首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a robust second-generation BioScope: a system for continuous perturbation experiments. Firstly, the BioScope design parameters (i.e., pressure drop, overall oxygen (O2) and carbon dioxide (CO2) mass transfer, mean residence time distribution and plug flow characteristics) were evaluated. The average overall mass transfer coefficients were estimated to be 1.8E-5 m s(-1) for O2 and 0.34E-5 m s(-1) for CO2. It was determined that the O2/CO2 permeable membrane accounted for 75% and 95% of the overall resistance for O2 and CO2, respectively. The Peclet number (Pe) of the system was found to be >500 for liquid flow rates between 1 and 4 ml min(-1), ensuring plug flow characteristics. Secondly, steady-state intracellular metabolite concentrations obtained using direct rapid sampling from the fermentor were compared with those obtained by rapid sampling via the pre-perturbation sample port of the BioScope. With both methods the same metabolite levels were obtained. Thirdly, glucose perturbation experiments were carried out directly in the fermentor as well as in the BioScope, whereby steady-state Saccharomyces cerevisiae cells from a glucose/ethanol limited chemostat were perturbed by increasing the extracellular glucose concentration from 0.11 to 2.8 mM. Intracellular and extracellular metabolite levels were measured within a time window of 180 s. It was observed that the dynamic metabolite concentration profiles obtained from both perturbations were nearly the same, with the exception of the C4 metabolites of the TCA cycle, which might be due to differences in culture age.  相似文献   

2.
To enable both the multiplication of elite livestock and the engineering of transgenic animals for various agricultural and biochemical purposes, scientists around the world are intensively studying efficient ways of improving developmental competency of bovine embryos reconstructed by somatic cell nuclear transfer. Because it is widely accepted that culture conditions along with many other factors contribute to the developmental competency of reconstructed embryos, this preliminary study was designed to test whether or not bovine reconstructed embryos could develop in vitro using a simple portable CO(2) incubator. CO(2) and O(2) gas tensions and air pressure can be varied using this system. The parameters used in the five conducted trials were low CO(2) (2-5%) and O(2) (8-10%) gas tensions, and negative air pressure (of 300 mm Hg). Chamber temperature was maintained at 38.5 degrees C. Bovine fetal fibroblasts were used as donor karyoplasts and were fused into microsurgically enucleated M II oocytes followed by activation and culture. From the 250 enucleated oocytes, 217 (86.8%) fused, 183 (73.2%) cleaved, and 43 (17.2%) developed to the blastocyst stage. While relatively low developmental rates were achieved, technical proficiency may have been a contributing factor. Further studies using this system are needed to determine optimal levels of O(2), CO(2), and air pressure.  相似文献   

3.
Kopper BJ  Lindroth RL 《Oecologia》2003,134(1):95-103
The purpose of this study was to assess the independent and interactive effects of CO(2), O(3), and plant genotype on the foliar quality of a deciduous tree and the performance of a herbivorous insect. Two trembling aspen (Populus tremuloides Michaux) genotypes differing in response to CO(2) and O(3) were grown at the Aspen FACE (Free Air CO(2) Enrichment) site located in northern Wisconsin, USA. Trees were exposed to one of four atmospheric treatments: ambient air (control), elevated carbon dioxide (+CO(2); 560 microl/l), elevated ozone (+O(3); ambient x1.5), and elevated CO(2)+O(3). We measured the effects of CO(2) and O(3) on aspen phytochemistry and on performance of forest tent caterpillar (Malacosoma disstria Hübner) larvae. CO(2) and O(3) treatments influenced foliar quality for both genotypes, with the most notable effects being that elevated CO(2) reduced nitrogen and increased tremulacin levels, whereas elevated O(3) increased early season nitrogen and reduced tremulacin levels, relative to controls. With respect to insects, the +CO(2) treatment had little or no effect on larval performance. Larval performance improved in the +O(3) treatment, but this response was negated by the addition of elevated CO(2) (i.e., +CO(2)+O(3) treatment). We conclude that tent caterpillars will have the greatest impact on aspen under current CO(2) and high O(3) levels, due to increases in insect performance and decreases in tree growth, whereas tent caterpillars will have the least impact on aspen under high CO(2) and low O(3) levels, due to moderate changes in insect performance and increases in tree growth.  相似文献   

4.
The metabolic response of Platynota stultana pupae to elevated CO(2) and reduced O(2) atmospheres was measured using microcalorimetry. Initial measurements at 20 degrees C immediately upon placement in controlled atmosphere indicated a decrease in metabolic heat rate (MHR) of 27, 45, 56, 56, and 72% in an atmosphere of 5, 10, 20, 40, and 79% CO(2), respectively, and a decrease of 20, 50, 66 and 100% under 6, 2, 1, and 0% O(2). With extended exposure to controlled atmospheres, MHR increased under 5, 10, and 20% CO(2) and 6 and 2% O(2); however, the increase was greater and occurred more rapidly with lower CO(2) and higher O(2) concentration. The MHR at 40 and 79% CO(2) remained at the initial reduced level for 8 and 6 days, respectively, then decreased with longer exposure. The MHR of pupae held under 1 and 0% O(2) remained at the initial reduced level for 22 days. Upon transfer to air, the MHR of pupae increased from the reduced levels and then decreased. When the MHR decreased by no more than 30%, as a result of controlled atmosphere treatment, the pupae still developed into adults. However, when the MHR decreased by more than 50%, the energy supply was insufficient and the pupae died. Pupa mortality was comparable between 5% CO(2) and 6% O(2), and 10% CO(2) and 2% O(2). The MHR was reduced less under 20% CO(2) than under 2 or 1% O(2); however, the pupae were more susceptible to 20% CO(2) than 2 or 1% O(2). These and other data indicate an increased toxicity of high CO(2) over low O(2) atmospheres that may be related to an increase in membrane permeability as a result of CO(2) treatment.  相似文献   

5.
The metabolic responses of Platynota stultana pupae to reduced O(2), elevated CO(2), and their combinations were investigated using microcalorimetry, and mortality of pupae under elevated CO(2) atmospheres was correlated with metabolic responses. The metabolic heat rate decreased slightly with decreasing O(2) concentration until a critical O(2) concentration (P(c)) below which the heat rate decreased rapidly. The P(c) increased with temperature. The percentage decreases of metabolic heat rate were comparable to the percentage decreases of O(2) consumption rate (RO(2)) at 10, 8, 6, and 4% O(2), but were smaller at 2 and 1% O(2). The metabolic heat rate decreased rapidly at 20% CO(2) relative to 0% CO(2), with little to no further decrease between 20 and 79% CO(2). The percentage decreases of RO(2) under 20 and 79% CO(2) at 20 degrees C were comparable to the percentage decreases of metabolic heat rates. The additive effects of subatmospheric O(2) and elevated CO(2) levels on reducing metabolic heat rate were generally fully realized at combinations of /=4% O(2), but became increasingly overlapped as the O(2) concentration decreased and the CO(2) concentration increased. The high susceptibility of pupae to elevated CO(2) at high temperature was correlated with high metabolic heat rate. The metabolic responses of pupae to reduced O(2) concentrations included metabolic arrest and anaerobic metabolism. The net effect of elevated CO(2) on the pupal respiratory metabolism was similar to that of reduced O(2); however, mechanisms other than the decrease of metabolism were also contributing to the toxicity of CO(2).  相似文献   

6.
In order to see the effect of CO(2) inhibition resulting from the use of pure oxygen, we carried out a comparative fed-batch culture study of polyhydroxybutyric acid (PHB) production by Ralstonia eutropha using air and pure oxygen in 5-L, 30-L, and 300-L fermentors. The final PHB concentrations obtained with pure O(2) were 138.7 g/L in the 5-L fermentor and 131.3 g/L in the 30-L fermentor, which increased 2.9 and 6.2 times, respectively, as compared to those obtained with air. In the 300-L fermentor, the fed-batch culture with air yielded only 8.4 g/L PHB. However, the maximal CO(2) concentrations in the 5-L fermentor increased significantly from 4.1% (air) to 15.0% (pure O(2)), while it was only 1.6% in the 30-L fermentor with air, but reached 14.2% in the case of pure O(2). We used two different experimental methods for evaluating CO(2) inhibition: CO(2) pulse injection and autogenous CO(2) methods. A 10 or 22% (v/v) CO(2) pulse with a duration of 3 or 6 h was introduced in a pure-oxygen culture of R. eutropha to investigate how CO(2) affects the synthesis of biomass and PHB. CO(2) inhibited the cell growth and PHB synthesis significantly. The inhibitory effect became stronger with the increase of the CO(2) concentration and pulse duration. The new proposed autogenous CO(2) method makes it possible to place microbial cells under different CO(2) level environments by varying the gas flow rate. Introduction of O(2) gas at a low flow rate of 0.42 vvm resulted in an increase of CO(2) concentration to 30.2% in the exit gas. The final PHB of 97.2 g/L was obtained, which corresponded to 70% of the PHB production at 1.0 vvm O(2) flow rate. This new method measures the inhibitory effect of CO(2) produced autogenously by cells through the entire fermentation process and can avoid the overestimation of CO(2) inhibition without introducing artificial CO(2) into the fermentor.  相似文献   

7.
8.
The celery (Tall Utah, Apium graveolens var. dulce) was adopted as a model system to investigate effective methods for enhancing embryogenesis. The focus was placed on attaining the optimum gaseous composition and the mixing intensity and viscosity of culture systems. The mixing intensity was investigated by using creased flasks and evaluated by shear force index (SFI). By using different closures with different ventilation coefficients, K w, to adjust the gaseous composition in the flasks, it was found that embryo frequency (EF) increased with high or low ethylene concentration in the headspace of the culture flasks. Cultivating the embryogenic cells under controlled ethylene concentrations depressed EF at ethylene concentrations higher than 0.08 ppm. Moreover, 0.1 μM of CoCl2 remarkably repressed the ethylene formation in the culture medium and enhanced EF. and around 3% and 30%, respectively, favored EF. For non-creased flasks, addition of CMC (carboxymethyl cellulose) decreased the EF and DO level of the medium, due to lowered mass transfer rate attributed to high viscosity. For creased flasks, supplementation of 0.4 g/ 100 ml CMC reduced the ill-effects of high shear stress and maximized EF (7.22%). Our results are potentially applicable to other species and large-scale embryo production systems.  相似文献   

9.
In bioprocess development, the 96-well plate format has been widely used for high-throughput screening of production cell line or culture conditions. However, suspension cell cultures in conventional 96-well plates often fail to reach high cell density under normal agitation presumably due to constraints in oxygen transfer. Although more vigorous agitation can improve gas transfer in 96-well plate format, it often requires specialized instruments. In this report, we employed Fluorinert, a biologically inert perfluorocarbon, to improve oxygen transfer in 96-well plate and to enable the growth of a Chinese Hamster Ovary cell line expressing a recombinant monoclonal antibody. When different amounts of Fluorinert were added to the cell culture medium, a dose-dependent improvement in cell growth was observed in both conventional and deep square 96-well plates. When sufficient Fluorinert was present in the culture, the cell growth rate, the peak cell density, and recombinant protein production levels achieved in deep square 96-wells were comparable to cultures in ventilated shake flasks. Although Fluorinert is known to dissolve gases such as oxygen and CO(2), it does not dissolve nor extract medium components, such as glucose, lactate, or amino acids. We conclude that mixing Fluorinert with culture media is a suitable model for miniaturization of cell line development and process optimization. Proper cell growth and cellular productivity can be obtained with a standard shaker without the need for any additional aeration or vigorous agitation.  相似文献   

10.
Activity of reactive oxygen species (ROS) was investigated in liquid cultures of Penicillium chrysogenum P2 supplemented with carbohydrates. Oligosaccharides lowered the ROS activity in all samples. The greatest effect occurred when oligosaccharides were added to samples 48 h after inoculation. The ROS decrease in the presence of oligoguluronate, oligomannuronate and mannan oligosaccharides was 18%, 36% and 54%, respectively (ROS levels varied notably with culture age and type of elicitor). The polysaccharides from which the oligosaccharides were derived showed little (5-10%) overall decrease of ROS.  相似文献   

11.
The present study was conducted to examine the effect of oxygen tension during in vitro culture (IVC) of porcine oocytes/embryos on their development and quality using two different culture systems. Porcine cumulus oocyte complexes (COCs) were matured (IVM) and fertilized (IVF) in vitro, and subsequently cultured for 6 days in a simple and economical portable incubator or a standard CO(2) incubator. While the same temperature (38.5 degrees C) and CO(2) concentration (5%) were used in the both systems, the portable incubator was operated in a negative air pressure (- 300 mmHg) to create an O(2) level at 8-10% (low O(2) concentration), or in a positive air pressure (high O(2) concentration). To compare the two culture systems, IVM and IVF of COCs and subsequent IVC of in vitro produced (IVP) embryos were carried out in the portable incubator with a low O(2) concentration (Group I) or in the standard incubator with a high O(2) concentration (Group II). To assess the effect of O(2) concentration on IVC of IVP embryos, some oocytes that had been cultured in the standard incubator for IVM and IVF were subsequently cultured in the portable incubator with a low O(2) concentration (Group III) or a high O(2) concentration (Group IV). The occurrence of DNA fragmentation in the blastocysts produced under different culture conditions was examined by TUNEL staining to assess embryo quality. The rates of oocytes that reached MII and were penetrated by spermatozoa following IVF did not differ between the two incubation systems. In contrast, the proportions of development to blastocysts and the mean cell number of blastocysts in Group I were higher than those in Group II and Group IV. The index of DNA-fragmented nucleus in the blastocysts of Group I was significantly lower than that in the blastocysts of Group II. Therefore, low oxygen tension during IVM, IVF and IVC enhanced the subsequent development of IVP embryos to the blastocyst stage and improved their quality.  相似文献   

12.
Macrophytic marine red algae are a diverse source of bioactive natural compounds. "Microplantlet" suspension cultures established from red algae are potential platforms for biosynthesis of these compounds, provided suitable bioreactor configurations for mass culture can be identified. The stirred tank bioreactor offers high rates of gas-liquid mass transfer, which may facilitate the delivery of the CO(2) in the aeration gas to the phototrophic microplantlet suspension culture. Therefore, the effects of impeller speed and CO(2) delivery on the long-term production of microplantlet biomass of the model red alga Agardhiella subulata was studied within a stirred tank photobioreactor equipped with a paddle blade impeller (D(i)/D(T) = 0.5). Nutrient medium replacement was required for sustained biomass production, and the biomass yield coefficient based on nitrate consumption was 1.08 +/- 0.09 g dry biomass per mmol N consumed. Biomass production went through two exponential phases of growth, followed by a CO(2) delivery limited growth phase. The CO(2)-limited growth phase was observed only if the specific growth rate in the second exponential phase of growth was at least 0.03 day(-)(1), the CO(2) delivery rate was less than 0.258 mmol CO(2) L(-)(1) culture h(-)(1), and the plantlet density was at least 10 g fresh mass L(-)(1). Increasing the aeration gas CO(2) partial pressure from 0.00035 to 0.0072 atm decreased the cultivation pH from 8.8 to 7.8, prolonged the second exponential phase of growth by increasing the CO(2) delivery rate, and also increased the photosynthetic oxygen evolution rate. Impeller speeds ranging from 60 to 250 rpm, which generated average shear rates of 2-10 s(-)(1), did not have a significant effect on biomass production rate. However, microplantlets cultivated in a stirred tank bioreactor ultimately assumed compact spherical shape, presumably to minimize exposure to hydrodynamic stress.  相似文献   

13.
A complex of studies on the effect of technological parameters on the mass transfer coeficients with respect to O2 and CO2 was carried out. It was shown that the ratio between the mass transfer coefficients with respect to O2 and CO2 was constant and equal to 20 for the fermentation broths of the antibiotic-producing organisms studied.  相似文献   

14.
In a recent study, ultrahigh molecular weight (Mw ) glutaraldehyde-polymerized bovine hemoglobins (PolybHbs) were synthesized with low O2 affinity and exhibited no vasoactivity and a slight degree of hypertension in a 10% top-load model.(1) In this work, we systematically investigated the effect of varying the glutaraldehyde to hemoglobin (G:Hb) molar ratio on the biophysical properties of PolybHb polymerized in either the low or high O2 affinity state. Our results showed that the Mw of the resulting PolybHbs increased with increasing G:Hb molar ratio. For low O2 affinity PolybHbs, increasing the G:Hb molar ratio reduced the O2 affinity and CO association rate constants in comparison to bovine hemoglobin (bHb). In contrast for high O2 affinity PolybHbs, increasing the G:Hb molar ratio led to increased O2 affinity and significantly increased the CO association rate constants compared to unmodified bHb and low O2 affinity PolybHbs. The methemoglobin level and NO dioxygenation rate constants were insensitive to the G:Hb molar ratio. However, all PolybHbs displayed higher viscosities compared to unmodified bHb and whole blood, which also increased with increasing G:Hb molar ratio. In contrast, the colloid osmotic pressure of PolybHbs decreased with increasing G:Hb molar ratio. To preliminarily evaluate the ability of low and high O2 affinity PolybHbs to potentially oxygenate tissues in vivo, an O2 transport model was used to simulate O2 transport in a hepatic hollow fiber (HF) bioreactor. It was observed that low O2 affinity PolybHbs oxygenated the bioreactor better than high O2 affinity PolybHbs. This result points to the suitability of low O2 affinity PolybHbs for use in tissue engineering and transfusion medicine. Taken together, our results show the quantitative effect of varying the oxygen saturation of bHb and G:Hb molar ratio on the biophysical properties of PolybHbs and their ability to oxygenate a hepatic HF bioreactor. We suggest that the information gained from this study can be used to guide the design of the next generation of hemoglobin-based oxygen carriers (HBOCs) for use in tissue engineering and transfusion medicine applications.  相似文献   

15.
The oxygen isotope composition of CO(2) respired by Ricinus communis leaves (delta(18)O(R)) was measured under non-steady-state conditions with a temporal resolution of 3 min using a tunable diode laser (TDL) absorption spectrometer coupled to a portable gas exchange system. The SD of delta(18)O measurement by the TDL was +/- 0.2 per thousand and close to that of traditional mass spectrometers. Further, delta(18)O(R) values at isotopic steady state were comparable to those obtained using traditional flask sampling and mass spectrometric techniques for R. communis grown and measured in similar environmental conditions. As well as higher temporal resolution, the online TDL method described here has a number of advantages over mass spectrometric techniques. At isotopic steady state among plants grown at high light, the "one-way flux" model was required to accurately predict delta(18)O(R). A comparison of measurements and the model suggests that plants grown under low-light conditions have either a lower proportion of chloroplast CO(2) that isotopically equilibrates with chloroplast water, or more enriched delta(18)O of CO(2) in the chloroplast that has not equilibrated with local water. The high temporal resolution of isotopic measurements allowed the first measurements of delta(18)O(R) when stomatal conductance was rapidly changing. Under non-steady-state conditions, delta(18)O(R) varied between 50 and 220 per thousand for leaves of plants grown under different light and water environments, and varied by as much as 100 per thousand within 10 min for a single leaf. Stomatal conductance ranged from 0.001 to 1.586 mol m(-2) s(-1), and had an important influence on delta(18)O(R) under non-steady-state conditions not only via effects on leaf water H(2) (18)O enrichment, but also via effects on the rate of the one-way fluxes of CO(2) into and out of the leaf.  相似文献   

16.
Im GS  Lai L  Liu Z  Hao Y  Wax D  Bonk A  Prather RS 《Theriogenology》2004,61(6):1125-1135
This study investigated the effect of culture media and gas atmospheres on the development of porcine nuclear transfer embryos. Oocytes derived from a local abattoir were matured for 42-44 h and enucleated. Fetal fibroblasts were prepared from a Day 35 porcine fetus. Confluent stage fetal fibroblasts were introduced into the perivitelline space of enucleated oocytes. Fusion and activation were induced simultaneously with two direct current (1.2 kV/cm for 30 micros) in 0.3 M mannitol medium. For parthenogenetic activation, the same pulses were used. In Experiment 1, parthenogenetically activated oocytes were cultured in North Carolina State University-23 (NCSU-23), Porcine Zygote Medium-3 (PZM-3), or Beltsville Embryo Culture Medium-3 (BECM-3). Parthenogenetically activated oocytes cultured in PZM-3 had a higher (P < 0.05) developmental rate to the blastocyst stage (15.2% versus 3.7-9.6%) as compared to BECM-3 or NCSU-23. The number of nuclei in Day 6 blastocysts was higher (P < 0.05) in PZM-3 (23.6) and NCSU-23 (21.4) than BECM-3 (14.2). In Experiment 2, parthenogenetically activated oocytes were cultured in NCSU-23 under a gas atmosphere of 5% CO(2) in air for 6 days (T1), 5% CO(2), 5% O(2), 90% N(2) for 6 days (T2), 5% CO(2) in air for 3 days, then 5% CO(2), 5% O(2), 90% N(2) for 3 days (T3), or 5% CO(2), 5% O(2), 90% N(2) for 3 days, then 5% CO(2) in air for 3 days (T4). Blastocyst formation rates were not different among treatments (12.9 =/-3.6 %, 13.5 +/- 4.2%, 10.8+/-2.4%, and 12.6+/-2.7%, respectively). However, T2 (36.7+/-2.9) and T3 (33.8+/-3.0) resulted in more nuclei per blastocyst than T1 (23.2+/-2.1) or T4 (26.0+/-2.1 ). In Experiment 3, reconstructed porcine nuclear transfer (NT) embryos were cultured in NCSU-23 or PZM-3 under a gas atmosphere of 5% CO(2) in air or 5% CO(2), 5% O(2), 90% N(2). Developmental rates to blastocyst stage for porcine NT embryos cultured in NCSU-23 under a gas atmosphere of 5% CO(2) in air or 5% CO(2), 5% O(2), 90% N(2) were 7.2+/-1.4% and 12.3+/-1.4%, and the number of nuclei was 12.2=/-0.8% and 19.4+/-1.0, respectively. NT embryos cultured in PZM-3 under a gas atmosphere of 5% CO(2) in air or 5% CO(2), 5% O(2), 90% N(2) had developmental rates to blastocyst stage of 18.8+/-1.9 %, and 17.8+/-3.8% the nuclei number was 20.9 +/- 1.9 and 21.9+/-3.3, respectively. NT embryos cultured in NCSU-23 had a higher developmental rate to the blastocyst stage in 5% CO(2), 5% O(2), 90% N(2) than in 5% CO(2) in air (P < 0.05). Regardless of gas atmospheres, NT embryos cultured in PZM-3 had a higher developmental rate (18.3 =/- 1.7% versus 16.9 +/- 1.2%) and nuclei number (21.4 +/-1.8 versus 16.9 +/- 1.2) than in NCSU-23 (P < 0.05). In conclusion, a gas atmosphere of 5% CO(2), 5% O(2), 90% N(2) supported a higher development rate of porcine NT embryos than 5% CO(2) in air when the porcine NT embryos were cultured in NCSU-23. Furthermore, regardless of atmosphere, PZM-3 supported a higher development rate of porcine nuclear transfer embryos than NCSU-23.  相似文献   

17.
The biopharmaceutical industry is increasing its use of the WAVE Bioreactor for culturing cells. Although this disposable bioreactor can be equipped to provide real-time pH and dissolved oxygen (DO) monitoring and control, our goal was to develop a process for culturing CHO cells in this system without relying on pH and DO feedback controls. After identifying challenges in culturing cells without controlling for pH and DO in the WAVE Bioreactor, we characterized O(2) and CO(2) transfer in the system. From these cell-free studies, we identified rock rate and rock angle as key parameters affecting O(2) transfer. We also identified the concentration of CO(2) in the incoming gas and the rate of gas flow into the headspace as key parameters affecting CO(2) transfer--and therefore pH--in the disposable culture chamber. Using a full-factorial design to evaluate the rock rate, rock angle, and gas flow rate defined for this WAVE Bioreactor process, we found comparable cell growth and pH profiles in the ranges tested for these three parameters in two CHO cell lines. This process supported cell growth, and maintained pH and DO within our desired range--pH 6.8-7.2 and DO exceeding 20% of air saturation--for six CHO cell lines, and it also demonstrated comparable cell growth and viability with the stirred-tank bioreactor process with online pH and DO control. By eliminating the use of pH and DO probes, this process provides a simple and more cost-effective method for culturing cells in the WAVE Bioreactor.  相似文献   

18.
Shin HY  Lee JY  Kim EJ  Kim SW 《Current microbiology》2011,62(3):1023-1027
A method based on staining condition and volume of culture broth for the rapid estimation of the level of intracellular lipids in Acremonium chrysogenum using Oil red O was developed. Lipids in A. chrysogenum were strongly stained by the modified Oil red O after treatment for 10 min at 75°C. The results of the study indicated that the Oil red O staining method developed here is useful for the quantification of 0.1-5 mg ml(-1) of lipids in A. chrysogenum.  相似文献   

19.
The response of ribulose 1,5-bisphosphate levels and CO(2) fixation rates in isolated, intact spinach chloroplasts to pyrophosphate, triose phosphates, dl-glyceraldehyde, O(2), catalase, and irradiance during photosynthesis has been studied. Within 1 minute in the light, a rapid accumulation of ribulose bisphosphate was measured in most preparations of intact chloroplasts, and this subsequently dropped as CO(2) fixation increased. Pyrophosphate, triose phosphates, and catalase increased CO(2) fixation and also the levels of ribulose bisphosphate. CO(2) fixation was inhibited by dl-glyceraldehyde and O(2) with corresponding decreases in ribulose bisphosphate. When the rate of photosynthesis decreased at limiting irradiances (low light), the level of ribulose bisphosphate in the chloroplast did not always decrease, suggesting that ribulose bisphosphate was not limiting CO(2) fixation under these conditions. When triose phosphates (fructose bisphosphate plus aldolase) were added to suspensions of chloroplasts at low irradiances, ribulose bisphosphate increased while CO(2) fixation decreased. These observations provide considerable evidence that high ribulose bisphosphate levels clearly are not solely sufficient to permit rapid rates of CO(2) fixation, but that factors other than ribulose bisphosphate concentration are overriding the control of photosynthesis.Isolated chloroplasts are capable of using carbon reserves to produce considerable ribulose bisphosphate. Upon illumination in the absence of CO(2) and O(2), intact chloroplasts produced up to 13 millimolar ribulose bisphosphate.  相似文献   

20.
The oxygen isotope composition of atmospheric CO(2) is an important signal that helps distinguish between ecosystem photosynthetic and respiratory processes. In C(4) plants the carbonic anhydrase (CA)-catalyzed interconversion of CO(2) and bicarbonate (HCO(3)(-)) is an essential first reaction for C(4) photosynthesis but also plays an important role in the CO(2)-H(2)O exchange of oxygen as it enhances the rate of isotopic equilibrium between CO(2) and water. The C(4) dicot Flaveria bidentis containing genetically reduced levels of leaf CA (CA(leaf)) has been used to test whether changing leaf CA activity influences online measurements of C(18)OO discrimination (Delta(18)O) and the proportion of CO(2) in isotopic equilibrium with leaf water at the site of oxygen exchange (theta). The Delta(18)O in wild-type F. bidentis, which contains high levels of CA relative to the rates of net CO(2) assimilation, was less than predicted by models of Delta(18)O. Additionally, Delta(18)O was sensitive to small decreases in CA(leaf). However, reduced CA activity in F. bidentis had little effect on net CO(2) assimilation, transpiration rates (E), and stomatal conductance (g(s)) until CA levels were less than 20% of wild type. The values of theta determined from measurements of Delta(18)O and the (18)O isotopic composition of leaf water at the site of evaporation (delta(e)) were low in the wild-type F. bidentis and decreased in transgenic plants with reduced levels of CA activity. Measured values of theta were always significantly lower than the values of theta predicted from in vitro CA activity and gas exchange. The data presented here indicates that CA content in a C(4) leaf may not represent the CA activity associated with the CO(2)-H(2)O oxygen exchange and therefore may not be a good predictor of theta during C(4) photosynthesis. Furthermore, uncertainties in the isotopic composition of water at the site of exchange may also limit the ability to accurately predict theta in C(4) plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号