首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neurogenesis occurs in the cerebral cortex of adult rats after focal cerebral ischemia. Whether or not the newborn neurons could synthesize neurotransmitters is unknown. To elucidate such a possibility, a photothrombotic ring stroke model with spontaneous reperfusion was induced in adult male Wistar rats. The DNA duplication marker BrdU was repeatedly injected, and the rats were sacrificed at various times after stroke. To detect BrdU nuclear incorporation and various neurotransmitters, brain sections were processed for single/double immunocytochemistry and single/double/triple immunofluorescence. Stereological cell counting was performed to assess the final cell populations. At 48 h, 5 days, 7 days, 30 days, 60 days and 90 days after stroke, numerous cells were BrdU-immunolabeled in the penumbral cortex. Some of these were doubly immunopositive to the cholinergic neuron-specific marker ChAT or GABAergic neuron-specific marker GAD. As analyzed by 3-D confocal microscopy, the neurotransmitters acetylcholine and GABA were colocalized with BrdU in the same cortical cells. In addition, GABA was colocalized with the neuron-specific marker Neu N in the BrdU triple-immunolabeled cortical cells. This study suggests that the newborn neurons are capable of synthesizing the neurotransmitters acetylcholine and GABA in the penumbral cortex, which is one of the fundamental requisites for these neurons to function in the poststroke recovery.  相似文献   

2.
Hypothermia is a potential therapy for cerebral hypoxic ischemic injury in adults and neonates. However, the mechanism of hypothermia neuroprotection after hypoxic-ischemia (HI) on the developing rat brain remains unclear. In this research, 7-day-old rats were subjected to left carotid artery ligation followed by 8% oxygen for 2h. They were divided into hypothermia (rectal temperature, 32-33°C for 24h) and normothermia (36-37°C for 24h) groups immediately after hypoxia-ischemia. All rats were given 50mg/kg/day 5-bromodeoxyuridine (BrdU) intraperitoneally at 4-6 days and sacrificed at 1 or 2 weeks after HI. There was a significant decrease in infarct volume in the hypothermia group at 7 days after HI compared with that in the normothermia group. The numbers of nestin-labeled cells did not change greatly, but β-tubulin III (Tuj-1) immuno-positive cells increased significantly in the striatum at 1 and 2 weeks after HI in the hypothermia compared to normothermia group. Neurogenesis was assessed by double immunohistochemical/immunofluorescent labeling of BrdU with nestin, Tuj-1 or microtubule-associated protein 2 (Map-2). Newborn neural progenitors (BrdU(+)-nestin(+)) did not change dramatically, but newborn immature (BrdU(+)-Tuj-1(+)) and mature (BrdU(+)-Map-2(+)) neurons increased significantly in the hypothermia compared with normothermia group. Meanwhile, the apoptosis rate of neural precursors, immature and mature neurons, assessed by double labeling of active Casp-3 with nestin/Tuj-1/Map-2, decreased noticeably in the hypothermia compared with normothermia group. We also found that hypothermia significantly increased expression of Bcl-2, which coexisted with nestin/Tuj-1/Map-2. Inhibition of Bcl-2 expression reversed the decreased apoptosis rate of neural precursors and neurons in hypothermia animal striatum of neonatal rat brain. These results suggest that neuroprotection effects of hypothermia on injured developing rat brain may associate with enhanced generation of neuronal cells and Bcl-2-mediated reduction of apoptosis of these cells. These observations are noteworthy regarding clinical hypothermia therapy following cerebral HI injury during the perinatal period.  相似文献   

3.
Neurogenesis in the dentate gyrus occurs throughout life. We observed regional differences in neurogenesis in the dentate gyrus of adult rats following transient forebrain ischemia. Nine days after ischemic-reperfusion or sham manipulation, rats were given 5-bromo-2'-deoxyuridine-5'-monophosphate (BrdU), a marker for dividing cells. They were killed 1 or 28 days later to distinguish between cell proliferation and survival. Neurogenesis was evaluated by BrdU incorporation as well by identifying neuronal and glial markers in six regions of the dentate gyrus: rostral, middle and caudal along the rostrocaudal axis, each further divided into suprapyramidal and infrapyramidal blade subregions. In control rats BrdU-positive cells in the rostral subregions were significantly lower in the suprapyramidal than in the infrapyramidal blades at both 1 and 28 days after BrdU injection. One day after injection, BrdU-positive cells had increased more in five of the subregions in the ischemic rats than in the controls, the exception being the suprapyramidal blade of the rostral subregion. At 28 days after BrdU injection, numbers of BrdU-positive cells were higher in four subregions in the ischemic group, the exceptions being the rostral suprapyramidal and middle infrapyramidal blades. At 28 days after BrdU injection, the percentages of BrdU positive cells that expressed a neuronal marker (NeuN) were the same in the dentate granule cell layers of ischemic and control rats. Our data thus demonstrate regional differences in enhanced neurogenesis in the dentate gyrus of adult rats after transient forebrain ischemia.  相似文献   

4.
Newborn cells of the adult dentate gyrus in the hippocampus are characterized by their abundant expression of polysialic acid (PSA), a carbohydrate attached to the neural cell adhesion molecule (NCAM). PSA+ newborn cells of the dentate gyrus form clusters with proliferating neural progenitor cells, migrate away from these clusters, and terminally differentiate. To identify the roles of PSA in the development of adult progenitors of the dentate gyrus, we injected endoneuraminidase N (endoN) into the hippocampus of adult rats to specifically cleave PSA from NCAM. Two days later, we administered the mitotic marker, 5-bromo-2'-deoxyuridine (BrdU). Three days after BrdU injection, BrdU+ cells were found inside and outside the clusters of newborn cells. In endoN-treated animals, the total number of BrdU+ cells was not changed but significantly more BrdU+ cells were present within clusters, suggesting that PSA normally facilitates the migration of progenitors away from the clusters. Seven days post-BrdU injection, endoN-treated animals had significantly more BrdU+ cells which were also positive for the mature neuronal nuclear marker NeuN compared with controls, indicating that the loss of PSA from progenitor cells increases neuronal differentiation. This report is the first demonstration that PSA is involved in controlling the spatio-temporal neuronal maturation of adult hippocampal progenitors in the normal brain. In vitro, the removal of PSA from adult-derived neural progenitors significantly enhanced neuronal differentiation, strengthening our in vivo findings and indicating that PSA removal on isolated progenitor cells, apart from a complex in vivo environment, induces neuronal maturation.  相似文献   

5.
Bumetanide, a selective Na+-K+-Cl?-co-transporter inhibitor, is widely used in clinical practice as a loop diuretic. In addition, bumetanide has been reported to attenuate ischemia-induced cerebral edema and reduce neuronal injury. This study examined whether bumetanide could influence neurogenesis and behavioral recovery in rats after experimentally induced stroke. Adult male Wistar rats were randomly assigned to four groups: sham, sham treated with bumetanide, ischemia, and ischemia treated with bumetanide. Focal cerebral ischemia was induced by injection of endothelin-1. Bumetanide (0.2 mg/kg/day) was infused into the lateral ventricle with drug administration being initiated 1 week after ischemia and continued for 3 weeks. Behavioral impairment and recovery were evaluated by tapered/ledged beam-walking test on post-stroke days 28. Then, the rats were perfused for BrdU/DCX (neuroblast marker), BrdU/NeuN (neuronal marker), BrdU/GFAP (astrocyte marker), and BrdU/Iba-1 (microglia marker) immunohistochemistry. The numbers of neuroblasts in the subventricular zone (SVZ) were significantly increased after the experimentally induced stroke. Bumetanide treatment increased migration of neuroblasts in the SVZ towards the infarct area, enhanced long-term survival of newborn neurons, and improved sensorimotor recovery, but it did not exert any effects on inflammation. In conclusion, our results demonstrated that chronic bumetanide treatment enhances neurogenesis and behavioral recovery after experimentally induced stroke in rats.  相似文献   

6.
Ongoing neurogenesis in the adult mammalian dentate gyrus and olfactory bulb is generally accepted, but its existence in other adult brain regions is highly controversial. We labeled newly born cells in adult rats with the S-phase marker bromodeoxyuridine (BrdU) and used neuronal markers to characterize new cells at different time points after cell division. In the neocortex and striatum, we found BrdU-labeled cells that expressed each of the eight neuronal markers. Their size as well as staining for gamma-aminobutyric acid (GABA), glutamic acid decarboxylase 67, calretinin and/or calbindin, suggest that new neurons in both regions are GABAergic interneurons. BrdU and doublecortin-immunoreactive (BrdU+/DCX+) cells were seen within the striatum, suggesting migration of immature neurons from the subventricular zone. Surprisingly, no DCX+ cells were found within the neocortex. NG2 immunoreactivity in some new neocortical neurons suggested that they may instead be generated from the NG2+ precursors that reside within the cortex itself.  相似文献   

7.
The avian forebrain exhibits neurogenesis in adulthood, with neuronal production from ependymal/subependymal zone (SZ) precursor cells. To follow the commitment of newborn cells to neuronal lineage, we used their expression of the Hu family of neuronal RNA-binding proteins to identify them before their migration from the SZ. Adult canaries were injected with [3H]thymidine as a marker of DNA replication, sacrificed after varying intervals, stained for Hu, and autoradiographed. We found that Hu was not expressed by premitotic precursor cells, but rather appeared within hours in their neuronal progeny, which did not embark on parenchymal migration until 4 to 7 days later. Hu was expressed by all neurons, but not glia, both in vivo and in vitro, as determined by ultrastructural analysis as well as co-localization of Hu and cell-type selective antigens. In addition, co-staining for Hu and N-cadherin, whose expression is down-regulated on neuronal emigration from the SZ, revealed their initial co-expression by neuronal daughter cells still within the SZ. These results suggest that Hu expression may be used as a very early indicator of neuronal differentiation by SZ cells. Furthermore, the data indicate that in the adult avian brain, neuronal phenotype is established within hours of precursor mitosis, even though the neuronal daughter cells do not initiate parenchymal migration for at least 4 days thereafter, following their down-regulation of N-cadherin. © 1995 John Wiley & Sons, Inc.  相似文献   

8.
NeuN, a neuronal specific nuclear protein in vertebrates.   总被引:66,自引:0,他引:66  
A battery of monoclonal antibodies (mAbs) against brain cell nuclei has been generated by repeated immunizations. One of these, mAb A60, recognizes a vertebrate nervous system- and neuron-specific nuclear protein that we have named NeuN (Neuronal Nuclei). The expression of NeuN is observed in most neuronal cell types throughout the nervous system of adult mice. However, some major cell types appear devoid of immunoreactivity including cerebellar Purkinje cells, olfactory bulb mitral cells, and retinal photoreceptor cells. NeuN can also be detected in neurons in primary cerebellar cultures and in retinoic acid-stimulated P19 embryonal carcinoma cells. Immunohistochemically detectable NeuN protein first appears at developmental timepoints which correspond with the withdrawal of the neuron from the cell cycle and/or with the initiation of terminal differentiation of the neuron. NeuN is a soluble nuclear protein, appears as 3 bands (46-48 x 10(3) M(r)) on immunoblots, and binds to DNA in vitro. The mAb crossreacts immunohistochemically with nervous tissue from rats, chicks, humans, and salamanders. This mAb and the protein recognized by it serve as an excellent marker for neurons in the central and peripheral nervous systems in both the embryo and adult, and the protein may be important in the determination of neuronal phenotype.  相似文献   

9.
Zhang W  Hu Y  Lin TR  Fan Y  Mulholland MW 《Peptides》2005,26(11):2280-2288
Ghrelin, a gastric hormone, regulates growth hormone secretion and energy homeostasis. The present study shows that ghrelin promotes neural proliferation in vivo and in vitro in the rat nucleus of the solitary tract (NTS). Systemic administration of ghrelin significantly increased 5-bromo-2'-deoxyuridine (BrdU) incorporation in the NTS in adult rats with cervical vagotomy. Cultured NTS neurons contain immature precursor cells as shown by expression of Hu protein. Exposure of cultured NTS neurons to ghrelin significantly increased the percentage of BrdU incorporation into cells in both dose- and time-dependent manners. Co-localization of Hu immunoreactivity with BrdU labeling was demonstrated by double fluorescent staining, suggesting that cells labeled with BrdU are neuronal cells. Ghrelin receptor mRNA was detected in tissues from the NTS. The mitotic effect of ghrelin was abolished by treatment of cultured NTS neurons with ghrelin receptor antagonists: D-Lys-3-GHRP-6 and [D-Arg1, D-Phe-5, D-Trp-7, 9, Leu-11] substance P. Diltiazem, a L-type calcium channel blocker, significantly attenuated ghrelin-mediated increments in BrdU incorporation. Ghrelin acts directly on NTS neurons to stimulate neurogenesis.  相似文献   

10.
This study tested the hypothesis that specific hypoxic molecules, including hypoxia-inducible factor-1alpha (HIF-1alpha), neuronal nitric oxide synthase (nNOS), and vascular endothelial growth factor (VEGF), are upregulated within the cerebral cortex of acutely anemic rats. Isoflurane-anesthetized rats underwent acute hemodilution by exchanging 50% of their blood volume with pentastarch. Following hemodilution, mean arterial pressure and arterial Pa(O(2)) values did not differ between control and anemic rats while the hemoglobin concentration decreased to 57 +/- 2 g/l. In anemic rats, cerebral cortical HIF-1alpha protein levels were increased, relative to controls (1.7 +/- 0.5-fold, P < 0.05). This increase was associated with an increase in mRNA levels for VEGF, erythropoietin, CXCR4, iNOS, and nNOS (P < 0.05 for all), but not endothelial NOS. Cerebral cortical nNOS and VEGF protein levels were increased in anemic rats, relative to controls (2.0 +/- 0.2- and 1.5 +/- 0.4-fold, respectively, P < 0.05 for both). Immunohistochemistry demonstrated increased HIF-1alpha and VEGF staining in perivascular regions of the anemic cerebral cortex and an increase in the number of nNOS-positive cerebral cortical cells (3.2 +/- 1.0-fold, P < 0.001). The nNOS-positive cells costained with the neuronal marker, Neu-N, but not with the astrocytic marker glial fibrillary acidic protein (GFAP). These nNOS-positive neurons frequently sent axonal projections toward cerebral blood vessels. Conversely, VEGF immunostaining colocalized with both neuronal (NeuN) and astrocytic markers (GFAP). In conclusion, acute normotensive, normoxemic hemodilution increased the levels of HIF-1alpha protein and mRNA for HIF-1-responsive molecules. nNOS and VEGF protein levels were also increased within the cerebral cortex of anemic rats at clinically relevant hemoglobin concentrations.  相似文献   

11.
12.
The monoclonal antibody (mAb) neuronal nuclei (NeuN) labels the nuclei of mature neurons in vivo in vertebrates. NeuN has also been used to define post-mitotic neurons or differentiating neuronal precursors in vitro . In this study, we demonstrate that the NeuN mAb labels the nuclei of astrocytes cultured from fetal and adult human, newborn rat, and embryonic mouse brain tissue. A non-neuronal fibroblast cell line (3T3) also displayed NeuN immunoreactivity. We confirmed that NeuN labels neurons but not astrocytes in sections of P10 rat brain. Western blot analysis of NeuN immunoreactive species revealed a distribution of bands in nucleus-enriched fractions derived from the different cell lines that was similar, but not identical to adult rat brain homogenates. We then examined the hypothesis that the glial fibrillary acidic protein/NeuN-double positive population of cells might correspond to neuronal precursors. Although the NeuN-positive astrocytes were proliferating, no evidence of neurogenesis was detected. Furthermore, expression of additional neuronal precursor markers was not detected. Our results indicate that primary astrocytes derived from mouse, rat, and human brain express NeuN. Our findings are consistent with NeuN being a selective marker of neurons in vivo , but indicate that studies utilizing NeuN-immunoreactivity as a definitive marker of post-mitotic neurons in vitro should be interpreted with caution.  相似文献   

13.
Previous research has shown heightened recruitment of new neurons to the chickadee hippocampus in the fall. The present study was conducted to determine whether heightened fall recruitment is associated with the seasonal onset of food-storing by comparing neurogenesis in chickadees and a non-food-storing species, the house sparrow. Chickadees and house sparrows were captured in the wild in fall and spring and received multiple injections of the cell birth marker bromodeoxyuridine (BrdU). Birds were held in captivity and the level of hippocampal neuron recruitment was assessed after 6 weeks. Chickadees showed significantly more hippocampal neuronal recruitment than house sparrows. We found no seasonal differences in hippocampal neuronal recruitment in either species. In chickadees and in house sparrows, one-third of new cells labeled for BrdU also expressed the mature neuronal protein, NeuN. In a region adjacent to the hippocampus, the hyperpallium apicale, we observed no significant differences in neuronal recruitment between species or between seasons. Hippocampal volume and total neuron number both were greater in spring than in fall in chickadees, but no seasonal differences were observed in house sparrows. Enhanced neuronal recruitment in the hippocampus of food-storing chickadees suggests a degree of neurogenic specialization that may be associated with the spatial memory requirements of food-storing behavior.  相似文献   

14.
γ-Tubulin is essential for microtubule nucleation and also plays less understood roles in nuclear and cell-cycle-related functions. High abundancy of γ-tubulin in acentrosomal Arabidopsis cells facilitated purification and biochemical characterization of large molecular species of γ-tubulin. TEM, fluorescence, and atomic force microscopy of purified high molecular γ-tubulin forms revealed the presence of linear filaments with a double protofilament substructure, filament bundles and aggregates. Filament formation from highly purified γ-tubulin free of γ-tubulin complex proteins (GCPs) was demonstrated for both plant and human γ-tubulin. Moreover, γ-tubulin associated with porcine brain microtubules formed oligomers. Experimental evidence on the intrinsic ability of γ-tubulin to oligomerize/polymerize was supported by conservation of α- and β-tubulin interfaces for longitudinal and lateral interactions for γ-tubulins. STED (stimulated emission depletion) microscopy of Arabidopsis cells revealed fine, short γ-tubulin fibrillar structures enriched on mitotic microtubular arrays that accumulated at polar regions of acentrosomal spindles and the outer nuclear envelope before mitosis, and were also present in nuclei. Fine fibrillar structures of γ-tubulin representing assemblies of higher order were localized in cell-cycle-dependent manner at sites of dispersed γ-tubulin location in acentrosomal plant cells as well as at sites of local γ-tubulin enrichment after drug treatment. Our findings that γ-tubulin preserves the capability of prokaryotic tubulins to self-organize into filaments assembling by lateral interaction into bundles/clusters help understanding of the relationship between structure and multiple cellular functions of this protein species and suggest that besides microtubule nucleation and organization, γ-tubulin may also have scaffolding or sequestration functions.  相似文献   

15.
Fluorescence recovery after photobleaching has been widely used to study dynamic processes in the cell, but less frequently to analyze binding interactions and extract binding constants. Here we use it to analyze γ-tubulin binding to the mitotic spindle and centrosomes to determine the role of γ-tubulin in microtubule nucleation in the spindle. We find rapid γ-tubulin turnover in mitotic spindles of Drosophila early embryos, characterized by diffusional interactions and weak binding, differing from centrosomes with tight binding interactions. The diffusion coefficient of γ-tubulin is consistent with a major species existing in the cytoplasm as the less efficiently nucleating γ-tubulin small complex (γTuSC) or γ-tubulin, rather than γ-tubulin ring complex (γTuRC). The fluorescence recovery kinetics we observe implies that γ-tubulin functions by binding weakly to spindle microtubules. γ-Tubulin may interact transiently with the spindle, nucleating microtubules very rapidly, differing from centrosomes, where γ-tubulin binds tightly to nucleate microtubules.  相似文献   

16.
The present study was designed to assess the influence of antigen retrieval and/or DNA denaturation on the quantitative estimation of bromodeoxyuridine (BrdU) in formalin-fixed paraffin-embedded tissue. Specimens of small intestine from rats injected with BrdU were routinely fixed and embedded in paraffin. For antigen retrieval, sections were pretreated with microwave irradiation or enzymatically (pepsin or trypsin). Acid hydrolysis was used as a DNA denaturation method. Immunostaining of BrdU-labeled cells was performed. The best results, regarding tissue morphology and immunostaining, were obtained with microwave pretreatment followed by acid hydrolysis. Enzymatic pretreatment resulted in damage of tissue morphology and/or high background staining. Microwave alone, without DNA denaturation, resulted in a lower percentage of BrdU positive cells. The significance of validation studies is emphasized when the level of positivity for a prognostic marker, such as BrdU, is assessed.  相似文献   

17.
The success of transplants of neural tissue into the adult dentate gyrus in generating mature neurons is highly variable. Here we address the roles of the origin of the tissue and its pre-implantation preparation, and show that both are critical. We transplanted neonatal cultured or primary rat cells from either the ventral subventricular zone (vSVZ) or the dentate gyrus (DG) into the adult rat DG. Only primary DG cells robustly generated DG neurons (80% NeuN and Prox1-positive cells at 6 weeks), substantially repaired the damaged DG, and formed glutamatergic projections to the target CA3 region. Cultured DG cells expanded for 7 days showed limited neuronal differentiation after transplantation (10% NeuN and Prox1-positive cells) whereas cultured or primary vSVZ cells failed to make any Prox1-positive DG granular neurons. We found that a specific population of postmitotic young neurons (triple doublecortin/NeuN/Prox1-positive) were particularly abundant in primary DG cells, but were markedly reduced in the cultured DG cells and were absent in the cultured and primary vSVZ cells. Labelling of primary DG cells with the mitotic marker BrdU suggested that postmitotic young neurons are the source of the transplanted mature neurons in-vivo. We conclude that both the origin and pre-transplantation history of donor cells are key factors that determine the outcome of transplantation. These findings may be of therapeutic interest for cell replacement therapy in treating the damaged hippocampus.  相似文献   

18.
Rat myoblast nuclei were labeled with various concentrations of bromodeoxyuridine (BrdU), an analogue of thymidine, for 24 or 48 hr. Almost every myoblast was labeled with BrdU at concentrations between 10(-7) M and 10(-5) M. When the cells were labeled with 0.5 microM or more, the percentage of labeled cells remained over 90% and 80% at 2 and 5 days, respectively. However, when the cells were labeled with BrdU concentration lower than 10(-7) M the percentage of labeled nuclei decreased more rapidly with time. The BrdU-labeled cells were mixed with an unlabeled population to determine whether their capacity to fuse was reduced. At a BrdU concentration of 0.5 x 10(-6) M, labeled myoblasts fused to a similar extent as unlabeled myoblasts, and a high percentage of marked cells were still perceptively labeled after 5 days. In contrast, the fusion capacity of myoblasts incubated with more than 10(-6) M BrdU was inhibited after only few rounds of DNA synthesis. These myoblasts were eventually able to fuse, however, when the BrdU diminished in the DNA due to cell division. These results indicate that labeling with BrdU at a concentration of 0.5 x 10(-6) M and an incorporation time of 48 hr is optimal to obtain perceptible immunocytochemical staining without affecting myoblast fusion. Such BrdU immunolabeling could be used as a nuclear marker for hybridization studies.  相似文献   

19.
20.
Pluripotency and their neural crest origin make dental pulp stem cells (DPSCs) an attractive donor source for neuronal cell replacement. Despite recent encouraging results in this field, little is known about the integration of transplanted DPSC derived neuronal pecursors into the central nervous system. To address this issue, neuronally predifferentiated DPSCs, labeled with a vital cell dye Vybrant DiD were introduced into postnatal rat brain. DPSCs were transplanted into the cerebrospinal fluid of 3-day-old male Wistar rats. Cortical lesion was induced by touching a cold (−60 °C) metal stamp to the calvaria over the forelimb motor cortex. Four weeks later cell localization was detected by fluorescent microscopy and neuronal cell markers were studied by immunohistochemistry. To investigate electrophysiological properties of engrafted, fluorescently labeled DPSCs, 300 μm-thick horizontal brain slices were prepared and the presence of voltage-dependent sodium and potassium channels were recorded by patch clamping.Predifferentiated donor DPSCs injected into the cerebrospinal fluid of newborn rats migrated as single cells into a variety of brain regions. Most of the cells were localized in the normal neural progenitor zones of the brain, the subventricular zone (SVZ), subgranular zone (SGZ) and subcallosal zone (SCZ). Immunohistochemical analysis revealed that transplanted DPSCs expressed the early neuronal marker N-tubulin, the neuronal specific intermediate filament protein NF-M, the postmitotic neuronal marker NeuN, and glial GFAP. Moreover, the cells displayed TTX sensitive voltage dependent (VD) sodium currents (INa) and TEA sensitive delayed rectifier potassium currents (KDR). Four weeks after injury, fluorescently labeled cells were detected in the lesioned cortex. Neurospecific marker expression was increased in DPSCs found in the area of the cortical lesions compared to that in fluorescent cells of uninjured brain. TTX sensitive VD sodium currents and TEA sensitive KDR significantly increased in labeled cells of the cortically injured area. In conclusion, our data demonstrate that engrafted DPSC-derived cells integrate into the host brain and show neuronal properties not only by expressing neuron-specific markers but also by exhibiting voltage dependent sodium and potassium channels. This proof of concept study reveals that predifferentiated hDPSCs may serve as useful sources of neuro- and gliogenesis in vivo, especially when the brain is injured.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号