首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
FNDC3B was recently identified in an oncogenomic screen for amplified oncogenes in hepatocellular carcinoma. It is located at 3q26 and is amplified in over 20% of cancers, usually as part of a broad amplified region encompassing the entire 3q arm. Consistent with an oncogenic role in multiple cancer types, we show here that overexpression of FNDC3B is capable of malignantly transforming mammary and kidney epithelial cells in addition to hepatocytes. To explore how FNDC3B transforms cells, we determined the cellular localization of its gene product and the cancer pathways that it activates. We found that the FNDC3B oncoprotein localizes to the Golgi network, and that its correct localization is essential for its transforming function. We found that overexpression of FNDC3B induces the epithelial-to-mesenchymal transition (EMT) and activates several cancer pathways, including PI3-kinase/Akt, Rb1 and TGFβ signaling. For TGFβ signaling, we analyzed the point in the pathway at which FNDC3B operates and obtained evidence that it induces expression of all three TGFβ ligands and also promotes TGFBR1 cell-surface localization. We found that RNAi-mediated knockdown of FNDC3B in cancer cells with 3q amplification suppressed their clonogenicity and tumorigenicity, but that the same RNAi knockdown had no effect on single-copy 3q cancer cells. These results indicate that FNDC3B is an important oncogenic driver gene of the 3q amplicon, adding to the growing list of oncogenic drivers within this commonly amplified region.  相似文献   

2.
RAC1B is a tumour-related alternative splice isoform of the small GTPase RAC1, found overexpressed in a large number of tumour types. Building evidence suggests it promotes tumour progression but compelling in vivo evidence, demonstrating a role in driving tumour invasion, is currently lacking. In the present study, we have overexpressed RAC1B in a colorectal cancer mouse model with potential invasive properties. Interestingly, RAC1B overexpression did not trigger tumour invasion, rather it led to an acceleration of tumour initiation and reduced mouse survival. By modelling early stages of adenoma initiation we observed a reduced apoptotic rate in RAC1B overexpressing tumours, suggesting protection from apoptosis as a mediator of this phenotype. RAC1B overexpressing tumours displayed attenuated TGFβ signalling and functional analysis in ex vivo organoid cultures demonstrated that RAC1B negatively modulates TGFβ signalling and confers resistance to TGFβ-driven cell death. This work defines a novel mechanism by which early adenoma cells can overcome the cytostatic and cytotoxic effects of TGFβ signalling and characterises a new oncogenic function of RAC1B in vivo.Subject terms: Cancer genetics, Apoptosis  相似文献   

3.
4.
5.
6.
7.
GARP (glycoprotein A repetitions predominant) is a cell surface receptor on regulatory T-lymphocytes, platelets, hepatic stellate cells and certain cancer cells. Its described function is the binding and accommodation of latent TGFβ (transforming growth factor), before the activation and release of the mature cytokine. For regulatory T cells it was shown that a knockdown of GARP or a treatment with blocking antibodies dramatically decreases their immune suppressive capacity. This confirms a fundamental role of GARP in the basic function of regulatory T cells. Prerequisites postulated for physiological GARP function include membrane anchorage of GARP, disulfide bridges between the propeptide of TGFβ and GARP and connection of this propeptide to αvβ6 or αvβ8 integrins of target cells during mechanical TGFβ release. Other studies indicate the existence of soluble GARP complexes and a functionality of soluble GARP alone. In order to clarify the underlying molecular mechanism, we expressed and purified recombinant TGFβ and a soluble variant of GARP. Surprisingly, soluble GARP and TGFβ formed stable non-covalent complexes in addition to disulfide-coupled complexes, depending on the redox conditions of the microenvironment. We also show that soluble GARP alone and the two variants of complexes mediate different levels of TGFβ activity. TGFβ activation is enhanced by the non-covalent GARP-TGFβ complex already at low (nanomolar) concentrations, at which GARP alone does not show any effect. This supports the idea of soluble GARP acting as immune modulator in vivo.  相似文献   

8.
9.
Histone deacetylase 3 (HDAC3) plays a critical role in the maintenance of endothelial integrity and other physiological processes. In this study, we demonstrated that HDAC3 undergoes unconventional splicing during stem cell differentiation. Four different splicing variants have been identified, designated as HD3α, -β, -γ, and -δ, respectively. HD3α was confirmed in stem cell differentiation by specific antibody against the sequences from intron 12. Immunofluorescence staining indicated that the HD3α isoform co-localized with CD31-positive or α-smooth muscle actin-positive cells at different developmental stages of mouse embryos. Overexpression of HD3α reprogrammed human aortic endothelial cells into mesenchymal cells featuring an endothelial-to-mesenchymal transition (EndMT) phenotype. HD3α directly interacts with HDAC3 and Akt1 and selectively activates transforming growth factor β2 (TGFβ2) secretion and cleavage. TGFβ2 functioned as an autocrine and/or paracrine EndMT factor. The HD3α-induced EndMT was both PI3K/Akt- and TGFβ2-dependent. This study provides the first evidence of the role of HDAC3 splicing in the maintenance of endothelial integrity.  相似文献   

10.
11.

Background

Recent studies suggested that induction of epithelial-mesenchymal transition (EMT) might confer both metastatic and self-renewal properties to breast tumor cells resulting in drug resistance and tumor recurrence. TGFβ is a potent inducer of EMT and has been shown to promote tumor progression in various breast cancer cell and animal models.

Principal Findings

We report that chemotherapeutic drug doxorubicin activates TGFβ signaling in human and murine breast cancer cells. Doxorubicin induced EMT, promoted invasion and enhanced generation of cells with stem cell phenotype in murine 4T1 breast cancer cells in vitro, which were significantly inhibited by a TGFβ type I receptor kinase inhibitor (TβRI-KI). We investigated the potential synergistic anti-tumor activity of TβR1-KI in combination with doxorubicin in animal models of metastatic breast cancer. Combination of Doxorubicin and TβRI-KI enhanced the efficacy of doxorubicin in reducing tumor growth and lung metastasis in the 4T1 orthotopic xenograft model in comparison to single treatments. Doxorubicin treatment alone enhanced metastasis to lung in the human breast cancer MDA-MB-231 orthotopic xenograft model and metastasis to bone in the 4T1 orthotopic xenograft model, which was significantly blocked when TβR1-KI was administered in combination with doxorubicin.

Conclusions

These observations suggest that the adverse activation of TGFβ pathway by chemotherapeutics in the cancer cells together with elevated TGFβ levels in tumor microenvironment may lead to EMT and generation of cancer stem cells resulting in the resistance to the chemotherapy. Our results indicate that the combination treatment of doxorubicin with a TGFβ inhibitor has the potential to reduce the dose and consequently the toxic side-effects of doxorubicin, and improve its efficacy in the inhibition of breast cancer growth and metastasis.  相似文献   

12.
13.
Increased expression of metalloprotease-disintegrin ADAM12 is a hallmark of several pathological conditions, including cancer, cardiovascular disease, and certain inflammatory diseases of the central nervous system or the muscoskeletal system. We show that transforming growth factor β1 (TGFβ1) is a potent inducer of ADAM12 mRNA and protein in mouse fibroblasts and in mouse and human mammary epithelial cells. Induction of ADAM12 is detected within 2 h of treatment with TGFβ1, is Smad2/Smad3-dependent, and is a result of derepression of the Adam12 gene. SnoN, a negative regulator of the TGFβ signaling pathway, is a master regulator of ADAM12 expression in response to TGFβ1 stimulation. Overexpression of SnoN in NIH3T3 cells reduces the magnitude of ADAM12 induction by TGFβ1 treatment. Down-regulation of SnoN expression by short hairpin RNA enhances TGFβ1-induced expression of ADAM12. In a panel of TGFβ1-responsive cancer cell lines with high expression of SnoN, induction of ADAM12 by TGFβ1 is significantly impaired, suggesting that the endogenous SnoN plays a role in regulating ADAM12 expression in response to TGFβ1. Identification of SnoN as a repressor of the ADAM12 gene should contribute to advances in the studies on the role of ADAM12 in tumor progression and in the development of other pathologies.  相似文献   

14.
15.
16.
We have recently demonstrated that the PI3K class II-α isoform (PI3K-C2α), which generates phosphatidylinositol 3-phosphate and phosphatidylinositol 3,4-bisphosphates, plays crucial roles in angiogenesis, by analyzing PI3K-C2α knock-out mice. The PI3K-C2α actions are mediated at least in part through its participation in the internalization of VEGF receptor-2 and sphingosine-1-phosphate receptor S1P1 and thereby their signaling on endosomes. TGFβ, which is also an essential angiogenic factor, signals via the serine/threonine kinase receptor complex to induce phosphorylation of Smad2 and Smad3 (Smad2/3). SARA (Smad anchor for receptor activation) protein, which is localized in early endosomes through its FYVE domain, is required for Smad2/3 signaling. In the present study, we showed that PI3K-C2α knockdown nearly completely abolished TGFβ1-induced phosphorylation and nuclear translocation of Smad2/3 in vascular endothelial cells (ECs). PI3K-C2α was necessary for TGFβ-induced increase in phosphatidylinositol 3,4-bisphosphates in the plasma membrane and TGFβ receptor internalization into the SARA-containing early endosomes, but not for phosphatidylinositol 3-phosphate enrichment or localization of SARA in the early endosomes. PI3K-C2α was also required for TGFβ receptor-mediated formation of SARA-Smad2/3 complex. Inhibition of dynamin, which is required for the clathrin-dependent receptor endocytosis, suppressed both TGFβ receptor internalization and Smad2/3 phosphorylation. TGFβ1 stimulated Smad-dependent VEGF-A expression, VEGF receptor-mediated EC migration, and capillary-like tube formation, which were all abolished by either PI3K-C2α knockdown or a dynamin inhibitor. Finally, TGFβ1-induced microvessel formation in Matrigel plugs was greatly attenuated in EC-specific PI3K-C2α-deleted mice. These observations indicate that PI3K-C2α plays the pivotal role in TGFβ receptor endocytosis and thereby Smad2/3 signaling, participating in angiogenic actions of TGFβ.  相似文献   

17.
18.
Finding a suitable cell source for endothelial cells (ECs) for cardiovascular regeneration is a challenging issue for regenerative medicine. In this paper, we describe a novel mechanism regulating induced pluripotent stem cells (iPSC) differentiation into ECs, with a particular focus on miRNAs and their targets. We first established a protocol using collagen IV and VEGF to drive the functional differentiation of iPSCs into ECs and compared the miRNA signature of differentiated and undifferentiated cells. Among the miRNAs overrepresented in differentiated cells, we focused on microRNA-21 (miR-21) and studied its role in iPSC differentiation. Overexpression of miR-21 in predifferentiated iPSCs induced EC marker up-regulation and in vitro and in vivo capillary formation; accordingly, inhibition of miR-21 produced the opposite effects. Importantly, miR-21 overexpression increased TGF-β2 mRNA and secreted protein level, consistent with the strong up-regulation of TGF-β2 during iPSC differentiation. Indeed, treatment of iPSCs with TGFβ-2 induced EC marker expression and in vitro tube formation. Inhibition of SMAD3, a downstream effector of TGFβ-2, strongly decreased VE-cadherin expression. Furthermore, TGFβ-2 neutralization and knockdown inhibited miR-21-induced EC marker expression. Finally, we confirmed the PTEN/Akt pathway as a direct target of miR-21, and we showed that PTEN knockdown is required for miR-21-mediated endothelial differentiation. In conclusion, we elucidated a novel signaling pathway that promotes the differentiation of iPSC into functional ECs suitable for regenerative medicine applications.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号