首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In human cells, Ero1-Lalpha and -Lbeta (hEROs) regulate oxidative protein folding by selectively oxidizing protein disulfide isomerase. Specific protein--protein interactions are probably crucial for regulating the formation, isomerization and reduction of disulfide bonds in the endoplasmic reticulum (ER). To identify molecules involved in ER redox control, we searched for proteins interacting with Ero1-Lalpha. Here, we characterize a novel ER resident protein (ERp44), which contains a thioredoxin domain with a CRFS motif and is induced during ER stress. ERp44 forms mixed disulfides with both hEROs and cargo folding intermediates. Whilst the interaction with transport-competent Ig-K chains is transient, ERp44 binds more stably with J chains, which are retained in the ER and eventually degraded by proteasomes. ERp44 does not bind a short-lived ribophorin mutant lacking cysteines. Its overexpression alters the equilibrium of the different Ero1-Lalpha redox isoforms, suggesting that ERp44 may be involved in the control of oxidative protein folding.  相似文献   

2.
Native disulfide bond formation in the endoplasmic reticulum is a critical process in the maturation of many secreted and outer membrane proteins. Although a large number of proteins have been implicated in this process, it is clear that our current understanding is far from complete. Here we describe the functional characterization of a new 18-kDa protein (ERp18) related to protein-disulfide isomerase. We show that ERp18 is located in the endoplasmic reticulum and that it contains a single catalytic domain with an unusual CGAC active site motif and a probable insertion between beta3 and alpha3 of the thioredoxin fold. From circular dichroism and NMR measurements, ERp18 is well structured and undergoes only a minor conformational change upon dithioldisulfide exchange in the active site. Guanidinium chloride denaturation curves indicate that the reduced form of the protein is more stable than the oxidized form, suggesting that it is involved in disulfide bond formation. Furthermore, in vitro ERp18 possesses significant peptide thiol-disulfide oxidase activity, which is dependent on the presence of both active site cysteine residues. This activity differs from that of the human PDI family in that under standard assay conditions it is limited by substrate oxidation and not by enzyme reoxidation. A putative physiological role for Erp18 in native disulfide bond formation is discussed.  相似文献   

3.
WhiB family of protein is emerging as one of the most fascinating group and is implicated in stress response as well as pathogenesis via their involvement in diverse cellular processes. Surprisingly, available in vivo data indicate an organism specific physiological role for each of these proteins. The WhiB proteins have four conserved cysteine residues where two of them are present in a C-X-X-C motif. In thioredoxins and similar proteins, this motif works as an active site and confers thiol-disulfide oxidoreductase activity to the protein. The recombinant WhiB1/Rv3219 was purified in a single step from Escherichia coli using Ni(2+)-NTA affinity chromatography and was found to exist as a homodimer. Mass spectrometry of WhiB1 shows that the four cysteine residues form two intramolecular disulfide bonds. Using intrinsic tryptophan fluorescence as a measure of redox state, the redox potential of WhiB1 was calculated as -236+/-2mV, which corresponds to the redox potential of many cytoplasmic thioredoxin-like proteins. WhiB1 catalyzed the reduction of insulin disulfide thus clearly demonstrating that it functions as a protein disulfide reductase. Present study for the first time suggests that WhiB1 may be a part of the redox network of Mycobacterium tuberculosis through its involvement in thiol-disulfide exchange with other cellular proteins.  相似文献   

4.
Protein disulfide isomerases (PDIs) are responsible for catalyzing the proper oxidation and isomerization of disulfide bonds of newly synthesized proteins in the endoplasmic reticulum (ER). The ER contains many different PDI-like proteins. Some, such as PDI, are general enzymes that directly recognize misfolded proteins while others, such as ERp57 and ERp72, have more specialized roles. Here, we report the high-resolution X-ray crystal structure of the N-terminal portion of ERp72 (also known as CaBP2 or PDI A4), which contains two a0a catalytic thioredoxin-like domains. The structure shows that the a0 domain contains an additional N-terminal β-strand and a different conformation of the β5-α4 loop relative to other thioredoxin-like domains. The structure of the a domain reveals that a conserved arginine residue inserts into the hydrophobic core and makes a salt bridge with a conserved glutamate residue in the vicinity of the catalytic site. A structural model of full-length ERp72 shows that all three catalytic sites roughly face each other and positions the adjacent hydrophobic patches that are likely involved in protein substrate binding.  相似文献   

5.
Endoplasmic reticulum (ER)p61, ERp72, and protein disulfide isomerase (PDI), which are members of the PDI family protein, are ubiquitously present in mammalian cells and are thought to participate in disulfide bond formation and isomerization. However, why the 3 different members need to be colocalized in the ER remains an enigma. We hypothesized that each PDI family protein might have different modes of enzymatic activity in disulfide bond formation and isomerization. We purified PDI, ERp61, and ERp72 proteins from rat liver microsomes and compared the effects of each protein on the folding of bovine pancreatic trypsin inhibitor (BPTI). ERp61 and ERp72 accelerated the initial steps more efficiently than did PDI. ERp61 and ERp72, however, accelerated the rate-limiting step less efficiently than did PDI. PDI or ERp72 did not impede the folding of BPTI by each other but rather catalyzed the folding reaction cooperatively with each other. These data suggest that differential enzymatic activities of ERp proteins and PDI represent a complementary contribution of these enzymes to protein folding in the ER.  相似文献   

6.
TrbB from the conjugative plasmid F is a 181-residue disulfide bond isomerase that plays a role in the correct folding and maintenance of disulfide bonds within F plasmid encoded proteins in the bacterial periplasm. As a member of the thioredoxin-like superfamily, TrbB has a predicted thioredoxin-like fold that contains a C–X–X–C active site required for performing specific redox chemistries on protein substrates. Here we report the sequence-specific assignments of the reduced form of the N-terminally truncated TrbB construct, TrbBΔ29.  相似文献   

7.
Protein disulfide isomerase (PDI, ERp59), ERp72, and ERp61 are luminal proteins of the endoplasmic reticulum (ER) that are characterized by the presence of sequences corresponding to the active site regions of PDI. Each one of these proteins possesses a different COOH-terminal tetrapeptide ER retention signal. In order to investigate what other tetrapeptide sequences could serve as retention signals and to determine to what extent the function of the retention signal is modulated by the protein carrying the signal, we have constructed a set of mutants of two of these resident ER proteins, PDI and ERp72. In each of these proteins, the wild type tetrapeptide sequences were replaced by each member of the set of the 12 possible combinations consisting of (K,R,Q)-(D,E)-(D,E)-L. Analysis of the efficiency of retention of the variant proteins when each was transiently expressed in COS cells showed that the retention efficiencies vary with both the COOH-terminal sequence and with the protein that carries this sequence.  相似文献   

8.
Woycechowsky KJ  Raines RT 《Biochemistry》2003,42(18):5387-5394
Protein disulfide isomerase (PDI) utilizes the active site sequence Cys-Gly-His-Cys (CGHC; E degrees ' = -180 mV) to effect thiol-disulfide interchange during oxidative protein folding. Here, the Cys-Gly-Cys-NH(2) (CGC) peptide is shown to have a disulfide reduction potential (E degrees ' = -167 mV) that is close to that of PDI. This peptide has a thiol acid dissociation constant (pK(a) = 8.7) that is lower than that of glutathione. These attributes endow the CGC peptide with substantial disulfide isomerization activity. Escherichia coli thioredoxin (Trx) utilizes the active site sequence Cys-Gly-Pro-Cys (CGPC; E degrees ' = -270 mV) to effect disulfide reduction. Removal of the proline residue from the Trx active site yields a CGC active site with a greatly destabilized disulfide bond (E degrees ' >or= -200 mV). The DeltaP34 variant retains high conformational stability and remains a substrate for thioredoxin reductase. In contrast to the reduced form of the wild-type enzyme, the reduced form of DeltaP34 Trx has disulfide isomerization activity, which is 25-fold greater than that of the CGC peptide. Thus, the rational deletion of an active site residue can bestow a new and desirable function upon an enzyme. Moreover, a CXC motif, in both a peptide and a protein, provides functional mimicry of PDI.  相似文献   

9.
Calnexin and ERp57 act cooperatively to ensure a proper folding of proteins in the endoplasmic reticulum (ER). Calnexin contains two domains: a lectin domain and an extended arm termed the P-domain. ERp57 is a protein disulfide isomerase composed of four thioredoxin-like repeats and a short basic C-terminal tail. Here we show direct interactions between the tip of the calnexin P-domain and the ERp57 basic C-terminus by using NMR and a novel membrane yeast two-hybrid system (MYTHS) for mapping protein interactions of ER proteins. Our results prove that a small peptide derived from the P-domain is active in binding ERp57, and we determine the structure of the bound conformation of the P-domain peptide. The experimental strategy of using the MYTHS two-hybrid system to map interaction sites between ER proteins, together with NMR, provides a powerful new strategy for establishing the function of ER complexes.  相似文献   

10.
蛋白质二硫键异构酶家族的结构与功能   总被引:1,自引:0,他引:1  
蛋白质二硫键异构酶(protein disulfide isomerase,PDI)家族是一类在内质网中起作用的巯基-二硫键氧化还原酶.它们通常含有CXXC(Cys-Xaa-Xaa-Cys,CXXC)活性位点,活性位点的两个半胱氨酸残基可催化底物二硫键的形成、异构及还原.所有PDI家族成员包含至少一个约100个氨基酸残基的硫氧还蛋白同源结构域.PDI家族的主要职能是催化内质网中新生肽链的氧化折叠,另外在内质网相关的蛋白质降解途径(ERAD)、蛋白质转运、钙稳态、抗原提呈及病毒入侵等方面也起重要作用.  相似文献   

11.
The thioredoxin superfamily consists of enzymes that catalyze the reduction, formation, and isomerization of disulfide bonds and exert their activity through a redox active disulfide in a Cys-Xaa(1)-Xaa(2)-Cys motif. The individual members of the family differ strongly in their intrinsic redox potentials. However, the role of the different redox potentials for the in vivo function of these enzymes is essentially unknown. To address the question of in vivo importance of redox potential for the most reducing member of the enzyme family, thioredoxin, we have employed a set of active site variants of thioredoxin with increased redox potentials (-270 to -195 mV) for functional studies in the cytoplasm of Escherichia coli. The variants proved to be efficient substrates of thioredoxin reductase, providing a basis for an in vivo characterization of NADPH-dependent reductive processes catalyzed by the thioredoxin variants. The reduction of sulfate and methionine sulfoxide, as well as the isomerization of periplasmic disulfide bonds by DsbC, which all depend on thioredoxin as catalyst in the E. coli cytoplasm, proved to correlate well with the intrinsic redox potentials of the variants in complementation assays. The same correlation could be established in vitro by using the thioredoxin-catalyzed reduction of lipoic acid by NADPH as a model reaction. We propose that the rate of direct reduction of substrates by thioredoxin, which largely depends on the redox potential of thioredoxin, is the most important parameter for the in vivo function of thioredoxin, as recycling of reduced thioredoxin through NADPH and thioredoxin reductase is not rate-limiting for its catalytic cycle.  相似文献   

12.
The endoplasmic reticulum (ER) is an essential cellular compartment in which an enormous number of secretory and cell surface membrane proteins are synthesized and subjected to cotranslational or posttranslational modifications, such as glycosylation and disulfide bond formation. Proper maintenance of ER protein homeostasis (sometimes termed proteostasis) is essential to avoid cellular stresses and diseases caused by abnormal proteins. Accumulating knowledge of cysteine-based redox reactions catalyzed by members of the protein disulfide isomerase (PDI) family has revealed that these enzymes play pivotal roles in productive protein folding accompanied by disulfide formation, as well as efficient ER-associated degradation accompanied by disulfide reduction. Each of PDI family members forms a protein–protein interaction with a preferential partner to fulfill a distinct function. Multiple redox pathways that utilize PDIs appear to function synergistically to attain the highest quality and productivity of the ER, even under various stress conditions. This review describes the structures, physiological functions, and cooperative actions of several essential PDIs, and provides important insights into the elaborate proteostatic mechanisms that have evolved in the extremely active and stress-sensitive ER.  相似文献   

13.
14.
Many proteins of the secretory pathway contain disulfide bonds that are essential for structure and function. In the endoplasmic reticulum (ER), Ero1 alpha and Ero1 beta oxidize protein disulfide isomerase (PDI), which in turn transfers oxidative equivalents to newly synthesized cargo proteins. However, oxidation must be limited, as some reduced PDI is necessary for disulfide isomerization and ER-associated degradation. Here we show that in semipermeable cells, PDI is more oxidized, disulfide bonds are formed faster, and high molecular mass covalent protein aggregates accumulate in the absence of cytosol. Addition of reduced glutathione (GSH) reduces PDI and restores normal disulfide formation rates. A higher GSH concentration is needed to balance oxidative folding in semipermeable cells overexpressing Ero1 alpha, indicating that cytosolic GSH and lumenal Ero1 alpha play antagonistic roles in controlling the ER redox. Moreover, the overexpression of Ero1 alpha significantly increases the GSH content in HeLa cells. Our data demonstrate tight connections between ER and cytosol to guarantee redox exchange across compartments: a reducing cytosol is important to ensure disulfide isomerization in secretory proteins.  相似文献   

15.
BACKGROUND: ERp29 is a ubiquitously expressed rat endoplasmic reticulum (ER) protein conserved in mammalian species. Fold predictions suggest the presence of a thioredoxin-like domain homologous to the a domain of human protein disulfide isomerase (PDI) and a helical domain similar to the C-terminal domain of P5-like PDIs. As ERp29 lacks the double-cysteine motif essential for PDI redox activity, it is suggested to play a role in protein maturation and/or secretion related to the chaperone function of PDI. ERp29 self-associates into 51 kDa dimers and also higher oligomers. RESULTS: 3D structures of the N- and C-terminal domains determined by NMR spectroscopy confirmed the thioredoxin fold for the N-terminal domain and yielded a novel all-helical fold for the C-terminal domain. Studies of the full-length protein revealed a short, flexible linker between the two domains, homodimerization by the N-terminal domain, and the presence of interaction sites for the formation of higher molecular weight oligomers. A gadolinium-based relaxation agent is shown to present a sensitive tool for the identification of macromolecular interfaces by NMR. CONCLUSIONS: ERp29 is the first eukaryotic PDI-related protein for which the structures of all domains have been determined. Furthermore, an experimental model of the full-length protein and its association states was established. It is the first example of a protein where the thioredoxin fold was found to act as a specific homodimerization module, without covalent linkages or supporting interactions by further domains. A homodimerization module similar as in ERp29 may also be present in homodimeric human PDI.  相似文献   

16.
The novel tumor biomarker MIEN1, identified by representational difference analysis, is overexpressed in breast cancer and prostate cancer. MIEN1 is considered an oncogenic protein, because MIEN1 overexpression functionally enhances migration and invasion of tumor cells via modulating the activity of AKT. However, the structure and molecular function of MIEN1 is little understood. Here, we report the solution structure of MIEN1, which adopts a thioredoxin-like fold with a redox-active motif. Comparison of backbone chemical shifts showed that most of the residues for both oxidized and reduced MIEN1 possessed the same backbone conformation, with differences limited to the active motif and regions in proximity. The redox potential of this disulfide bond was measured as −225 mV, which compares well with that of disulfides for other thioredoxin-like proteins. Overall, our results suggest that MIEN1 may have an important regulatory role in phosphorylation of AKT with its redox potential.  相似文献   

17.
ERp57 is a multifunctional thiol-disulfide oxidoreductase   总被引:4,自引:0,他引:4  
The thiol-disulfide oxidoreductase ERp57 is a soluble protein of the endoplasmic reticulum and the closest known homologue of protein disulfide isomerase. The protein interacts with the two lectin chaperones calnexin and calreticulin and thereby promotes the oxidative folding of newly synthesized glycoproteins. Here we have characterized several fundamental structural and functional properties of ERp57 in vitro, such as the domain organization, shape, redox potential, and the ability to catalyze different thiol-disulfide exchange reactions. Like protein disulfide isomerase, we find ERp57 to be comprised of four structural domains. The protein has an elongated shape of 3.4 +/- 0.1 nm in diameter and 16.8 +/- 0.5 nm in length. The two redox-active a and a' domains were determined to have redox potentials of -0.167 and -0.156 V, respectively. Furthermore, ERp57 was shown to efficiently catalyze disulfide reduction, disulfide isomerization, and dithiol oxidation in substrate proteins. The implications of these findings for the function of the protein in vivo are discussed.  相似文献   

18.
In the endoplasmic reticulum (ER), members of the protein disulfide isomerase (PDI) family perform critical functions during protein maturation. Herein, we identify the previously uncharacterized PDI-family member ERp90. In cultured human cells, we find ERp90 to be a soluble ER-luminal glycoprotein that comprises five potential thioredoxin (Trx)-like domains. Mature ERp90 contains 10 cysteine residues, of which at least some form intramolecular disulfides. While none of the Trx domains contain a canonical Cys-Xaa-Xaa-Cys active-site motif, other conserved cysteines could endow the protein with redox activity. Importantly, we show that ERp90 co-immunoprecipitates with ERFAD, a flavoprotein involved in ER-associated degradation (ERAD), through what is most likely a direct interaction. We propose that the function of ERp90 is related to substrate recruitment or delivery to the ERAD retrotranslocation machinery by ERFAD.  相似文献   

19.
Several endoplasmic reticulum (ER)-resident luminal proteins have a characteristic ER retrieval signal, KDEL, or its variants at their C terminus. Our previous work searching EST databases for proteins containing the C-terminal KDEL motif predicted some novel murine proteins, one of which designated JPDI (J-domain-containing protein disulfide isomerase-like protein) is characterized in this study. The primary structure of JPDI is unique, because in addition to a J-domain motif adjacent to the N-terminal translocation signal sequence, four thioredoxin-like motifs were found in a single polypeptide. As examined by Northern blotting, the expression of JPDI was essentially ubiquitous in tissues and almost independent of ER stress. A computational prediction that JPDI is an ER-resident luminal protein was experimentally supported by immunofluorescent staining of epitope-tagged JPDI-expressing cells together with glycosylation and protease protection studies of this protein. JPDI probably acts as a DnaJ-like partner of BiP, because a recombinant protein carrying the J-domain of JPDI associated with BiP in an ATP-dependent manner and enhanced its ATPase activity. We speculate that for the folding of some proteins in the ER, chaperoning by BiP and formation of proper disulfide bonds may synchronously occur in a JPDI-dependent manner.  相似文献   

20.
In the endoplasmic reticulum (ER), a number of thioredoxin (Trx) superfamily proteins are present to enable correct disulfide bond formation of secretory and membrane proteins via Trx-like domains. Here, we identified a novel transmembrane Trx-like protein 4 (TMX4), in the ER of mammalian cells. TMX4, a type I transmembrane protein, was localized to the ER and possessed a Trx-like domain that faced the ER lumen. A maleimide alkylation assay showed that a catalytic CXXC motif in the TMX4 Trx-like domain underwent changes in its redox state depending on cellular redox conditions, and, in the normal state, most of the endogenous TMX4 existed in the oxidized form. Using a purified recombinant protein containing the Trx-like domain of TMX4 (TMX4-Trx), we confirmed that this domain had reductase activity in vitro. The redox potential of this domain (−171.5 mV; 30 °C at pH 7.0) indicated that TMX4 could work as a reductase in the environment of the ER. TMX4 had no effect on the acceleration of ER-associated degradation. Because TMX4 interacted with calnexin and ERp57 by co-immunoprecipitation assay, the role of TMX4 may be to enable protein folding in cooperation with these proteins consisting of folding complex in the ER.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号