首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Allometric methods can be used to test quantitative theories of the relationship between brain size and body size across species, and to search for ecological, behavioural, life history, and ontogenetic correlates of brain size. Brain size scales with an allometric exponent of around 0.75 against body size across mammals, but is closer to 0.56 for birds and for reptiles. The slope of the allometric line often varies depending upon the taxonomic level of analysis. However, this phenomenon, at least in mammals, may be a statistical artifact. Brain size for a given body size (relative brain size) varies among orders in birds and mammals, and some dietary associations with relative brain size have been found in particular taxa. Developmental status at birth is the most consistent correlate of relative brain size: precocial neonates have larger brains for a given maternal size than altricial neonates in both birds and mammals. Altricial neonates, however, have more brain growth following birth, and in birds also have larger relative adult brain sizes. Energetic explanations for differences in neonatal brain growth, although attractive on theoretical grounds, have largely failed to stand up to empirical tests.  相似文献   

2.
Recent hypotheses that variation in brain size among birds and mammals result from differences in metabolic allocation during ontogeny are tested.
Indices of embryonic and post-embryonic brain growth are defined. Precocial birds and mammals have high embryonic brain growth indices which are compensated for by low post-embryonic indices (with the exception of Homo supiens ). In contrast, altricial birds and mammals have low embryonic and high post-embryonic indices. Altricial birds have relatively small brains at hatching and develop relatively large brains as adults, but among mammals there is no equivalent correlation between variation in adult relative brain sizes and state of neonatal development.
Compensatory brain development in both birds and mammals is associated with compensatory parental metabolic allocation. In comparison with altricial development, precocial development is characterized by higher levels of brain growth and parental metabolic allocation prior to hatching or birth and lower levels subsequently. Differences between degrees of postnatal investment by the parents in the young of precocial birds versus precocial mammals may result in the different patterns of adult brain size associated with precociality versus altriciality in the two groups.
The allometric exponent scaling brain on body size differs among taxonomic levels in birds. The exponent is higher for some parts of the brain than others, irrespective of taxonomic level. Unlike mammals, the exponents for birds do not show a general increase with taxonomic level. These pattcrns call into question recent interpretations of the allometric exponent in birds. and the reason for changes in exponent with taxonomic level.  相似文献   

3.
Gestation length, neonatal and maternal body weight, and neonatal and adult brain weight data were collected for New World monkeys in an attempt to establish typical patterns of perinatal life history. This study attempts to illuminate the most accurate values from the available data, which suggest that gestation length and prenatal growth rate are broadly conserved in relation to maternal size in New World monkeys. Exceptions to the patterns evident in the data point to derivations in life history strategies. In particular, this study suggests that the extended gestation length of callitrichines is a function of minimum viable neonate size and not exclusively energy minimization associated with simultaneous lactation. Cebus is shown to undergo more postnatal brain growth relative to other New World monkeys, but not as much as previously believed. Alouatta is shown to be relatively small brained at birth as well as in adulthood. Saimiri is shown to present the most unusual package of perinatal life history traits, in which precocial neonates are gestated for a relatively long time and at a slightly faster growth rate than is typical for New World monkeys. © 1996 Wiley-Liss, Inc.  相似文献   

4.
Variation in neonatal maturity among mammals is often explained by variation in gestation length, but species may also differ in developmental rate, a quantity that is difficult to measure because the conventional formalism makes two important and potentially unrealistic assumptions: (1) ontogeny of form can be described by a single line, and (2) species have the same ontogeny of form. We examine two species, one precocial (Sigmodon fulviventer), the other altricial (Mus musculus domesticus), and find that neither assumption is met. Therefore, we introduce an alternative metric, the rate of shape differentiation away from the average neonate. We find that S. fulviventer has a lower developmental rate than M. m. domesticus; consequently, while more mature at birth, S. fulviventer loses ground to M. m. domesticus over time. Surprisingly, despite differences in gestation length and developmental rate, these species reach developmental and life-history milestones at nearly identical degrees of skull shape maturity.  相似文献   

5.
To explain variation in relative brain size among homoiothermic vertebrates, we propose the Expensive Brain hypothesis as a unifying explanatory framework. It claims that the costs of a relatively large brain must be met by any combination of increased total energy turnover or reduced energy allocation to another expensive function such as digestion, locomotion, or production (growth and reproduction). Focusing on the energetic costs of brain enlargement, a comparative analysis of the largest mammalian sample assembled to date shows that an increase in brain size leads to larger neonates among all mammals and a longer period of immaturity among monotokous precocial species, but not among the polytokous altricial ones, who instead reduce their litter size. Relatively large brained mammals, altricial and precocial, also show reduced annual fertility rates as compared to their smaller brained relatives, but allomaternal energy inputs allow some cooperatively breeding altricial carnivores to produce even more offspring in a shorter time despite having a relatively large brain. Thus, the Expensive Brain framework explains why brain size is linked to life history pace in some, but not all mammalian lineages. This framework encompasses other hypotheses of energetic constraints on brain size variation and is also compatible with the Brain Malnutrition Risk hypothesis, but the absence of a mammal-wide correlation between brain size and immature period argues against the Needing-to-Learn explanation for slower development among large brained mammals.  相似文献   

6.
This model of growth offers a quantitative definition for altricial and precocial newborns, makes muscular strength a benchmark for locomotor independence, and discriminates related genera as well as genera across major taxonomic divides. The model contrasts four theoretical conditions of the neonate (I, small brain, weak musculature; II, small brain, strong musculature; III, large brain, weak musculature; IV, large brain, strong musculature) with species from three orders of placental mammal. Each species exhibits a distinct mother-infant strategy from the altricial red panda cub (condition I) and the golden lion tamarin (condition III) to the precocial wildebeest calf (condition IV). The model proposes that early growth rates of brain and muscle correlate with nutrition, maternal effort during gestation and lactation, and parental care, whereas postnatal muscular growth correlates directly with adult body size and locomotor repertoire. An example of condition II (small brain, strong musculature) has not been found. This suggests that muscle does not grow in advance of the brain and that the brain acts as a pacemaker of growth. In order to increase our understanding of exotic species, noninvasive measures (body weight and length) and observations (opening of the eyes and ears, hair density, weaning, and the abilities to ther-moregulate and to move) should be supplemented with analysis of the differential tissue and organ growth. In both theoretical and practical ways analysis of deceased individuals contributes to the understanding of all species.  相似文献   

7.
Juha Tuomi 《Oecologia》1980,45(1):39-44
Summary A generalized relationship of litter size to mammalian body size was predicted by a graph model. The model was used to generate hypotheses explaining specific features of variation in gestation time, relative litter weight, birth weight, and reproductive capacity. The predictions were tested by means of data from the literature.Mammals were assumed to maximize neonatal survival of offspring to the limits allowed by litter weight per female body weight. Gestation time correlated negatively with the foetal growth rate of relative litter weight. Gestation time did not correlate with the foetal growth rate of individual offspring.Relative litter weight correlated negatively with adult body weight. This relationship was explained by the higher assimilation rate per unit weight relative to metabolic rate in small mammals.Birth weight correlated positively with body weight. However, small mammals produce larger offspring than predicted by the linear relationship of birth weight to body weight in large mammals. There is obviously a minimum birth weight which cannot be decreased without special arrangements for parental care.The prediction of the relationship of litter size to body size was derived from the relations of relative litter weight and birth weight to body weight. In small mammals (less than 1 kg) litter the correlation was negative. When litter size was compared with body length, the correlation was positive in small mammals (less than 30 cm) and negative in large mammals. In both sets of data there was a negative overall correlation between litter size and body size.Reproductive capacity, defined as the number of offspring per season, correlated negatively with life-span.  相似文献   

8.
The brain cooling capacity of the altricial pigeon increases during posthatching growth at a higher rate than that of the precocial duck and chicken. To determine if this difference between the altricial and the precocial modes of development can be related to growth rates of the vascular heat exchanger involved in brain cooling (the ophthalmic rete), we performed a morphometric analysis of this structure during the post-hatching maturation of the three species. The number of vascular units in the rete did not change during development but differed significantly among species. The retia continued to grow in length and diameter in an exponential relation with body mass at similar rates in all species. The surface area of the retial arteries, which reflects the area available for countercurrent heat exchange, also increased exponentially with body mass, but without significant differences among the three species. However, the effectiveness of the rete in brain cooling, as indicated by the degree of brain cooling per unit of heat-exchange area in the rete, was higher in the altricial pigeon than in the precocial chicken and duck. It is concluded that the posthatching morphometric changes in the ophthalmic rete (rete ophthalmicum) are important for the development of brain cooling capacity, but cannot solely explain differences in brain cooling between growing altricial and precocial birds. These differences are most likely related to differences in the maturation of the central thermoregulatory control system and the peripheral effector mechanisms among the two groups of birds.  相似文献   

9.
In mammals, the duration of lactation varies much more than other life history parameters in relation to body mass, both within and between species. The causes of this variation are poorly understood and seem to result from varying conditions of mothers and young. We studied the effect of long-term maternal food restriction on litter mass at birth, duration of lactation and offspring development in the precocial guinea pig. Mild experimental food restriction during reproduction resulted in prolonged nursing behaviour of mothers. Evidence for a threshold mass at weaning was, however, equivocal. In the guinea pig, benefits of prolonged lactation prove hard to understand, because nutritional benefits are minor. Independently of maternal food regime, pups terminated suckling attempts several days after mothers ceased nursing behaviour. The time between the last nursing behaviour and the last suckling attempts was not longer in litters with higher need, that is, in litters of food-restricted females, than in litters of females fed ad libitum. Under food restriction, mothers maintained their own body mass, leading in pups to lower mass at birth, reduced postnatal growth and lower body mass at maturity. Guinea pig mothers appear to be selected to value their own condition more than that of a litter. We suggest that lengthening of the nursing period under poor conditions is a life history response primarily of precocial mammals.  相似文献   

10.
Explaining the seasonal decline in litter size in European ground squirrels   总被引:1,自引:0,他引:1  
In European ground squirrels Spermophilus citellus as in many ground squirrel species. late born litters are composed of fewer young than early born litters. Two alternative though not mutually exclusive hypotheses may explain this seasonal pattern of change in litter size. On the one hand. the production of few large young late in the season may be an adaptation to time limitations on the offspring. that have to complete growth and fattening prior to hibernation. Then one would expect a trade-off between offspring number and size as the breeding season progresses. At its extreme. this hypothesis would predict that total maternal effort should be equal independent of litter size. Alternatively. litter size may be determined by physiological limitations on the mother. in that highly constrained mothers breed later and produce smaller litters. Then one would expect reduced overall maternal effort in highly constrained mothers of smaller litters. In this case. a trade-off between litter size and offspring size would not be expected. We found that total maternal effort in terms of gestation length and the duration of lactation increased with increasing litter size. thus supporting the second hypothesis. Lactation was not terminated at natal emergence. It extended a relatively long period of time beyond the time of first litter emergence depending on litter size. During prolonged lactation. individual young of large litters made up body mass to young of small litters. As a consequence. juvenile weaning body mass was unaffected by litter size although offspring body mass at natal emergence was inversely related to litter size. This additional weight gain in young of large litters compensated for initial survival disadvantages and presumably affected fecundity at yearling age.  相似文献   

11.
We investigated the possibilities that the proportion of docosahexaenoic acid (DHA) in phospholipids of brain and skeletal muscle at hatch, and the ontogenetic timing of the DHA accretion spurt in these tissues, might serve as indices of neonatal functional maturity that discriminate between precocial and altricial avian developmental modes. Comparison of the fatty acid profiles of the initial and residual yolks of two free-living altricial species, the swallow (Hirundo rustica) and the sparrow (Passer domesticus), reveals that, in contrast to precocial birds, there is no preferential uptake of DHA from the yolk during embryonic development. At hatch, the proportions of DHA in brain phospholipid (wt.% of fatty acids) of the swallow and sparrow, at 8.1% and 5.0%, respectively, are far lower than the values (16.9-19.6%) reported for non-altricial species. This reflects a marked difference in the timing of the brain DHA accretion spurt, which occurs during the first half of the embryonic period of precocial birds, but is largely delayed until after hatching in the altricial species. By the time of fledging, the proportion of DHA in the swallow brain phospholipid has increased to 14.3%. For non-altricial birds, the brain DHA concentration at hatch shows little interspecies variation, despite major differences in yolk DHA content. The proportions of DHA in leg muscle phospholipid of the newly hatched swallow and sparrow, at 2.9% and 2.5%, respectively, are far lower than the value (6.7%) for the precocial chicken. Again, this relates to differences in developmental timing, with muscle DHA accretion occurring in the first half of the chicken's embryonic period, whereas, in the swallow, this increase is delayed until after hatching. By the time of fledging in the swallow, DHA forms 9.3% of muscle phospholipid fatty acids, equivalent to the level attained in chicken muscle at the mid-embryo stage. The results indicate a clear distinction between altricial and non-altricial avian species in the timing of tissue DHA accretion during development, presumably reflecting differences in neonatal functional maturity.  相似文献   

12.
胎仔数是影响哺乳动物繁殖率的基本参数 ,与动物的生活史变量密切相关。胎仔数及其相关的生活史变量 ,包括后代的质量、幼体的生存、母体的体重及母体的生存等 ,共同影响繁殖适合度。简述了胎仔数与生活史变量关系的研究方法及研究对象的选择 ,着重介绍了胎仔数与幼体和母体生活史变量的关系 :胎仔数与后代的质量呈负相关 ,后代的质量又决定了幼体的生存 ;胎仔数与母体体重相关不显著 ,而且可能对母体的生存产生负面影响。有关胎仔数与其生活史变量的关系还有待于进一步的探索 ,更多先进技术手段与方法的交叉运用将补充和完善胎仔数研究的内容  相似文献   

13.
Many small altricial rodents have a postpartum oestrus and are often simultaneously pregnant and lactating. Negative influences of concurrent pregnancy and lactation on both lactational performance and the litter in utero are commonly observed and have been interpreted as resulting from high simultaneous energetic demands of gestation and lactation. We studied these effects in the precocial guinea‐pig (Cavia aperea f. porcellus) that, like many altricial rodents, has a postpartum oestrus, but in which the peaks of energy expenditure on lactation and gestation are widely separated. This life history allowed to investigate whether physiological regulation other than by energetic limitations may be responsible for allocation conflicts arising when lactation and gestation overlap. By comparing simultaneously pregnant and lactating females with lactating non‐pregnant females, we show that females in the former group nurse less and wean earlier than females of the latter group. In a comparison of litter size, litter mass, and pup mortality of females that had not been lactating during pregnancy with females that had been simultaneously pregnant and lactating, we show that the latter do not reduce investment in the following litter. In our study, energetic constraints on ad libitum fed females are unlikely and we therefore suggest that the results must be explained by regulatory constraints on lactational effort. We point out that this explanation has not been excluded for the effects observed in altricial small mammals.  相似文献   

14.
A recent analysis of brain size evolution reconstructed the plesiomorphic brain–body size allometry for the mammalian order Carnivora, providing an important reference frame for comparative analyses of encephalization (brain volume scaled to body mass). I performed phylogenetically corrected regressions to remove the effects of body mass, calculating correlations between residual values of encephalization with basal metabolic rate (BMR) and six life-history variables (gestation time, neonatal mass, weaning time, weaning mass, litter size, litters per year). No significant correlations were recovered between encephalization and any life-history variable or BMR, arguing against hypotheses relating encephalization to maternal energetic investment. However, after correcting for clade-specific adaptations, I recovered significant correlations for several variables, and further analysis revealed a conserved carnivoran reproductive strategy, linking degree of encephalization to the well-documented mammalian life-history trade-off between neonatal mass and litter size. This strategy of fewer, larger offspring correlating with increased encephalization remains intact even after independent changes in encephalization allometries in the evolutionary history of this clade.  相似文献   

15.
Explanations for the chemosensory abilities of newborn mammals focus primarily on food (milk) acquisition and communication (e.g., maternal-infant bonding). However, the relative importance of the main and accessory (vomeronasal) olfactory systems is hypothesized to differ at birth between altricial and precocial mammals. Strepsirrhines (lemurs and lorises) possess main and accessory olfactory systems, and vary in life-history traits related to infant dependency and maturation. Accordingly, this study examines the size and maturational characteristics of vomeronasal (VNNE) and olfactory (OE) neuroepithelia in strepsirrhines. Serially sectioned heads of 18 infant cadavers were examined microscopically for neuroepithelial distribution. Measurements were taken on the length of the nasal fossa on one side that was occupied by VNNE and OE. The data were corrected for body size using the cranial length or body mass, and were then examined for correlation with several life-history variables, as well as activity pattern. In addition, immunohistochemistry was used to identify cells in the VNNE and OE that express olfactory marker protein (OMP), a marker of mature olfactory neurons. Relative OE extent was not significantly correlated with any of the life-history variables. Relative VNNE length was negatively correlated with relative gestation length and relative neonatal mass (P<0.05). However, when we corrected for phylogenetic relationships, we found no significant correlations between either of the neuroepithelial measurements and life-history variables. Immunohistochemical findings suggest that OE has more OMP-reactive cells than VNNE in all species. OMP-reactive cells appear to be less numerous in diurnal species compared to most nocturnal species. These results indicate that the VNNE may be relatively longer at birth in altricial species. However, it remains uncertain how phylogeny and/or ontogeny may explain these findings.  相似文献   

16.
In mammals the photoperiodic synchronization of circadian system starts before birth. During fetal and neonatal period mothers relay the photoperiodic information to their litter. The maternal pineal melatonin 24 h cycle acts as a synchronizing signal. We have studied the effect of pineal maternal sympathetic denervation and administration of melatonin to mothers denervated during gestation on the prenatal synchronization of testicular malate dehydrogenase (MDH) activity circadian rhythm of the offspring 25 days after birth. When mothers were denervated at the 7th, 10th or 11th day of gestation, pups showed disruption of testicular MDH activity circadian rhythms. In contrast, no disruptive effect was observed when the mothers were denervated on the 12th or 14th day of gestation. When denervated mothers (7th day of gestation) were treated with a daily dose of melatonin from the 11th to the 14th day of gestation, pups showed a MDH activity circadian rhythm. The hormone failed to impose a daily phase when administered from the 9th to the 12th day of gestation. Results suggest that prenatal synchronization in the rat occurs very early in the development, before suprachiasmatic nuclei morphologic arrangement and functional activity begin.  相似文献   

17.
In mammals the photoperiodic synchronization of circadian system starts before birth. During fetal and neonatal period mothers relay the photoperiodic information to their litter. The maternal pineal melatonin 24 h cycle acts as a synchronizing signal. We have studied the effect of pineal maternal sympathetic denervation and administration of melatonin to mothers denervated during gestation on the prenatal synchronization of testicular malate dehydrogenase (MDH) activity circadian rhythm of the offspring 25 days after birth. When mothers were denervated at the 7th, 10th or 11th day of gestation, pups showed disruption of testicular MDH activity circadian rhythms. In contrast, no disruptive effect was observed when the mothers were denervated on the 12th or 14th day of gestation. When denervated mothers (7th day of gestation) were treated with a daily dose of melatonin from the 11th to the 14th day of gestation, pups showed a MDH activity circadian rhythm. The hormone failed to impose a daily phase when administered from the 9th to the 12th day of gestation. Results suggest that prenatal synchronization in the rat occurs very early in the development, before suprachiasmatic nuclei morphologic arrangement and functional activity begin.  相似文献   

18.
Life histories of Clethrionomys and Microtus (Microtinae)   总被引:1,自引:0,他引:1  
Although there have been numerous life-history reviews of mammals at high taxonomic levels (e.g. among families within orders), there are far fewer studies at lower taxonomic levels (e.g. among species within genera). Data on adult weights, litter size, gestation length, neonate weight, age and weight at weaning, growth rate to weaning, maximum life span, and length of the breeding season were compiled from the literature on five species of Clethrionomys and 33 species of Microtus. Variability in litter size and male body weights was not significantly different when compared between cyclic and non-cyclic populations. Coefficients of variation were also calculated for the three species with the most data (C. gapperi, C. glareolus and M. pennsylvanicus ). These values showed that the amount of intraspecific variation differed among traits as well as among species. Gestation length was the most invariable of all traits and variation in adult weights, neonate weight, gestation length, and litter size had similar values to those reported for Peromyscus maniculatus. Five and eight traits differed among Clethrionomys and Microtus species, respectively. Differences in litter size, adult weights and length of the breeding season were common to both genera. Male weight, gestation length and neonate weight as well as length of the breeding season were different between genera. Very few traits covaried within C. gapperi, C. glareolus or M. pennsylvanicus. Similarly, few traits covaried among all Clethrionomys populations. However, among all Microtus populations and Microtus species, 11 and 12 correlations were significant. Many of the patterns found in Microtus involved positive relationships between female weight and some other trait. These patterns have also been found by broader surveys at higher taxonomic levels. Large species of Microtus had larger offspring, a greater litter size and occurred in short-season environments relative to small species of this genus.  相似文献   

19.
Little is known about the ontogeny of brain size in pinnipeds despite potential functional implications of brain substrate (glucose, oxygen) requirements for diving, fasting, growth, and lactation strategies. We measured brain mass (brM) and cranial capacity (CC) in newborn and adult Weddell seals. Neonatal Weddell seals had brM that represented ~70% of adult brM. Weddell seals have the largest neonatal brain, proportional to adult brain, reported for any mammal to date, which is remarkable considering the relatively small size of Weddell seal pups at birth (6%–7% of maternal body mass) compared to neonates of other highly precocial mammals. Provision of sufficient glucose to maintain the large, well‐developed brain of the neonatal Weddell seal has a nontrivial metabolic cost to both pup and mother. We therefore hypothesize that this phenomenon must have functional significance, such as allowing pups to acquire complex under‐ice navigation skills during the period of maternal attendance.  相似文献   

20.
In mammals, the mass-specific rate of biomass production during gestation and lactation, here called maternal productivity, has been shown to vary with body size and lifestyle. Metabolic theory predicts that post-weaning growth of offspring, here termed juvenile productivity, should be higher than maternal productivity, and juveniles of smaller species should be more productive than those of larger species. Furthermore because juveniles generally have similar lifestyles to their mothers, across species juvenile and maternal productivities should be correlated. We evaluated these predictions with data from 270 species of placental mammals in 14 taxonomic/lifestyle groups. All three predictions were supported. Lagomorphs, perissodactyls and artiodactyls were very productive both as juveniles and as mothers as expected from the abundance and reliability of their foods. Primates and bats were unproductive as juveniles and as mothers, as expected as an indirect consequence of their low predation risk and consequent low mortality. Our results point the way to a mechanistic explanation for the suite of correlated life-history traits that has been called the slow–fast continuum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号