首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Faithful repair of DNA double-strand breaks by homologous recombination is crucial to maintain functional genomes. The major Escherichia coli pathway of DNA break repair requires RecBCD enzyme, a complex protein machine with multiple activities. Upon encountering a Chi recombination hotspot (5′ GCTGGTGG 3′) during DNA unwinding, RecBCD's unwinding, nuclease, and RecA-loading activities change dramatically, but the physical basis for these changes is unknown. Here, we identify, during RecBCD's DNA unwinding, two Chi-stimulated conformational changes involving RecC. One produced a marked, long-lasting, Chi-dependent increase in protease sensitivity of a small patch, near the Chi recognition domain, on the solvent-exposed RecC surface. The other change was identified by crosslinking of an artificial amino acid inserted in this RecC patch to RecB. Small-angle X-ray scattering analysis confirmed a major conformational change upon binding of DNA to the enzyme and is consistent with these two changes. We propose that, upon DNA binding, the RecB nuclease domain swings from one side of RecC to the other; when RecBCD encounters Chi, the nuclease domain returns to its initial position determined by crystallography, where it nicks DNA exiting from RecC and loads RecA onto the newly generated 3′-ended single-stranded DNA during continued unwinding; a crevice between RecB and RecC increasingly narrows during these steps. This model provides a physical basis for the intramolecular “signal transduction” from Chi to RecC to RecD to RecB inferred previously from genetic and enzymatic analyses, and it accounts for the enzymatic changes that accompany Chi's stimulation of recombination.  相似文献   

3.
Ubiquitination plays an important role in the DNA damage response. We identified a novel interaction of the E3 ubiquitin ligase RNF8 with Nbs1, a key regulator of DNA double-strand break (DSB) repair. We found that Nbs1 is ubiquitinated both before and after DNA damage and is a direct ubiquitination substrate of RNF8. We also identified key residues on Nbs1 that are ubiquitinated by RNF8. By using laser microirradiation and live-cell imaging, we observed that RNF8 and its ubiquitination activity are important for promoting optimal binding of Nbs1 to DSB-containing chromatin. We also demonstrated that RNF8-mediated ubiquitination of Nbs1 contributes to the efficient and stable binding of Nbs1 to DSBs and is important for HR-mediated DSB repair. Taken together, these studies suggest that Nbs1 is one important target of RNF8 to regulate DNA DSB repair.  相似文献   

4.
5.
Nonhomologous end-joining (NHEJ) and homologous recombination (HR) are two major pathways for repairing DNA double-strand breaks (DSBs); however, their respective roles in human somatic cells remain to be elucidated. Here we show using a series of human gene-knockout cell lines that NHEJ repairs nearly all of the topoisomerase II- and low-dose radiation-induced DNA damage, while it negatively affects survival of cells harbouring replication-associated DSBs. Intriguingly, we find that loss of DNA ligase IV, a critical NHEJ ligase, and Artemis, an NHEJ factor with endonuclease activity, independently contribute to increased resistance to replication-associated DSBs. We also show that loss of Artemis alleviates hypersensitivity of DNA ligase IV-null cells to low-dose radiation- and topoisomerase II-induced DSBs. Finally, we demonstrate that Artemis-null human cells display increased gene-targeting efficiencies, particularly in the absence of DNA ligase IV. Collectively, these data suggest that DNA ligase IV and Artemis act cooperatively to promote NHEJ, thereby suppressing HR. Our results point to the possibility that HR can only operate on accidental DSBs when NHEJ is missing or abortive, and Artemis may be involved in pathway switching from incomplete NHEJ to HR.  相似文献   

6.
7.
N. Rudin  E. Sugarman    J. E. Haber 《Genetics》1989,122(3):519-534
We have investigated HO endonuclease-induced double-strand break (DSB) recombination and repair in a LACZ duplication plasmid in yeast. A 117-bp MATa fragment, embedded in one copy of LACZ, served as a site for initiation of a DSB when HO endonuclease was expressed. The DSB could be repaired using wild-type sequences located on a second, promoterless, copy of LACZ on the same plasmid. In contrast to normal mating-type switching, crossing-over associated with gene conversion occurred at least 50% of the time. The proportion of conversion events accompanied by exchange was greater when the two copies of LACZ were in direct orientation (80%), than when inverted (50%). In addition, the fraction of plasmids lost was significantly greater in the inverted orientation. The kinetics of appearance of intermediates and final products were also monitored. The repair of the DSB is slow, requiring at least an hour from the detection of the HO-cut fragments to completion of repair. Surprisingly, the appearance of the two reciprocal products of crossing over did not occur with the same kinetics. For example, when the two LACZ sequences were in the direct orientation, the HO-induced formation of a large circular deletion product was not accompanied by the appearance of a small circular reciprocal product. We suggest that these differences may reflect two kinetically separable processes, one involving only one cut end and the other resulting from the concerted participation of both ends of the DSB.  相似文献   

8.
The nonhomologous end-joining (NHEJ) pathway is essential for the preservation of genome integrity, as it efficiently repairs DNA double-strand breaks (DSBs). Previous biochemical and genetic investigations have indicated that, despite the importance of this pathway, the entire complement of genes regulating NHEJ remains unknown. To address this, we employed a plasmid-based NHEJ DNA repair screen in budding yeast (Saccharomyces cerevisiae) using 369 putative nonessential DNA repair-related components as queries. Among the newly identified genes associated with NHEJ deficiency upon disruption are two spindle assembly checkpoint kinases, Bub1 and Bub2. Both observation of resulting phenotypes and chromatin immunoprecipitation demonstrated that Bub1 and -2, either alone or in combination with cell cycle regulators, are recruited near the DSB, where phosphorylated Rad53 or H2A accumulates. Large-scale proteomic analysis of Bub kinases phosphorylated in response to DNA damage identified previously unknown kinase substrates on Tel1 S/T-Q sites. Moreover, Bub1 NHEJ function appears to be conserved in mammalian cells. 53BP1, which influences DSB repair by NHEJ, colocalizes with human BUB1 and is recruited to the break sites. Thus, while Bub is not a core component of NHEJ machinery, our data support its dual role in mitotic exit and promotion of NHEJ repair in yeast and mammals.  相似文献   

9.
10.

Background

The recD mutants of the Antarctic Pseudomonas syringae Lz4W are sensitive to DNA-damaging agents and fail to grow at 4°C. Generally, RecD associates with two other proteins (RecB and RecC) to produce RecBCD enzyme, which is involved in homologous recombination and DNA repair in many bacteria, including Escherichia coli. However, RecD is not essential for DNA repair, nor does its deletion cause any growth defects in E. coli. Hence, the assessment of the P. syringae RecBCD pathway was imperative.

Methodology/Principal Findings

Mutational analysis and genetic complementation studies were used to establish that the individual null-mutations of all three genes, recC, recB, and recD, or the deletion of whole recCBD operon of P. syringae, lead to growth inhibition at low temperature, and sensitivity to UV and mitomycin C. Viability of the mutant cells dropped drastically at 4°C, and the mutants accumulated linear chromosomal DNA and shorter DNA fragments in higher amounts compared to 22°C. Additional genetic data using the mutant RecBCD enzymes that were inactivated either in the ATPase active site of RecB (RecBK29Q) or RecD (RecDK229Q), or in the nuclease center of RecB (RecBD1118A and RecBΔnuc) suggested that, while the nuclease activity of RecB is not so critical in vivo, the ATP-dependent functions of both RecB and RecD are essential. Surprisingly, E. coli recBCD or recBC alone on plasmid could complement the defects of the ΔrecCBD strain of P. syringae.

Conclusions/Significance

All three subunits of the RecBCDPs enzyme are essential for DNA repair and growth of P. syringae at low temperatures (4°C). The RecD requirement is only a function of the RecBCD complex in the bacterium. The RecBCD pathway protects the Antarctic bacterium from cold-induced DNA damages, and is critically dependent on the helicase activities of both RecB and RecD subunits, but not on the nuclease of RecBCDPs enzyme.  相似文献   

11.
蛋白激酶CK2(酪蛋白激酶Ⅱ)是真核细胞中普遍存在的一种信使非依赖的丝氨酸/苏氨酸蛋白激酶,它底物众多,功能广泛。DNA断裂修复是一个涉及很多种酶和蛋白的过程,CK2在其中起着很重要的作用。  相似文献   

12.
Homologous recombination (HR) is essential for accurate genome duplication and maintenance of genome stability. In eukaryotes, chromosomal double strand breaks (DSBs) are central to HR during specialized developmental programs of meiosis and antigen receptor gene rearrangements, and form at unusual DNA structures and stalled replication forks. DSBs also result from exposure to ionizing radiation, reactive oxygen species, some anti-cancer agents, or inhibitors of topoisomerase II. Literature predicts that repair of such breaks normally will occur by non-homologous end-joining (in G1), intrachromosomal HR (all phases), or sister chromatid HR (in S/G2). However, no in vivo model is in place to directly determine the potential for DSB repair in somatic cells of mammals to occur by HR between repeated sequences on heterologs (i.e., interchromosomal HR). To test this, we developed a mouse model with three transgenes—two nonfunctional green fluorescent protein (GFP) transgenes each containing a recognition site for the I-SceI endonuclease, and a tetracycline-inducible I-SceI endonuclease transgene. If interchromosomal HR can be utilized for DSB repair in somatic cells, then I-SceI expression and induction of DSBs within the GFP reporters may result in a functional GFP+ gene. Strikingly, GFP+ recombinant cells were observed in multiple organs with highest numbers in thymus, kidney, and lung. Additionally, bone marrow cultures demonstrated interchromosomal HR within multiple hematopoietic subpopulations including multi-lineage colony forming unit–granulocyte-erythrocyte-monocyte-megakaryocte (CFU-GEMM) colonies. This is a direct demonstration that somatic cells in vivo search genome-wide for homologous sequences suitable for DSB repair, and this type of repair can occur within early developmental populations capable of multi-lineage differentiation.  相似文献   

13.
The process of homologous recombination is a major DNA repair pathway that operates on DNA double-strand breaks, and possibly other kinds of DNA lesions, to promote error-free repair. Central to the process of homologous recombination are the RAD52 group genes (RAD50, RAD51, RAD52, RAD54, RDH54/TID1, RAD55, RAD57, RAD59, MRE11, and XRS2), most of which were identified by their requirement for the repair of ionizing-radiation-induced DNA damage in Saccharomyces cerevisiae. The Rad52 group proteins are highly conserved among eukaryotes, and Rad51, Mre11, and Rad50 are also conserved in prokaryotes and archaea. Recent studies showing defects in homologous recombination and double-strand break repair in several human cancer-prone syndromes have emphasized the importance of this repair pathway in maintaining genome integrity. Although sensitivity to ionizing radiation is a universal feature of rad52 group mutants, the mutants show considerable heterogeneity in different assays for recombinational repair of double-strand breaks and spontaneous mitotic recombination. Herein, I provide an overview of recent biochemical and structural analyses of the Rad52 group proteins and discuss how this information can be incorporated into genetic studies of recombination.  相似文献   

14.
15.
16.
17.
植物DNA双链断裂修复的保守性和特异性   总被引:1,自引:1,他引:0  
文章概述了植物DNA双链断裂(double-strand break,DSB)修复的研究进展。从酵母、脊椎动物、植物在此领域已取得的成果来看,真核生物DSB修复在过程和参与蛋白方面均有一定的进化保守性;另一方面,植物的DSB修复有其特异之处。  相似文献   

18.
Chromosomal structural change triggers carcinogenesis and the formation of other genetic diseases. The breakpoint junctions of these rearrangements often contain small overlapping sequences called “microhomology,” yet the genetic pathway(s) responsible have yet to be defined. We report a simple genetic system to detect microhomology-mediated repair (MHMR) events after a DNA double-strand break (DSB) in budding yeast cells. MHMR using >15 bp operates as a single-strand annealing variant, requiring the non-essential DNA polymerase subunit Pol32. MHMR is inhibited by sequence mismatches, but independent of extensive DNA synthesis like break-induced replication. However, MHMR using less than 14 bp is genetically distinct from that using longer microhomology and far less efficient for the repair of distant DSBs. MHMR catalyzes chromosomal translocation almost as efficiently as intra-chromosomal repair. The results suggest that the intrinsic annealing propensity between microhomology sequences efficiently leads to chromosomal rearrangements.  相似文献   

19.
20.
Poly(ADP-ribosyl)ation, which is catalyzed by PARP family proteins, is one of the main reactions in the cell response to genomic DNA damage. Massive impact of DNA-damaging agents (such as oxidative stress and ionizing radiation) causes numerous breaks in DNA. In this case, the development of a fast cell response, which allows the genomic DNA integrity to be retained, may be more important than the repair by more accurate but long-term restoration of the DNA structure. This is the first study to show the possibility of eliminating DNA breaks through their PARP3-dependent mono(ADP-ribosyl)ation followed by ligation and repair of the formed ribo-AP sites by the base excision repair (BER) enzyme complex. Taken together, the results of the studies on ADP-ribosylation of DNA and the data obtained in this study suggest that PARP3 may be a component of the DNA break repair system involving the BER enzyme complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号