首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hallmark of Salmonella entry into host cells is extensive rearrangements of the host actin cytoskeleton at the site of Salmonella contact with intestinal epithelial cells. SopE, SopE2 and SopB, three type III effectors of Salmonella pathogenicity island 1 (SPI-1), activate the Cdc42 and Rac1 signal transduction pathways to promote these rearrangements. SipA and SipC, two Salmonella type III-secreted actin-binding proteins, directly modulate host actin dynamics to facilitate bacterial uptake. Salmonella-induced actin cytoskeleton rearrangements are therefore the result of the coordinated action of a group of type III-secreted effector proteins.  相似文献   

2.
Pathogenicity islands (PAIs) are large DNA segments in the genomes of bacterial pathogens that encode virulence factors. Five PAIs have been identified in the Gram-negative bacterium Salmonella enterica. Two of these PAIs, Salmonella pathogenicity island (SPI)-1 and SPI-2, encode type III secretion systems (TTSS), which are essential virulence determinants. These 'molecular syringes' inject effectors directly into the host cell, whereupon they manipulate host cell functions. These effectors are either encoded with their respective TTSS or scattered elsewhere on the Salmonella chromosome. Importantly, SPI-1 and SPI-2 are expressed under distinct environmental conditions: SPI-1 is induced upon initial contact with the host cell, whereas SPI-2 is induced intracellularly. Here, we demonstrate that a single PAI, in this case SPI-5, can encode effectors that are induced by distinct regulatory cues and targeted to different TTSS. SPI-5 encodes the SPI-1 TTSS translocated effector, SigD/SopB. In contrast, we report that the adjacently encoded effector PipB is part of the SPI-2 regulon. PipB is translocated by the SPI-2 TTSS to the Salmonella-containing vacuole and Salmonella-induced filaments. We also show that regions of SPI-5 are not conserved in all Salmonella spp. Although sigD/sopB is present in all Salmonella spp., pipB is not found in Salmonella bongori, which also lacks a functional SPI-2 TTSS. Thus, we demonstrate a functional and regulatory cross-talk between three chromosomal PAIs, SPI-1, SPI-2 and SPI-5, which has significant implications for the evolution and role of PAIs in bacterial pathogenesis.  相似文献   

3.
Gram-negative bacterial pathogens have developed specialized secretion systems to transfer bacterial proteins directly into host cells. These bacterial effectors are central to virulence and reprogram host cell processes to favor bacterial survival, colonization, and proliferation. Knowing the complete set of effectors encoded by a particular pathogen is the key to understanding bacterial disease. In addition, the identification of the molecular assemblies that these effectors engage once inside the host cell is critical to determining the mechanism of action of each effector. In this work we used stable isotope labeling of amino acids in cell culture (SILAC), a powerful quantitative proteomics technique, to identify the proteins secreted by the Salmonella pathogenicity island-2 type three secretion system (SPI-2 T3SS) and to characterize the host interaction partners of SPI-2 effectors. We confirmed many of the known SPI-2 effectors and were able to identify several novel substrate candidates of this secretion system. We verified previously published host protein-effector binding pairs and obtained 11 novel interactions, three of which were investigated further and confirmed by reciprocal co-immunoprecipitation. The host cell interaction partners identified here suggest that Salmonella SPI-2 effectors target, in a concerted fashion, cellular processes such as cell attachment and cell cycle control that are underappreciated in the context of infection. The technology outlined in this study is specific and sensitive and serves as a robust tool for the identification of effectors and their host targets that is readily amenable to the study of other bacterial pathogens.  相似文献   

4.
A central feature of Salmonella pathogenicity is the bacterium's ability to enter into non-phagocytic cells. Bacterial internalization is the consequence of cellular responses characterized by Cdc42- and Rac-dependent actin cytoskeleton rearrangements. These responses are triggered by the co-ordinated function of bacterial proteins delivered into the host cell by a specialized protein secretion system termed type III. We report here that SopB, a Salmonella inositol polyphosphatase delivered to the host cell by this secretion system, mediates actin cytoskeleton rearrangements and bacterial entry in a Cdc42-dependent manner. SopB exhibits overlapping functions with two other effectors of bacterial entry, the Rho family GTPase exchange factors SopE and SopE2. Thus, Salmonella strains deficient in any one of these proteins can enter into cells at high efficiency, whereas a strain lacking all three effectors is completely defective for entry. Consistent with an important role for inositol phosphate metabolism in Salmonella-induced cellular responses, a catalytically defective mutant of SopB failed to stimulate actin cytoskeleton rearrangements and bacterial entry. Furthermore, bacterial infection of intestinal cells resulted in a marked increase in Ins(1,4,5,6)P4, a consumption of InsP5 and the activation of phospholipase C. In agreement with the in vivo findings, purified SopB specifically dephosphorylated InsP5 to Ins(1,4,5,6)P4 in vitro. Surprisingly, the inositol phosphate fluxes induced by Salmonella were not caused exclusively by SopB. We show that the SopB-independent inositol phosphate fluxes are the consequence of the SopE-dependent activation of an endogenous inositol phosphatase. The ability of Salmonella to stimulate Rho GTPases signalling and inositol phosphate metabolism through alternative mechanisms is an example of the remarkable ability of this bacterial pathogen to manipulate host cellular functions.  相似文献   

5.
鼠伤寒沙门菌表达两个不同的Ⅲ型分泌系统(typeⅢsecretion/translocation systems, TTSS),分别由致病岛1和2(pathogenicityi slands 1 and 2, SPI-1 and SPI-2)编码。细菌依赖TTSS将效应蛋白转运至宿主细胞,通过“触发”机制诱导细菌进入宿主细胞。这些效应蛋白可诱导细胞骨架重排,导致“巨吞饮”,促使细菌入侵。本综述依据多种沙门菌效应蛋白的功能,建立沙门菌侵袭模型。TTSS活化并转运效应蛋白进入宿主细胞发挥功能(Ⅰ)。小G蛋白交换因子SopE和肌醇磷酸酯酶SopB通过激活CDC42和Rac1,诱导内陷相关的蛋白聚集(Ⅱ)。SipA和SipC通过降低肌动蛋白临界浓度、刺激网素成束、稳定纤维状肌动蛋白(fibrousactin, F-actin)以及使肌动蛋白核化等功能,促使细菌入侵(Ⅲ)。SopB可使膜内陷区PIP2的浓度降低以及VAMP8聚集,促使细胞膜分裂(Ⅳ)。这些效应蛋白的联合作用,使膜皱褶在局部向外显著延伸,使沙门菌被细胞内形成的特殊膜结构包裹。沙门菌的另一种效应蛋白SptP,通过刺激小G蛋白内源性GTPase的活性,抑制小G蛋白的活化,使细胞膜恢复至原有状态(Ⅴ)。  相似文献   

6.
Salmonella enterica serovar Typhimurium (S. typhimurium) is a gram-negative facultative intracellular pathogen that can infect a broad range of mammalian hosts. Following invasion of host cells, the majority of S. typhimurium are known to reside in a membrane-bound compartment known as the Salmonella-containing vacuole (SCV). S. typhimurium actively remodels this compartment using bacterial virulence proteins, called effectors, to establish a protected niche where it can replicate. S. typhimurium delivers more than 30 effectors into the host cell cytosol by bacterial type three secretion systems, encoded by Salmonella pathogenicity island 1 or 2 (SPI-1 or SPI-2). Recent studies have revealed a critical role for the SPI-1 effector SopB in 'directing traffic' at early stages of infection, allowing the bacteria to control SCV maturation by modulating its interaction with the endocytic system. At later stages of infection, the SCV establishes a 'nest' near the Golgi where optimal bacterial growth takes place. In this study, we highlight these recent developments in our understanding of SCV trafficking.  相似文献   

7.
The phosphoinositide phosphatase SopB/SigD is a type III secretion system effector that plays multiple roles in Salmonella internalization and intracellular survival. We previously reported that SopB complexed with and inhibited the small GTPase Cdc42 when expressed in a yeast model system, independently of its phosphatase activity. Here we show that human Cdc42, but not Rac1, interacts with catalytically inactive SopB when coexpressed in Saccharomyces cerevisiae. This interaction occurs with both constitutively active and non-activatable Cdc42, suggesting that SopB binds Cdc42 independently of its activation state. By mutational analysis we have narrowed the Cdc42-interacting region of SopB to the first 142 amino acids, and isolated a collection of point mutations in this region, mainly affecting leucine residues conserved in the related Shigella IpgD protein. Such mutations yielded SopB unable to interact with Cdc42 but maintained phosphatase activity. SopB mutant proteins defective for binding Cdc42 were ubiquitinated upon translocation in mammalian cells, but their localization to the Salmonella-containing vacuole was reduced compared with wild-type SopB. Whereas invasion of mammalian cells by Salmonella bearing these sopB mutations was not affected, intracellular replication was less efficient, suggesting that SopB-Cdc42 interaction contributes to the adaptation of Salmonella to the intracellular environment.  相似文献   

8.
To infect host cells, Salmonella utilizes an intricate system to manipulate the actin cytoskeleton and promote bacterial uptake. Proteins injected into the host cell by Salmonella activate the Rho GTPases, Rac1 and Cdc42, to induce actin polymerization. Following uptake, a different set of proteins inactivates Rac1 and Cdc42, returning the cytoskeleton to normal. Although the signaling pathways allowing Salmonella to invade host cells are beginning to be understood, many of the contributing factors remain to be elucidated. IQGAP1 is a multidomain protein that influences numerous cellular functions, including modulation of Rac1/Cdc42 signaling and actin polymerization. Here, we report that IQGAP1 regulates Salmonella invasion. Through its interaction with actin, IQGAP1 co-localizes with Rac1, Cdc42, and actin at sites of bacterial uptake, whereas infection promotes the interaction of IQGAP1 with both Rac1 and Cdc42. Knockdown of IQGAP1 significantly reduces Salmonella invasion and abrogates activation of Cdc42 and Rac1 by Salmonella. Overexpression of IQGAP1 significantly increases the ability of Salmonella to enter host cells and required interaction with both actin and Cdc42/Rac1. Together, these data identify IQGAP1 as a novel regulator of Salmonella invasion.  相似文献   

9.
SopB is a type III secreted Salmonella effector protein with phosphoinositide phosphatase activity and a distinct GTPase binding domain. The latter interacts with host Cdc42, an essential Rho GTPase that regulates critical events in eukaryotic cytoskeleton organization and membrane trafficking. Structural and biochemical analysis of the SopB GTPase binding domain in complex with Cdc42 shows for the first time that SopB structurally and functionally mimics a host guanine nucleotide dissociation inhibitor (GDI) by contacting key residues in the regulatory switch regions of Cdc42 and slowing Cdc42 nucleotide exchange.  相似文献   

10.
Salmonella enterica serovar Typhimurium is a major cause of human gastroenteritis. Infection of epithelial monolayers by S. Typhimurium disrupts tight junctions that normally maintain the intestinal barrier and regulate cell polarity. Tight junction disruption is dependent upon the Salmonella pathogenicity island-1 (SPI-1) type 3 secretion system but the specific effectors involved have not been identified. In this study we demonstrate that SopB, SopE, SopE2 and SipA are the SPI-1-secreted effectors responsible for disruption of tight junction structure and function. Tight junction disruption by S. Typhimurium was prevented by inhibiting host protein geranylgeranylation but was not dependent on host protein synthesis or secretion of host-derived products. Unlike wild-type S. Typhimurium, DeltasopB, DeltasopE/E2, DeltasipA, or DeltasipA/sopB mutants, DeltasopB/E/E2 and DeltasipA/sopE/E2 mutants were unable to increase the permeability of polarized epithelial monolayers, did not disrupt the distribution or levels of ZO-1 and occludin, and did not alter cell polarity. These data suggest that SPI-1-secreted effectors utilize their ability to stimulate Rho family GTPases to disrupt tight junction structure and function.  相似文献   

11.
Upon contact with intestinal epithelial cells, Salmonella enterica serovar spp. inject a set of bacterial proteins into host cells via the bacterial SPI-1 type III secretion system. SopE, SopE2 and SopB, activate CDC42 and Rac to initiate actin cytoskeleton rearrangements. SipA and SipC, two Salmonella actin-binding proteins, directly modulate host actin dynamics to facilitate bacterial uptake. SptP promotes the recovery of the actin cytoskeleton rearrangements by antagonizing CDC42 and Rac. Therefore, Salmonella-induced reversible actin cytoskeleton rearrangements are the result of two coordinated steps: (i) stimulation of host signal transduction to indirectly promote actin rearrangements and (ii) direct modulation of actin dynamics.  相似文献   

12.
The Salmonella pathogenicity island 1 (SPI-1) type three secretion system (TTSS) is essential for Salmonella invasion of host cells through its triggering of actin-dependent membrane ruffles. The SPI-1 effectors SipA, SopE, SopE2 and SopB all have actin regulating activities and contribute to invasion. The precise role of actin regulation by SipA in Salmonella invasion remains controversial since divergent data have been presented regarding the relationship between SipA and membrane ruffling. We hypothesized that the contribution of SipA to membrane ruffling and invasion might vary between Salmonella strains. We compared the effects of SipA deletion on Salmonella enterica serovar Typhimurium ( S.  Typhimurium) strains that possess or lack SopE. Loss of SipA reduced invasion in the early stages of infection by SopE+ and SopE- strains but the number of membrane ruffles elicited was unaffected. Salmonella strains lacking both SipA and SopE induced ruffles with very different morphology from those induced by wild-type strains or ones lacking single effectors, including the presence of highly dynamic finger-like protrusions and numerous filopodia. A similar phenotype was found for sipA - sopE -, sipA - sopE2 - and sipA - sopB - mutants. Thus, SipA plays a more prominent role in induction of invasion-competent membrane ruffles by Salmonella lacking a full complement of SPI-1 effectors.  相似文献   

13.
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a Gram-negative facultative food-borne pathogen that causes gastroenteritis in humans. This bacterium has evolved a sophisticated machinery to alter host cell function critical to its virulence capabilities. Central to S. Typhimurium pathogenesis are two Type III secretion systems (T3SS) encoded within pathogenicity islands SPI-1 and SPI-2 that are responsible for the secretion and translocation of a set of bacterial proteins termed effectors into host cells with the intention of altering host cell physiology for bacterial entry and survival. Thus, once delivered by the T3SS, the secreted effectors play critical roles in manipulating the host cell to allow for bacteria invasion, induction of inflammatory responses, and the assembly of an intracellular protective niche created for bacterial survival and replication. Emerging evidence indicates that these effectors are modular proteins consisting of distinct functional domains/motifs that are utilized by the bacteria to activate intracellular signalling pathways modifying host cell function. Also, recently reported are the dual functionality of secreted effectors and the concept of 'terminal reassortment'. Herein, we highlight some of the nascent concepts regarding Salmonella effectors in the context of infection.  相似文献   

14.
Cell stress and infection promote the formation of ubiquitinated aggregates in both non-immune and immune cells. These structures are recognised by the autophagy receptor p62/sequestosome 1 and are substrates for selective autophagy. The intracellular growth of Salmonella enterica occurs in a membranous compartment, the Salmonella-containing vacuole (SCV), and is dependent on effectors translocated to the host cytoplasm by the Salmonella pathogenicity island-2 (SPI-2) encoded type III secretion system (T3SS). Here, we show that bacterial replication is accompanied by the formation of ubiquitinated structures in infected cells. Analysis of bacterial strains carrying mutations in genes encoding SPI-2 T3SS effectors revealed that in epithelial cells, formation of these ubiquitinated structures is dependent on SPI-2 T3SS effector translocation, but is counteracted by the SPI-2 T3SS deubiquitinase SseL. In macrophages, both SPI-2 T3SS-dependent aggregates and aggresome-like induced structures (ALIS) are deubiquitinated by SseL. In the absence of SseL activity, ubiquitinated structures are recognized by the autophagy receptor p62, which recruits LC3 and targets them for autophagic degradation. We found that SseL activity lowers autophagic flux and favours intracellular Salmonella replication. Our data therefore show that there is a host selective autophagy response to intracellular Salmonella infection, which is counteracted by the deubiquitinase SseL.  相似文献   

15.
Subversion of the eukaryotic cell cytoskeleton is a virulence strategy employed by many bacterial pathogens. Due to the pivotal role of Rho GTPases in actin dynamics they are common targets of bacterial effector proteins and toxins. IpgB1, IpgB2 ( Shigella ), SifA, SifB ( Salmonella ) and Map and EspM (attaching and effacing pathogens) constitute a family of type III secretion system effectors that subverts small GTPase signalling pathways. In this study we identified and characterized EspT from Citrobacter rodentium that triggers formation of lamellipodia on Swiss 3T3 and membrane ruffles on HeLa cells, which are reminiscent of the membrane ruffles induced by IpgB1. Ectopic expression of EspT and IpgB1, but not EspM, resulted in a mitochondrial localization. Using dominant negative constructs we found that EspT-induced actin remodelling is dependent on GTP-bound Rac-1 and Cdc42 but not ELMO or Dock180, which are hijacked by IpgB1 in order to form a Rac-1 specific guanine nucleotide exchange factor. Using pull-down assays with the Rac-1 and Cdc42 binding domains of Pak and WASP we demonstrate that EspT is capable of activating both Rac-1 and Cdc42. These results suggest that EspT modulates the host cell cytoskeleton through coactivation of Rac-1 and Cdc42 by a distinct mechanism.  相似文献   

16.
17.
RhoG is a member of the Rho family of small GTPases and shares high sequence identity with Rac1 and Cdc42. Previous studies suggested that RhoG mediates its effects through activation of Rac1 and Cdc42. To further understand the mechanism of RhoG signaling, we studied its potential activation pathways, downstream signaling properties, and functional relationship to Rac1 and Cdc42 in vivo. First, we determined that RhoG was regulated by guanine nucleotide exchange factors that also activate Rac and/or Cdc42. Vav2 (which activates RhoA, Rac1, and Cdc42) and to a lesser degree Dbs (which activates RhoA and Cdc42) activated RhoG in vitro. Thus, RhoG may be activated concurrently with Rac1 and Cdc42. Second, some effectors of Rac/Cdc42 (IQGAP2, MLK-3, PLD1), but not others (e.g. PAKs, POSH, WASP, Par-6, IRSp53), interacted with RhoG in a GTP-dependent manner. Third, consistent with this differential interaction with effectors, activated RhoG stimulated some (JNK and Akt) but not other (SRF and NF-kappaB) downstream signaling targets of activated Rac1 and Cdc42. Finally, transient transduction of a tat-tagged Rac1(17N) dominant-negative fusion protein inhibited the induction of lamellipodia by the Rac-specific activator, Tiam1, but not by activated RhoG. Together, these data argue that RhoG function is mediated by signals independent of Rac1 and Cdc42 activation and instead by direct utilization of a subset of common effectors.  相似文献   

18.
Salmonella spp. utilize a specialized protein secretion system to deliver a battery of effector proteins into host cells. Several of these effectors stimulate Cdc42- and Rac1-dependent cytoskeletal changes that promote bacterial internalization. These potentially cytotoxic alterations are rapidly reversed by the effector SptP, a tyrosine phosphatase and GTPase activating protein (GAP) that targets Cdc42 and Rac1. The 2.3 A resolution crystal structure of an SptP-Rac1 transition state complex reveals an unusual GAP architecture that mimics host functional homologs. The phosphatase domain possesses a conserved active site but distinct surface properties. Binding to Rac1 induces a dramatic stabilization in SptP of a four-helix bundle that makes extensive contacts with the Switch I and Switch II regions of the GTPase.  相似文献   

19.
Several studies have clearly established the importance of the interaction between macrophages and CX3CL1 in the progression of disease. A previous study demonstrated that Syk was required for CX3CL1-mediated actin polymerization and chemotaxis. Here, we delineated the signaling cascade of Syk-mediated cell migration in response to CX3CL1. Inhibition of Syk in bone marrow-derived macrophages or reduction of Syk expression using siRNA in RAW/LR5 cells indicated that Syk was required for the activation of PI3K, Cdc42, and Rac1. Also, reduction in WASP or WAVE2 levels, common downstream effectors of Cdc42 or Rac1, resulted in impaired cell migration to CX3CL1. Syk indirectly regulated WASP tyrosine phosphorylation through Cdc42 activation. Altogether, our data identify that Syk mediated chemotaxis toward CX3CL1 by regulating both Rac1/WAVE2 and Cdc42/WASP pathways, whereas Src family kinases were required for proper WASP tyrosine phosphorylation.  相似文献   

20.
The TTSS is used by Salmonella and many bacterial pathogens to inject virulence factors directly into the cytoplasm of target eukaryotic cells. Once translocated these so-called effector proteins hijack a vast array of crucial cellular functions to the benefit of the bacteria. In the bacterial cytoplasm, some effectors are stabilized and maintained in a secretion competent state by interaction with specific type III chaperones. In this work we studied the conformation of the Chaperone Binding Domain of the effector named Salmonella Outer protein B (SopB) alone and in complex with its cognate chaperone SigE by a combination of biochemical, biophysical and structural approaches. Our results show that the N-terminus part of SopB is mainly composed by α-helices and unfolded regions whose organization/stabilization depends on their interaction with the different partners. This suggests that the partially unfolded state of this N-terminal region, which confers the adaptability of the effector to bind very different partners during the infection cycle, allows the bacteria to modulate numerous host cells functions limiting the number of translocated effectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号