首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Chemical investigations of the MeOH extract of air dried flowers of the Australian tree Angophora woodsiana (Myrtaceae) yielded two new β-triketones, woodsianones A and B (1, 2) and nine known β-triketones (311). Woodsianone A is a β-triketone-sesquiterpene adduct and woodsianone B is a β-triketone epoxide derivative. The structures of the new and known compounds were elucidated from the analysis of 1D/2D NMR and MS data. The relative configurations of the compounds were determined from analysis of 1H–1H coupling constants and ROESY correlations. All compounds (111) had antiplasmodial activity against the chloroquine sensitive strain 3D7. The known compound rhodomyrtone (5) and new compound woodsianone B (2) showed moderate antiplasmodial activities against the 3D7 strain (1.84 µM and 3.00 µM, respectively) and chloroquine resistant strain Dd2 (4.00 µM and 2.53 µM, respectively).  相似文献   

2.
《Phytochemistry》1986,25(7):1711-1713
A flav-3-ene and four 4β-substituted flavans were isolated from the roots of Tephrosia hildbrandtu and their structures established from spectral data.  相似文献   

3.
4.
Here, we present the results of a computational analysis of a group of hypothetical GH10 endo-β-xylanases from the Planctomycetes, a bacterial phylum with poorly characterized functional capabilities. These proteins are encoded in all analyzed genomes of heterotrophic Planctomycetes and form a phylogenetically distinct and tight cluster. In addition, we determined nucleotide sequences for endo-β-xylanase genes from five strains of Isosphaera-Singulisphaera group of the Planctomycetes. The trees constructed for the 16S rRNA genes and the inferred amino acid sequences of endo-β-xylanases were highly congruent, thus suggesting the vertical transfer of endo-β-xylanase genes and their functional importance in Planctomycetes.  相似文献   

5.
6.
Luo JC  Wang SC  Jian WB  Chen CH  Tang JL  Lee CI 《FEBS letters》2012,586(6):680-685
Fibril formation has been considered a significant feature of amyloid proteins. However, it has been proposed that fibril formation is a common property of many proteins under appropriate conditions. We studied the fibril formation of β-amylase, a non-amyloid protein rich in α-helical structure, because the secondary structure of β-amylase is similar to that of prions. With the conditions for the fibril formation of prions, β-amylase proteins were converted into amyloid fibrils. The features of β-amylase proteins and fibrils are compared to prion proteins and fibrils. Furthermore, the cause of neurotoxicity in amyloid diseases is discussed.  相似文献   

7.
Summary Kinetic properties of extracellular -glucosidase from Aspergillus ornatus were determined. The pH and temperature optima for the enzyme were found to be 4.6 and 60°C, respectively. Under these conditions, the enzyme exhibited a K m (p-nitrophenyl--glucoside) value of 0.76±0.11 mM. The activation energy for the enzyme was 11.8 kcal/mol. Several divalent metal ions inhibited -glucosidase activity, some of which showed inhibition of enzyme activity only at higher concentrations. Ag2+ was the most potent inhibitor. A metal chelating agent, EDTA, also inhibited -glucosidase activity. Except for trehalose, glucose, glucono--lactone, cellobiose, gentiobiose, laminaribiose, maltose and isomaltose inhibited -glucosidase activity. Glucose was found to be a competitive inhibitor, whereas glucono--lactone and other -linked disaccharides were noncompetitive (mixed) inhibitors of the enzyme.  相似文献   

8.
9.
Four putative β-amylase genes found in the Oryza sativa cDNA sequence database (KOME) were expressed in Escherichia coli. Recombinant proteins from two of these genes showed β-amylase activity. Similarly to β-amylases from other plants, the optimum pH of the recombinant rice β-amylases was about 5.5-6.0, but they exhibited inferior heat stability to soybean β-amylase.  相似文献   

10.
Properties of -glucan synthetase from S. cerevisiae were studied. The enzyme exhibited optimal activity at pH 6.7 and 24 C. Km for UDP-glucose was 0.12mm. Addition of Mg++ or Mn++ stimulated its activity by 60% and 21% respectively. High concentrations of EDTA and hydroxyquinoline were inhibitory. Glucan synthetase was fully active in cell-free extracts. Small concentrations of trypsin or subtilopeptidase A from Bacillus subtilis, caused only a slight increase in glucosyl transferase activity, but larger concentrations destroyed -glucan synthetase. Acid proteases were neither stimulatory nordestructive. Thus it seemsunlikelythat -glucan synthetase exists in a zymogen form. Glucan synthetase was unstable. It was inactivated more rapidly at 28 C than at 0 C. The presence of substrate, -glucan or the protease inhibitors PMSF, Antipain or Pepstatin A did not protect -glucan synthetase from inactivation. Glucan synthetase was not stimulated by addition of cellobiose or -glucans. The synthesis of -glucans was competitively inhibited by UDP (Ki=0.45mm). Glucono--lactone, a known inhibitor of -glucosidases was a strong non-competitive inhibitor of -glucan synthetase.This work was supported by grants PNCB 00071 and 847 of the Consejo Nacional de Ciencia y Tecnología, México.  相似文献   

11.
12.
Partially purified β-d-galactosidase (β-d-galactoside galactohydrolase, EC 3.2.1.23) from Bacillus circulans showed high activity towards both pure lactose and lactose in skim milk, and a better thermal stability than the enzyme from yeast or Escherichia coli. During the course of hydrolysis of lactose catalysed by the enzyme, considerable amounts of oligosaccharides were produced. β-d-Galactosidase from B. circulans was immobilized onto Duolite ES-762, Dowex MWA-1 and sintered alumina by adsorption with glutaraldehyde treatment. The highest activity for hydrolysis of lactose was obtained with immobilization onto Duolite ES-762. During a continuous hydrolysis of lactose, the immobilized enzyme was reversibly inactivated, probably due to oligosaccharides accumulating in the gel. The inactivation was reduced when a continuous reaction was operated at a high percent conversion of lactose in a continuous stirred tank reactor (CSTR). The half-life of the immobilized enzyme was estimated to be 50 and 15 days at 50 and 55°C, respectively, when the reaction was carried out in a CSTR with a percent conversion of lactose >70%.  相似文献   

13.
14.
An extracellular -glucosidase II of Aspergillus niger catalysed the synthesis of cello-oligosaccharides from cellobiose (15%, w/v). The enzyme was stable at and below 4°C for at least 230 days and also stable at 30°C with the presence of 2.0% (w/v) cellobiose. The maximum yield of cello-oligosaccharides was about 30% (mol/mol), based on cellobiose (130 mg/mL) consumed. © Rapid Science Ltd. 1998  相似文献   

15.
Steviol is a diterpene isolated from the plant Stevia rebaudiana that has a potential role as an antihyperglycemic agent by stimulating insulin secretion from pancreatic beta cells and also has significant potential to diminish the renal clearance of anionic drugs and their metabolites. In this study, the lacS gene, which encodes a thermostable β-glycosidase (SSbgly) enzyme from the extremely thermoacidophillic archaeon Sulfolobus solfataricus, was cloned and expressed in E. coli Rossetta BL21(DE3)pLyS using lactose as an inducer. Through fermentation, SSbgly was expressed as a 61 kDa protein with activity of 24.3 U/mg and the OD600 of 23 was reached after 18 h induction with 10 mM lactose. Purified protein was obtained by Ni-Sepharose chromatography with a yield of 92.3%. SSbgly hydrolyzed steviol glycosides to produce steviol with a yield of 99.2%. The optimum conditions for steviol production were 50 U/ml SSbgly and 90 mg/ml Ste at 75 °C as determined by the response surface method.  相似文献   

16.
The map of restriction sites including and surrounding the δ- and β-globin genes has been established for three Ferrara β°-thalassaemic subjects. The fragments obtained using nine restriction enzymes do not show any differences from normal DNA. Among others, restriction enzymes giving short fragments at the 5′ and 3′ ends of the β-globin structural gene have been employed. The results obtained for the thalassaemic DNA are identical to those for control DNA, thus excluding the presence of extensive deletions in or adjacent to the coding regions of the β-globin gene in Ferrara β°-thalassaemia.  相似文献   

17.
《Phytochemistry》1987,26(2):359-364
Four forms of β-galactosidase from the germinating seeds of Vigna sinensis were separated and partially purified by ammonium sulphate precipitation, ion exchange chromatography (DE-52) and gel filtration to more than 50% purity as judged by PAGE. The pH and temperature optima, stability, Mr, kinetic parameters and energy of activation of each enzyme have been determined. The four forms differed in their M,s and ionic charges.  相似文献   

18.
An extracellular -glucosidase II of Aspergillus niger catalyzed the synthesis of methyl -glucoside and ethyl -glucoside with 5.0% (v/v) cellobiose as glucosyl donor in a biphasic media containing 20% (v/v) methanol and 30% (v/v) ethanol, respectively. The maximum yield of methyl -glucoside and ethyl -glucoside was 83% (mol/mol; 12 mg/ ml) and 53% (mol/mol; 5.5 mg/ml), based on cellobiose consumed. © Rapid Science Ltd. 1998  相似文献   

19.
Summary -Xylosidase was obtained from Aureobasidium pullulans CBS 58475 with an activity of 0.35 units/ml culture filtrate. The production of the enzyme was strongly inducible. -Xylosidase was purified in two steps by anion exchange and gel-permeation chromatography to high purity. The enzyme is a glycoprotein with an apparent molecular mass of 224 kDa in sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and separates into two subunits of equal molecular mass. After SDS-PAGE -xylosidase could be renatured and stained with methylumbelliferyl--xylopyranoside. The enzyme was able to split substrates of other glycosidases. The maximum activity was reached at pH 4.5 and 80° C. -Xylosidase showed high stability over a broad pH range from pH 2.0 to 9.5 and up to 70° C. Analysis of cleavage patterns revealed that the enzyme was a typical glycosidase. Larger oligosaccharides consisting of xylose were degraded by an exomechanism together with a transxylosylation reaction.  相似文献   

20.
A β-xylosidase (β-d-xyloside xylohydrolase, EC 3.2.1.37) and β-glucosidase (β-d-glucoside glucohydrolase, EC 3.2.1.21) extracted from a wheat bran culture of Aspergillus fumigatus were purified up to 90-fold and 131-fold, respectively, by ammonium sulfate precipitation, gel filtration, ion exchange chromatography, and hydroxylapatite chromatography. Molecular weights of the β-xylosidase and β-glucosidase were 360,000 and 380,000, respectively, each consisting of four identical subunits. The isoelectric points of β-xylosidase and β-glucosidase were at pH 5.4 and 4.5, respectively. The optimum temperature for the β-xylosidase was 75°C, being stable up to 65°C for 20 min and for the β-glucosidase was 65°C, being stable up to 60°C for 20 min. The optimum pH for both enzymes was about 4.5, being stable between 2 and 8 at 50°C for 20 min. Both enzymes were inhibited by Fe3+, Cu2+, Hg2+, SDS, and p-chloromercuribenzoate. The apparent Michaelis constants of the β-xylosidase were 2.0 and 23.8 mM for p-nitrophenyl-β-xyloside and xylobiose, respectively, and those of the β-glucosidase were 1.4, 11.4, and 24.8 mM for p-nitrophenyl-β-glucoside, gentiobiose, and cellobiose, respectively. To produce xylose from crude xylooligosac-charides prepared by steam-explosion of cotton seed waste (DP ≤10, 53%, total sugars = 150 g/ liter), the crude enzyme from A. fumigatus (β-xylosidase activity = 14.7 units/ml, xylanase activity = 20 units/ml) could hydrolyze the substrate at 55°C and pH 4.5 resulting in almost complete conversion to xylose (160 g/liter).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号