首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The spliceosome, the gigantic molecular machine that performs pre-mRNA splicing in eukaryotes, contains over 200 different proteins and five RNA molecules. The central role played by the spliceosomal RNAs in splicing has led to the hypothesis that, like the ribosome, the spliceosome is an RNA-centric enzyme and a relic from the RNA world. Recent structural studies have provided the first glimpses of the structural features of spliceosomal RNAs, and mutational analyses in vivo and in vitro have uncovered new functional roles for a catalytically essential domain. An emerging model for the active site of group II introns, a closely related class of natural ribozymes, is likely to provide a wealth of insights on structure and function of the active site of the spliceosome.  相似文献   

2.
U6 RNA is a key component of the catalytic core of the spliceosome. A metal ion essential for the first catalytic step of pre-mRNA splicing binds to the U80 Sp phosphate oxygen within the yeast U6 intramolecular stem-loop (ISL). Here we present the first structural data for U6 RNA, revealing the three-dimensional structure of the highly conserved U6 ISL. The ISL binds metal ion at the U80 site with the same stereo specificity as the intact spliceosome. The metal-binding site is adjacent to a readily protonated C.A wobble pair. Protonation of the C.A pair and metal binding are mutually antagonistic. These results support a ribozyme model for U6 RNA function and suggest a possible mechanism for the regulation of RNA splicing.  相似文献   

3.
4.
The yeast PRP8 protein interacts directly with pre-mRNA.   总被引:14,自引:3,他引:11       下载免费PDF全文
The PRP8 protein of Saccharomyces cerevisiae is required for nuclear pre-mRNA splicing. Previously, immunological procedures demonstrated that PRP8 is a protein component of the U5 small nuclear ribonucleoprotein particle (U5 snRNP), and that PRP8 protein maintains a stable association with the spliceosome during both step 1 and step 2 of the splicing reaction. We have combined immunological analysis with a UV-crosslinking assay to investigate interaction(s) of PRP8 protein with pre-mRNA. We show that PRP8 protein interacts directly with splicing substrate RNA during in vitro splicing reactions. This contact event is splicing-specific in that it is ATP-dependent, and does not occur with mutant RNAs that contain 5' splice site or branchpoint mutations. The use of truncated RNA substrates demonstrated that the assembly of PRP8 protein into splicing complexes is not, by itself, sufficient for the direct interaction with the RNA; PRP8 protein only becomes UV-crosslinked to RNA substrates capable of participating in step 1 of the splicing reaction. We propose that PRP8 protein may play an important structural and/or regulatory role in the spliceosome.  相似文献   

5.
The spliceosome is a multi-megadalton RNA–protein complex responsible for the removal of non-coding introns from pre-mRNAs. Due to its complexity and dynamic nature, it has proven to be a very challenging target for structural studies. Developments in single particle cryo-EM have overcome these previous limitations and paved the way towards a structural characterisation of the splicing machinery. Despite tremendous progress, many aspects of spliceosome structure and function remain elusive. In particular, the events leading to the definition of exon–intron boundaries, alternative and non-canonical splicing events, and cross-talk with other cellular machineries. Efforts are being made to address these knowledge gaps and further our mechanistic understanding of the spliceosome. Here, we summarise recent progress in the structural and functional analysis of the spliceosome.  相似文献   

6.
RNA splicing is one of the fundamental processes in gene expression in eukaryotes. Splicing of pre-mRNA is catalysed by a large ribonucleoprotein complex called the spliceosome, which consists of five small nuclear RNAs and numerous protein factors. The spliceosome is a highly dynamic structure, assembled by sequential binding and release of the small nuclear RNAs and protein factors. DExD/H-box RNA helicases are required to mediate structural changes in the spliceosome at various steps in the assembly pathway and have also been implicated in the fidelity control of the splicing reaction. Other proteins also play key roles in mediating the progression of the spliceosome pathway. In this review, we discuss the functional roles of the protein factors involved in the spliceosome pathway primarily from studies in the yeast system.  相似文献   

7.
To examine the stability of yeast (Saccharomyces cerevisiae) pre-mRNA structures, we inserted a series of small sequence elements that generated potential RNA hairpins at the 5' splice site and branch point regions. We analyzed spliceosome assembly and splicing in vitro as well as splicing and nuclear pre-mRNA retention in vivo. Surprisingly, the inhibition of in vivo splicing approximately paralleled that of in vitro splicing. Even a 6-nucleotide hairpin could be shown to inhibit splicing, and a 15-nucleotide hairpin gave rise to almost complete inhibition. The in vitro results indicate that hairpins that sequester the 5' splice site have a major effect on the early steps of spliceosome assembly, including U1 small nuclear ribonucleoprotein binding. The in vivo experiments lead to comparable conclusions as the sequestering hairpins apparently result in the transport of pre-mRNA to the cytoplasm. The observations are compared with previous data from both yeast and mammalian systems and suggest an important effect of pre-mRNA structure on in vivo splicing.  相似文献   

8.
Spliceosome formation is initiated by the recognition of the 5′ splice site through formation of an RNA duplex between the 5′ splice site and U1 snRNA. We have previously shown that RNA duplex formation between U1 snRNA and the 5′ splice site can protect pre-mRNAs from degradation prior to splicing. This initial RNA duplex must be disrupted to expose the 5′ splice site sequence for base pairing with U6 snRNA and to form the active spliceosome. Here, we investigated whether hyperstabilization of the U1 snRNA/5′ splice site duplex interferes with splicing efficiency in human cell lines or nuclear extracts. Unlike observations in Saccharomyces cerevisiae, we demonstrate that an extended U1 snRNA/5′ splice site interaction does not decrease splicing efficiency, but rather increases 5′ splice site recognition and exon inclusion. However, low complementarity of the 5′ splice site to U1 snRNA significantly increases exon skipping and RNA degradation. Although the splicing mechanisms are conserved between human and S.cerevisiae, these results demonstrate that distinct differences exist in the activation of the spliceosome.  相似文献   

9.
We have developed a splicing assay system with an immobilized pre-mRNA to study the mechanism of the splicing reaction after spliceosome assembly. Using this system, we have found that the second step of the splicing reaction could be dissected into two stages. After the 5' splice site reaction, at least two factors interact with the pre-formed spliceosome containing intermediate molecules in an ATP-independent manner to convert the spliceosome into a form competent for the 3' splice site reaction. Then, the 3' splice site reaction occurs on this spliceosome, if ATP is supplied to the reaction mixture. We have also investigated the dynamic state of the 3' splice site region in the spliceosomes during the splicing reaction by probing with RNase H sensitivity. Prior to the 5' splice site reaction, the 3' splice site region was protected from RNase H attack. The region became sensitive immediately after the 5' splice site reaction, and subsequently became resistant again as the spliceosome competent for the 3' splice site reaction was formed. These results suggest that the interaction of the 3' splice site region with some spliceosome components changes significantly during the splicing reaction.  相似文献   

10.
Interactions of the yeast U6 RNA with the pre-mRNA branch site.   总被引:6,自引:5,他引:1       下载免费PDF全文
The small nuclear RNA (snRNA) components of the spliceosome have been proposed to catalyze the excision of introns from nuclear pre-mRNAs. If this hypothesis is correct, then the snRNA components of the spliceosome may interact directly with the reactive groups of pre-mRNA substrates. To explore this possibility, a genetic screen has been used to identify potential interactions between the U6 RNA and the pre-mRNA branch site. Notably, the selection yielded mutants in two regions of the yeast U6 RNA implicated previously in the catalytic events of splicing. These mutants significantly increase the splicing of pre-mRNA substrates containing non-adenosine branch sites. U6 mutants in U2/U6 helix Ia show strong allele-specific interactions with the branch site nucleotide and interact with PRP16, a factor implicated previously in branch site utilization. The other mutants cluster in the intramolecular helix of U6 and suppress the effects of branch site mutations in a nonallele-specific fashion. The locations of these mutants may define positions important for binding of the U6 intramolecular helix to the catalytic core of the spliceosome.  相似文献   

11.
The question remains: is the spliceosome a ribozyme?   总被引:19,自引:0,他引:19  
The two phosphoryl transfer steps of pre-mRNA splicing are catalyzed within the large ribonuclear protein machine called the spliceosome. The highly dynamic nature of the spliceosome has presented many challenges to a structural and mechanistic understanding of its catalytic core. While much evidence supports the popular hypothesis that the catalytic steps of pre-mRNA splicing are mediated by spliceosomal RNA, a role for protein in catalysis cannot yet be ruled out. A highly conserved protein, Prp8, is a component of the catalytic core. We review data consistent with the hypothesis that Prp8 functions as a cofactor to an RNA enzyme.  相似文献   

12.
U6 RNA enters the spliceosome base paired with U4 RNA, but dissociates from U4 RNA before the catalytic steps of splicing. We have identified a cold-sensitive lethal mutation in U4 RNA (U4-cs1) that blocks the splicing pathway after U4/U6 complex formation, but before the first catalytic step of splicing. Remarkably, selection for suppressors of the cold-sensitive growth of the U4-cs1 strain yielded a tandem duplication of the highly conserved ACAGA sequence of U6 RNA (U6-Dup). The ACAGA sequence plays an essential role in spliceosome assembly and in the second catalytic step of pre-mRNA splicing; one or both of these roles involves direct base pairing to the pre-mRNA 5' splice site. In a U4-cs1/U6-Dup double-mutant strain grown at low temperature, the upstream ACAGA sequence of U6 RNA is required for suppression of the U4 mutation, whereas the downstream ACAGA sequence is required for other essential functions. Based on the sequence requirements for function of the upstream ACAGA element of U6-Dup, we propose that it pairs with the pre-mRNA 5' splice site during incorporation of the U4/U6 complex into the spliceosome and that the subsequent dissociation of U4 RNA exposes the downstream ACAGA sequence, which functions in the catalytic steps. The properties of this mutant U4/U6 complex provide compelling in vivo evidence that U6 RNA normally base pairs with the 5' splice site before disruption of its pairing with U4 RNA.  相似文献   

13.
Pairing between U2 snRNA and the branch site of spliceosomal introns is essential for spliceosome assembly and is thought to be required for the first catalytic step of splicing. We have identified an RNA comprising the 5' end of U2 snRNA and the 3' exon of the ACT1-CUP1 reporter gene, resulting from a trans-splicing reaction in which a 5' splice site-like sequence in the universally conserved branch site-binding region of U2 is used in trans as a 5' splice site for both steps of splicing in vivo. Formation of this product occurs in functional spliceosomes assembled on reporter genes whose 5' splice sites are predicted to bind poorly at the spliceosome catalytic center. Multiple spatially disparate splice sites in U2 can be used, calling into question both the fate of its pairing to the branch site and the details of its role in splicing catalysis.  相似文献   

14.
Splicing of precursor mRNA takes place via two consecutive steps of transesterification catalyzed by a large ribonucleoprotein complex called the spliceosome. The spliceosome is assembled through ordered binding to the pre-mRNA of five small nuclear RNAs and numerous protein factors, and is disassembled after completion of the reaction to recycle all components. Throughout the splicing cycle, the spliceosome changes its structure, rearranging RNA-RNA, RNA-protein and protein-protein interactions, for positioning and repositioning of splice sites. DExD/H-box RNA helicases play important roles in mediating structural changes of the spliceosome by unwinding of RNA duplexes or disrupting RNA-protein interactions. DExD/H-box proteins are also implicated in the fidelity control of the splicing process at various steps. This review summarizes the functional roles of DExD/H-box proteins in pre-mRNA splicing according to studies conducted mostly in yeast and will discuss the concept of the complicated splicing reaction based on recent findings.  相似文献   

15.
The splicing of nuclear pre-mRNAs is catalyzed by a large, multicomponent ribonucleoprotein complex termed the spliceosome. Elucidation of the molecular mechanism of splicing identified small nuclear RNAs (snRNAs) as important components of the spliceosome, which, by analogy to the self-splicing group II introns, are implicated in formation of the catalytic center. In particular, the 5' splice site (5'SS) and the branch site, which represent the two substrates for the first step of splicing, are first recognized by U1 and U2 snRNPs, respectively. This initial recognition of splice sites is responsible for the global definition of exons and introns, and represents the primary target for regulation of splicing. Subsequently, pairing interaction between the 5'SS and U1 snRNA is disrupted and replaced by a new interaction of the 5'SS with U6 snRNA. The 5'SS signal contains an invariant GU dinucleotide present at the 5' end of nearly all known introns, however, the mechanism by which the spliceosome recognizes this element is not known. We have identified and characterized a specific UV light-induced crosslink formed between the 5'SS RNA and hPrp8, a protein component of U5 snRNP in the spliceosome that is likely to reflect a specific recognition of the GU dinucleotide for splicing. Because recognition of the 5'SS must be linked to formation of the catalytic site, the identification of a specific and direct interaction between the 5'SS and Prp8 has significant implications for the role of this protein in the mechanism of mRNA splicing.  相似文献   

16.
SR蛋白家族在RNA剪接中的调控作用   总被引:1,自引:0,他引:1  
SR蛋白家族成员都具有一个富含丝氨酸/精氨酸(S/R)重复序列的RS结构域,在RNA剪接体的组装和选择性剪接的调控过程中具有重要的作用。绝大多数SR蛋白是生存的必需因子,通过其RS结构域和特有的其他结构域,实现与前体mRNA的特异性序列或其他剪接因子的相互作用,协同完成剪接位点的正确选择或促进剪接体的形成。深入研究SR蛋白家族在RNA选择性剪接中的调控机制,可以促进以疾病治疗或害虫防治为目的的应用研究。该文总结了SR蛋白家族在基础研究和应用方面的进展。  相似文献   

17.
18.
Pre‐mRNA splicing is a critical event in the gene expression pathway of all eukaryotes. The splicing reaction is catalyzed by the spliceosome, a huge protein‐RNA complex that contains five snRNAs and hundreds of different protein factors. Understanding the structure of this large molecular machinery is critical for understanding its function. Although the highly dynamic nature of the spliceosome, in both composition and conformation, posed daunting challenges to structural studies, there has been significant recent progress on structural analyses of the splicing machinery, using electron microscopy, crystallography, and nuclear magnetic resonance. This review discusses key recent findings in the structural analyses of the spliceosome and its components and how these findings advance our understanding of the function of the splicing machinery.  相似文献   

19.
Yeast pre-mRNA splicing factors SLU7 and PRP16 are required for cleavage of the 3' splice site and exon ligation in vitro. Using natural and model precursor RNAs, we found that SLU7 is dispensable for splicing of RNAs in which the 3' splice site is in close proximity to the branchpoint. SLU7 is only required when the interval between the branchpoint and the 3' splice site is greater than 7 nt. In contrast, PRP16 is essential for splicing of all pre-mRNAs tested. Immunoprecipitation of the products of step 1 by anti-SLU7 antibodies demonstrates that SLU7 is a component of the spliceosome. Recruitment of SLU7 to the spliceosome is greatly enhanced by prior addition of PRP16. PRP16 is liberated from the spliceosome after completion of step 2, whereas SLU7 remains bound to the excised intron and spliced mature RNA until the spliceosome disassembles, in a reaction that requires ATP.  相似文献   

20.
We have developed an in vitro splicing complementation assay to investigate the domain structure of the mammalian U4 small nuclear RNA (snRNA) through mutational analysis. The addition of affinity-purified U4 snRNP or U4 RNA to U4-depleted nuclear extract efficiently restores splicing activity. In the U4-U6 interaction domain of U4 RNA, only stem II was found to be essential for splicing activity; the 5' loop is important for spliceosome stability. In the central domain, we have identified a U4 RNA sequence element that is important for splicing and spliceosome assembly. Surprisingly, an intact Sm domain is not essential for splicing in vitro. Our data provide evidence that several distinct regions of U4 RNA contribute to snRNP assembly, spliceosome assembly and stability, and splicing activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号