmed by ribosomal internal transcribed spacer region (ITS) sequence comparisxdons. In France, several non-flagellating N. fowleri strains were isolated from one location. ITS rDNA sequence comparisons indicated that they correspond to a ‘type’ of N. fowleri found in both Europe and the USA. A redefinition of the genus Naegleria is proposed as a consequence of these and previous findings.  相似文献   

12.
SYNOPSIS. Naegleria fowleri strains HB-1 and KUL, pathogenic for humans, Naegleria gruberi strain 1518/1e, and 3 strains (Vm1, LvH1, and LvH2) of Naegleria isolated from a body of water polluted with thermal effluents were compared in an attempt at specific identifications of the latter strains. The 3 environmental isolates were morphologically almost identical with N. fowleri and had almost the same temperature tolerance, although at 37 and 42 C the growth rates of LvH1 and LvH2 were higher than those of the human pathogen, N. fowleri, and of isolate Vm1, which was pathogenic for mice. Serologic examinations by indirect fluorescent antibody method revealed a very close relationship of the new isolates with the human pathogens. While Vm1 was indistinguishable from N. fowleri, LvH1 and LvH2 were not, when cross-absorbed antisera were used. Of all the strains examined, only the 2 LvH isolates were not inhibited by amphotericin B, while only N. gruberi was not inhibited by fumagillin. The cytopathic effect in Vero cell cultures suggested that the LvH strains could have a certain degree of virulence, although this was not confirmed by intranasal and intracerebral inoculations of mice. The cytopathic effects of the human pathogens and of the isolate pathogenic for mice were related to their virulence for mice. It is concluded that there exists an intermediate form between N. gruberi and N. fowleri, with a strong relationship to the latter species. We refer to such strains as nonpathogenic variants of N. fowleri. Further research is needed to reveal their place in the taxonomy.  相似文献   

13.
The phagocytic activities of N. lovaniensis (Aq/9/1/45D) and N. gruberi (1518/1f and 1518/1e) were studied in the presence of erythrocytes of various species: chicken, rabbit, goat, and human (A+, B+, and AB+ were tested). The percentage of amoebae with ingested red cells, the phagocytic index (PhI), can be considered as an expression of phagocytic activity. Under given conditions (erythrocyte concentration, incubation time, age of amoebic cultures) each strain of Naegleria prefers one erythrocyte type. Thus, for 72-h cultures, N. lovaniensis ingested more A+ type erythrocytes than did N. gruberi strains but had very low affinity for rabbit red cells except when very high concentrations were tested. Naegleria gruberi 1f was the most active of the three strains towards rabbit and B+ and AB+ human erythrocytes, but very low PhIs were obtained with goat erythrocytes. Naegleria gruberi le exhibited high phagocytic activity for every erythrocyte type except for rabbit red cells.  相似文献   

14.
Scanning electron microscopy of pathogenic and non-pathogenic Naegleria cysts. International journal for Parasitology4: 139–142. Cysts of 4 strains of non-pathogenic Naegleria gruberi and 5 strains of pathogenic Naegleria fowleri were examined in the scanning electron microscope. Excystment of the Naegleria gruberi amoebae occurred via preformed exit pores in the cyst wall. Similar structures were not found in the cysts of Naegleria fowleri, and excystment occurred by rupture of the cyst wall. The sequence of cyst wall rupture is illustrated for one of the pathogenic strains.  相似文献   

15.
Fourteen strains of Naegleria australiensis, including the type strain, were compared for virulence for mice, maximum growth temperature, lectin agglutination, isoenzyme pattern, and total protein banding pattern. Their relation to other species of Naegleria also was compared by immunoelectrophoretic analysis. Strains with high virulence, comparable to that of N. fowleri, were found to be different in concanavalin A agglutination as well as with regard to zymograms and total protein patterns. Although serologically different from N. fowleri and reacting with N. australiensis antiserum in the fluorescent antibody test, these high-virulence strains differed in number of immunoelectrophoretic precipitin bands. Because of these results, the high-virulence strains are considered to be a subspecies of N. australiensis. The low-virulence strains showed minor differences from the type strain. Thus, N. australiensis does not appear to be as homogenous a species as N. fowleri. Pathogenic N. australiensis also seems to be more widespread than previously thought.  相似文献   

16.
Naegleria fowleri is a unicellular eukaryote causing primary amoebic meningoencephalitis, a neuropathic disease killing 99% of those infected, usually within 7–14 days. Naegleria fowleri is found globally in regions including the US and Australia. The genome of the related nonpathogenic species Naegleria gruberi has been sequenced, but the genetic basis for N. fowleri pathogenicity is unclear. To generate such insight, we sequenced and assembled the mitochondrial genome and a 60‐kb segment of nuclear genome from N. fowleri. The mitochondrial genome is highly similar to its counterpart in N. gruberi in gene complement and organization, while distinct lack of synteny is observed for the nuclear segments. Even in this short (60‐kb) segment, we identified examples of potential factors for pathogenesis, including ten novel N. fowleri‐specific genes. We also identified a homolog of cathepsin B; proteases proposed to be involved in the pathogenesis of diverse eukaryotic pathogens, including N. fowleri. Finally, we demonstrate a likely case of horizontal gene transfer between N. fowleri and two unrelated amoebae, one of which causes granulomatous amoebic encephalitis. This initial look into the N. fowleri nuclear genome has revealed several examples of potential pathogenesis factors, improving our understanding of a neglected pathogen of increasing global importance.  相似文献   

17.
Chemically defined minimal media for the cultivation of high temperature tolerant and pathogenic Naegleria spp. have been developed. A defined minimal medium, identical for N. fowleri and N. lovaniensis, consists of eleven amino acids (arginine, glycine, histidine, isoleucine, leucine, methionine, phenylalanine, proline, threonine, tryptophan, and valine), six vitamins (biotin, folic acid, hemin, pyridoxal, riboflavin, and thiamine), guanosine, glucose, salts, and metals. Three of the four strains of Naegleria fowleri tested (ATCCr?30100, ATCCr?30863, and ATCCr?30896) and two strains of N. lovaniensis (ATCCr?30467 and ATCCr?30569) could be cultured beyond ten subcultures on this medium. For N. fowleri ATCCr?30894 diaminopimelic acid, or lysine, or glutamic acid was also required. Mean generation time was reduced and population density increased for all strains with the introduction of glutamic acid. Glucose could be eliminated from the minimal medium only if glutamic acid was present. Without glucose, mean generation time increased and population density decreased. Diaminopimelic acid could substitute for lysine for ATCCr?30894, indicating that Naegleria species may synthesize their lysine via the DAP pathway. Naegleria fowleri ATCCr?30100 could be adapted to grow without serine or glycine in the minimal medium with glutamic acid added, but with mean generation time increased and population density decreased. The strain could be grown in the minimal medium in the absence of metals. For growth of N. australiensis ATCCr?30958, modification of the medium by increasing metals ten-fold, substituting guanine for guanosine and adding lysine, glutamic acid, and six vitamins (p-aminobenzoic acid, choline chloride, inositol, vitamin B12, nicotinamide, and Ca pantothenate) was required.  相似文献   

18.
Naegleria gruberi is a free-living amoeba, closely related to the human pathogen Naegleria fowleri, the causative agent of the deadly human disease primary amoebic meningoencephalitis. Herein, we investigated the effect of iron limitation on different aspects of N. gruberi metabolism. Iron metabolism is among the most conserved pathways found in all eukaryotes. It includes the delivery, storage and utilisation of iron in many cell processes. Nevertheless, most of the iron metabolism pathways of N. gruberi are still not characterised, even though iron balance within the cell is crucial. We found a single homolog of ferritin in the N. gruberi genome and showed its localisation in the mitochondrion. Using comparative mass spectrometry, we identified 229 upregulated and 184 down-regulated proteins under iron-limited conditions. The most down-regulated protein under iron-limited conditions was hemerythrin, and a similar effect on the expression of hemerythrin was found in N. fowleri. Among the other down-regulated proteins were [FeFe]-hydrogenase and its maturase HydG and several heme-containing proteins. The activities of [FeFe]-hydrogenase, as well as alcohol dehydrogenase, were also decreased by iron deficiency. Our results indicate that N. gruberi is able to rearrange its metabolism according to iron availability, prioritising mitochondrial pathways. We hypothesise that the mitochondrion is the center for iron homeostasis in N. gruberi, with mitochondrially localised ferritin as a potential key component of this process.  相似文献   

19.
The present study is an attempt to investigate the presence of Naegleria fowleri in Indian population. A total of 307 patients were enrolled and water samples were collected from both residential and surrounding areas of patients found positive for N. fowleri. The different species of Naegleria from both clinical and water samples were identified taxonomically. Recommended microbiological conventional techniques were used to identify different Naegleria stages and other free-living amoebae from the samples. PCR assays, using both genus and species specific primers were also optimized. None of the samples were positive by conventional microbiological examinations. However, PCR assays detected only three samples positive for N. fowleri. A total of 10 water bodies (ponds), that were used by Naegleria positive patients were examined. The pH and temperature of the water samples collected from water bodies ranged between 5.6–7.2 and 25–32 °C respectively. Among all the 10 water samples tested, four samples were positive for genus Naegleria by PCR assay, of which only two samples, showed positive amplification for N. fowleri. The sequence analysis of N. fowleri strain belonged to genotype II.  相似文献   

20.
Fourteen monoclonal antibodies (mAbs) were produced against a strain of Acanthamoeba castellanii isolated from a human cornea. The reactivity of the mAbs to reference strains of Acanthamoeba was examined by an indirect fluorescence antibody test (IFA) and Western immunoblot analysis. Nine mAbs reacted specifically with a known pathogenic reference strain of A. castellanii, but not with a non-pathogenic strain or other Acanthamoeba spp. The antigen recognized by these mAbs had a molecular mass of 17 kDa. The remaining five mAbs reacted with A. castellanii and A. polyphaga, members of group II (Pussard and Pons) but not with A. astronyxis (group I) or A. culbertsoni (group III). Western immunoblot analysis revealed that the latter mAbs stained many protein bands ranging from 30 to 150 kDa. None of the 14 mAbs reacted with Naegleria gruberi, N. fowleri, or Entamoeba histolytica. These observations suggest that an antigen common in group II as well as a pathogenic A. castellanii-specific antigen are present. Slot blot reactivity was comparable to the IFA. Under certain circumstances, therefore, slot blot analysis with a panel of mAbs should be helpful in the detection of keratitis-producing strains of Acanthamoeba.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号