首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We present detailed quantitative measurement analyses for flow in a spinner flask with spinning rates between 20 to 45 RPM, utilizing the optical velocimetry measurement technique of Particle Image Velocimetry (PIV). A partial section of the impeller was immersed in the working fluid to reduce the shear forces induced on the cells cultured on microcarriers. Higher rotational speeds improved the mixing effect in the medium at the expense of a higher shear environment. It was found that the mouse induced pluripotent stem (iPS) cells achieved the optimum number of cells over 7 days in 25 RPM suspension culture. This condition translates to 0.0984 Pa of maximum shear stress caused by the interaction of the fluid flow with the bottom surface. However, inverse cell growth was obtained at 28 RPM culture condition. Such a narrow margin demonstrated that mouse iPS cells cultured on microcarriers are very sensitive to mechanical forces. This study provides insight to biomechanical parameters, specifically the shear stress distribution, for a commercially available spinner flask over a wide range of Reynolds number.  相似文献   

2.
Correct interactions with extracellular matrix are essential to human pluripotent stem cells (hPSC) to maintain their pluripotent self-renewal capacity during in vitro culture. hPSCs secrete laminin 511/521, one of the most important functional basement membrane components, and they can be maintained on human laminin 511 and 521 in defined culture conditions. However, large-scale production of purified or recombinant laminin 511 and 521 is difficult and expensive. Here we have tested whether a commonly available human choriocarcinoma cell line, JAR, which produces high quantities of laminins, supports the growth of undifferentiated hPSCs. We were able to maintain several human pluripotent stem cell lines on decellularized matrix produced by JAR cells using a defined culture medium. The JAR matrix also supported targeted differentiation of the cells into neuronal and hepatic directions. Importantly, we were able to derive new human induced pluripotent stem cell (hiPSC) lines on JAR matrix and show that adhesion of the early hiPSC colonies to JAR matrix is more efficient than to matrigel. In summary, JAR matrix provides a cost-effective and easy-to-prepare alternative for human pluripotent stem cell culture and differentiation. In addition, this matrix is ideal for the efficient generation of new hiPSC lines.  相似文献   

3.
4.
用4个外源基因从完全分化的人成纤维细胞诱导获得了具有胚胎干细胞特性的诱导多能干细胞(iPS细胞),成功逆转了细胞单向发育的规则,取得了细胞重编程和干细胞研究中的重大突破.围绕c-Myc基因和基因载体、诱导效率和外源基因替代因子等方面的研究内容,综述了自2007年人iPS细胞构建至今,国内外在改进iPS细胞诱导方法上的主要研究进展.  相似文献   

5.
Induced pluripotent stem (iPS) cells are generated from adult somatic cells by transduction of defined factors. Given their unlimited proliferation and differentiation potential, iPS cells represent promising sources for cell therapy and tools for research and drug discovery. However, systems for the directional differentiation of iPS cells toward paraxial mesodermal lineages have not been reported. In the present study, we established a protocol for the differentiation of mouse iPS cells into paraxial mesodermal lineages in serum-free culture. The protocol was dependent on Activin signaling in addition to BMP and Wnt signaling which were previously shown to be effective for mouse ES cell differentiation. Independently of the cell origin, the number of transgenes, or the type of vectors used to generate iPS cells, the use of serum-free monolayer culture stimulated with a combination of BMP4, Activin A, and LiCl enabled preferential promotion of mouse iPS cells to a PDGFR-α+/Flk-1 population, which represents a paraxial mesodermal lineage. The mouse iPS cell-derived paraxial mesodermal cells exhibited differentiation potential into osteogenic, chondrogenic, and myogenic cells both in vitro and in vivo and contributed to muscle regeneration. Moreover, purification of the PDGFR-α+/KDR population after differentiation allowed enrichment of human iPS cell populations with paraxial mesodermal characteristics. The resultant PDGFR-α+/KDR population derived from human iPS cells specifically exhibited osteogenic, chondrogenic, and myogenic differentiation potential in vitro, implying generation of paraxial mesodermal progenitors similar to mouse iPS cell-derived progenitors. These findings highlight the potential of protocols based on the serum-free, stepwise induction and purification of paraxial mesodermal cell lineages for use in stem cell therapies to treat diseased bone, cartilage, and muscle.  相似文献   

6.
体外诱导人类体细胞转变为多能干细胞与传统的胚胎干细胞研究相比,相对简单,摆脱了材料来源和伦理学的诸多限制,因而引起了生命科学领域一次巨大的革命,尤其在医学上进步显著,被用于治疗遗传病、研究发病机制、利用患者自身细胞治疗疾病等方面.虽然目前对诱导性多能干细胞的应用和进展成果显著,但仍存在一系列亟待解决的问题,包括转变机理、安全性和效率低下等同题.本文重点阐述此项技术在医学上的应用和进展,以及仍然存在的问题和突破.  相似文献   

7.
Induced pluripotent stem (iPS) cells can be generated from somatic cells by the forced expression of four factors, Oct3/4, Sox2, Klf4, and c-Myc. While a great variety of colonies grow during induction, only a few of them develop into iPS cells. Researchers currently use visual observation to identify iPS cells and select colonies resembling embryonic stem (ES) cells, and there are no established objective criteria. Therefore, we exhaustively analyzed the morphology and gene expression of all the colonies generated from human fibroblasts after transfection with four retroviral vectors encoding individual factors (192 and 203 colonies in two experiments) and with a single polycistronic retroviral vector encoding all four factors (199 and 192 colonies in two experiments). Here we demonstrate that the morphologic features of emerged colonies can be categorized based on six parameters, and all generated colonies that could be passaged were classified into seven subtypes in colonies transfected with four retroviral vectors and six subtypes with a single polycistronic retroviral vector, both including iPS cell colonies. The essential qualifications for iPS cells were: cells with a single nucleolus; nucleus to nucleolus (N/Nls) ratio ∼2.19: cell size ∼43.5 µm2: a nucleus to cytoplasm (N/C) ratio ∼0.87: cell density in a colony ∼5900 cells/mm2: and number of cell layer single. Most importantly, gene expression analysis revealed for the first time that endogenous Sox2 and Cdx2 were expressed specifically in iPS cells, whereas Oct3/4 and Nanog, popularly used markers for identifying iPS cells, are expressed in colonies other than iPS cells, suggesting that Sox2 and Cdx2 are reliable markers for identifying iPS cells. Our findings indicate that morphologic parameters and the expression of endogenous Sox2 and Cdx2 can be used to accurately identify iPS cells.  相似文献   

8.
诱导多功能性干细胞(induced pluripotent stem cells,iPS细胞)是通过导入特定的转录因子(如Oct3/4、Sox2、c-Myc和Klf4等)将体细胞诱导重编程为多能性干细胞,其功能与胚胎干细胞相似.iPS细胞的建立,在生命科学领域引起了新的轰动.目前,iPS细胞的研究领域在转录因子的优化、iPS细胞的筛选、载体的运用、体细胞种类的选择和iPS细胞的应用等方面取得突破进展,但仍然存在致癌性、效率低等一系列急需解决的问题.  相似文献   

9.
10.
Abstract. Non-cycling pluripotent bone marrow stem cells (CFU-S), taken 3 hrs after injection of 20 mg of Ara-C, have been shown to enter DNA synthesis at 1 to 3 hr after being cultured in α-medium. This phenomenon was observed when bone marrow was incubated as a plug, but not when incubated as a cell suspension in the present experimental conditions.
These results suggest that a medullary structure is necessary in order to observe this effect and/or that accessory cells are destroyed during the process of single cell preparation.  相似文献   

11.
Whether differentiation of induced pluripotent stem cells (iPSCs) in ischemic myocardium enhances their immunogenicity, thereby increasing their chance for rejection, is unclear. Here, we dynamically demonstrated the immunogenicity and rejection of iPSCs in ischemic myocardium using bioluminescent imaging (BLI). Murine iPSCs were transduced with a tri-fusion (TF) reporter gene consisting of firefly luciferase-red fluorescent protein-truncated thymidine kinase (fluc-mrfp-tTK). Ascorbic acid (Vc) were used to induce iPSCs to differentiate into cardiomyocytes (CM). iPSCs and iPS-CMs were intramyocardially injected into immunocompetent or immunosuppressed allogenic murine with myocardial infarction. BLI was performed to track transplanted cells. Immune cell infiltration was evaluated by immunohistochemistry. Syngeneic iPSCs were also injected and evaluated. The results demonstrated that undifferentiated iPSCs survived and proliferated in allogenic immunocompetent recipients early post-transplantation, accompanying with mild immune cell infiltration. With in vivo differentiation, a progressive immune cell infiltration could be detected. While transplantation of allogenic iPSC-CMs were observed an acute rejection from receipts. In immune-suppressed recipients, the proliferation of iPSCs could be maintained and intramyocardial teratomas were formed. Transplantation of syngeneic iPSCs and iPSC-CMs were also observed progressive immune cell infiltration. This study demonstrated that iPSC immunogenicity increases with in vivo differentiation, which will increase their chance for rejection in iPSC-based therapy.  相似文献   

12.
Induced pluripotent stem cells (iPSCs) maintain during the first few culture passages a set of epigenetic marks and metabolites characteristic of their somatic cell of origin, a concept defined as epigenetic donor memory. These residual somatic features are lost over time after extensive culture passaging. Therefore, epigenetic donor memory may be responsible for the higher differentiation efficiency toward the tissue of origin observed in low passage iPSCs versus high passage iPSC or iPSCs derived from a different tissue source. Remarkably, there are no studies on the relevance of microRNA (miRNA) memory following reprogramming, despite the established role of these molecules in the context of pluripotency and differentiation. Using hematopoietic progenitors cells as a model, we demonstrated that miRNAs play a central role in somatic memory retention in iPSCs. Moreover, the comparison of the miRNA expression profiles among iPSCs from different sources allowed for the detection of a set of candidate miRNAs responsible for the higher differentiation efficiency rates toward blood progenitors observed in low passage iPSCs. Combining bioinformatic predictive algorithms with biological target validation, we identified miR-155 as a key player for the in vitro differentiation of iPSC toward hematopoietic progenitors. In summary, this study reveals that during the initial passages following reprogramming, iPSCs maintained the expression of a miRNA set exclusive to the original somatic population. Hence the use of these miRNAs might hold a direct application toward our understanding of the differentiation process of iPSCs toward hematopoietic progenitor cells.  相似文献   

13.
诱导性多能干细胞(induced pluripotent stem cell,iPS cell)是通过转染外源特定的基因组合来诱导成体细胞重编程为类似于胚胎干细胞的一种多潜能干细胞,iPS细胞与胚胎干细胞不仅在形态上相似,而且在功能方面几乎相同.另外,iPS细胞的诞生克服了胚胎干细胞在临床应用时涉及的移植免疫排斥与伦理道德问题,因此具有重要的临床应用价值.目前iPS在治疗中枢神经系统性疾病方面的研究已取得很大进展,包括iPS细胞向神经细胞诱导分化方法的改进、分化机理的探索以及iPS细胞分化来源神经细胞在神经系统疾病模型中治疗作用的研究等.从iPS细胞的创建及特点、iPS细胞向神经细胞分化的诱导方法及研究新进展方面予以综述.  相似文献   

14.
In the field of regenerative medicine, the development of induced pluripotent stem (iPS) cells may represent a potential strategy to overcome the limitations of human embryonic stem cells (ESCs). iPS cells have the potential to mimic human disease, since they carry the genome of the donor. Hypothetically, with iPS cell technology it is possible to screen patients for a genetic cause of disease (genetic mutation), develop cell lines, reprogram them back to iPS cells, finally differentiate them into one or more cell types that develop the disease. Although the creation of multiple lineages with iPS cells can seem limitless, a number of challenges need to be addressed in order to effectively use these cell lines for disease modeling. These include the low efficiency of iPS cell generation without genetic alterations, the possibility of tumor formation in vivo, the random integration of retroviral-based delivery vectors into the genome, and unregulated growth of the remaining cells that are partially reprogrammed and refractory to differentiation. The establishment of protein or RNA-based reprogramming strategies will help generate human iPS cells without permanent genetic alterations. Finally, direct reprogramming strategies can provide rapid production of models of human ??diseases in a dish??, without first passing the cells through a pluripotent state, so avoiding the challenges of time-consumming and labor-intensive iPS cell line generation. This review will overview methods to develop iPS cells, current strategies for direct reprogramming, and main applications of iPS cells as human disease model, focusing on human cardiovascular diseases, with the aim to be a potential information resource for biomedical scientists and clinicians who exploit or intend to exploit iPS cell technology in a range of applications.  相似文献   

15.
将体细胞诱导为多功能干细胞为人类的再生医学提供了一个全新的研究手段,从而可以不用损坏胚胎就能获得可用于治疗各种特殊疾病的细胞。本文比较了近年来关于生成诱导性多能干细胞(induced pluripotent stem cells,iPS细胞)的诱导方法及重编程效率,总结了这些方法的共同点;另外通过对每个不同试验过程的影响因素进行比较,归纳了影响iPS细胞重编程过程的几个因素。  相似文献   

16.
Induced pluripotent stem cell derived hepatocytes (IPSC-Heps) have the potential to reduce the demand for a dwindling number of primary cells used in applications ranging from therapeutic cell infusions to in vitro toxicology studies. However, current differentiation protocols and culture methods produce cells with reduced functionality and fetal-like properties compared to adult hepatocytes. We report a culture method for the maturation of IPSC-Heps using 3-Dimensional (3D) collagen matrices compatible with high throughput screening. This culture method significantly increases functional maturation of IPSC-Heps towards an adult phenotype when compared to conventional 2D systems. Additionally, this approach spontaneously results in the presence of polarized structures necessary for drug metabolism and improves functional longevity to over 75 days. Overall, this research reveals a method to shift the phenotype of existing IPSC-Heps towards primary adult hepatocytes allowing such cells to be a more relevant replacement for the current primary standard.  相似文献   

17.
Human pluripotent stem cells (hPSCs) hold great promise for regenerative medicine and biopharmaceutical applications. Currently, optimal culture and efficient expansion of large amounts of clinical-grade hPSCs are critical issues in hPSC-based therapies. Conventionally, hPSCs are propagated as colonies on both feeder and feeder-free culture systems. However, these methods have several major limitations, including low cell yields and generation of heterogeneously differentiated cells. To improve current hPSC culture methods, we have recently developed a new method, which is based on non-colony type monolayer (NCM) culture of dissociated single cells. Here, we present detailed NCM protocols based on the Rho-associated kinase (ROCK) inhibitor Y-27632. We also provide new information regarding NCM culture with different small molecules such as Y-39983 (ROCK I inhibitor), phenylbenzodioxane (ROCK II inhibitor), and thiazovivin (a novel ROCK inhibitor). We further extend our basic protocol to cultivate hPSCs on defined extracellular proteins such as the laminin isoform 521 (LN-521) without the use of ROCK inhibitors. Moreover, based on NCM, we have demonstrated efficient transfection or transduction of plasmid DNAs, lentiviral particles, and oligonucleotide-based microRNAs into hPSCs in order to genetically modify these cells for molecular analyses and drug discovery. The NCM-based methods overcome the major shortcomings of colony-type culture, and thus may be suitable for producing large amounts of homogeneous hPSCs for future clinical therapies, stem cell research, and drug discovery.  相似文献   

18.
19.
It has been shown that DNA demethylation plays a pivotal role in the generation of induced pluripotent stem (iPS) cells. However, the underlying mechanism of this action is still unclear. Previous reports indicated that activation-induced cytidine deaminase (Aid, also known as Aicda) is involved in DNA demethylation in several developmental processes, as well as cell fusion-mediated reprogramming. Based on these reports, we hypothesized that Aid may be involved in the DNA demethylation that occurs during the generation of iPS cells. In this study, we examined the function of Aid in iPS cell generation using Aid knockout (Aid−/−) mice expressing a GFP reporter under the control of a pluripotent stem cell marker, Nanog. By introducing Oct3/4, Sox2, Klf4 and c-Myc, Nanog-GFP-positive iPS cells could be generated from the fibroblasts and primary B cells of Aid−/− mice. Their induction efficiency was similar to that of wild-type (Aid+/+) iPS cells. The Aid−/− iPS cells showed normal proliferation and gave rise to chimeras, indicating their capacity for self-renewal and pluripotency. A comprehensive DNA methylation analysis showed only a few differences between Aid+/+ and Aid−/− iPS cells. These data suggest that Aid does not have crucial functions in DNA demethylation during iPS cell generation.  相似文献   

20.
Induced pluripotent stem cell (iPS) technology appears to be a general strategy to generate pluripotent stem cells from any given mammalian species. So far, iPS cells have been reported for mouse, human, rat, and monkey. These four species have also established embryonic stem cell (ESC) lines that serve as the gold standard for pluripotency comparisons. Attempts have been made to generate porcine ESC by various means without success. Here we report the successful generation of pluripotent stem cells from fibroblasts isolated from the Tibetan miniature pig using a modified iPS protocol. The resulting iPS cell lines more closely resemble human ESC than cells from other species, have normal karyotype, stain positive for alkaline phosphatase, express high levels of ESC-like markers (Nanog, Rex1, Lin28, and SSEA4), and can differentiate into teratomas composed of the three germ layers. Because porcine physiology closely resembles human, the iPS cells reported here provide an attractive model to study certain human diseases or assess therapeutic applications of iPS in a large animal model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号