首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Here we report the variation of diterpenes from three populations of the brown alga Dictyota mertensii. The populations were analyzed by 1H NMR and GC-MS techniques. Both chemical GC-MS and 1H NMR profiles of D. mertensii presented diterpenes as major constituents. In all populations, we detected the prenylated guaiane diterpenes, dictyoxide, pachydictyol A, isopachydictyol A, dictyol B and its acetate, and dictyol C. Although dictyol H has been described as a taxonomic marker, this diterpene was found in only two of the three studied populations. This result reinforces the need for studies of temporal and geographic variation for the establishment of the taxonomic limits of the species chemical patterns. It was also possible to observe mass spectra fragmentation and proton chemical shift in the NMR spectra characteristic from xeniane diterpenes, for the first time in this species, which led to the detection of dictyodial, suggesting that D. mertensii belongs to the chemotaxonomic group of species D. ciliolata, D. jamaicensis, and D. menstrualis, all of which are producers of diterpene from chemical groups I and III.  相似文献   

2.
2-Acetamido-2-deoxy-5-thio-d-glucopyranose (12) has been synthesized from methyl 2-acetamido-2-deoxy-5,6-O-isopropylidene-β-d-glucofuranoside (1). Benzoylation of 1, followed by O-deisopropylidenation, gave methyl 2-acetamido-3-O-benzoyl-2-deoxy-β-d-glucofuranoside, which was converted, via selective benzoylation and mesylation, into methyl 2-acetamido-3,6-di-O-benzoyl-2-deoxy-5-O-mesyl-β-d-glucofuranoside (5). Treatment of 6, formed by the action of sodium methoxide in chloroform on 5, with thiourea gave methyl 2-acetamido-2,5,6-trideoxy-5,6-epithio-β-d-glucofuranoside (7), which was converted into the 5-thio compound 9 by cleavage of the epithio ring in 7 with potassium acetate. Alkaline treatment of 10, derived from 9 by hydrolysis, afforded the title compound. Evidence in support of the structures assigned to the new derivatives is presented.  相似文献   

3.
Phytochemical studies of the chloroform soluble fraction of Dioscorea opposita resulted in the isolation of four new compounds, 3,5-dihydroxy-4-methoxybibenzyl (1), 3,3′,5-trihydroxy-2′-methoxybibenzyl (2), 10,11-dihydro-dibenz[b,f]oxepin-2,4-diol (3), and 10,11-dihydro-4-methoxy-dibenz[b,f]oxepin-2-ol (4), together with an additional fifteen known compounds. The structures of 1–4 were elucidated by spectroscopic methods including 2D NMR. All of the nineteen isolated compounds were tested in the DPPH, superoxide anion radical scavenging assays and cyclooxygenases (COXs) inhibition assay. Of those, compounds 7, 9, 11, 12, 13, 15 and 18 exhibited radical scavenging activities and compounds 2, 3, 8, 13, 15 and 16 showed selective inhibitory activities against COX-2.  相似文献   

4.
O-α-d-Galactopyranosyl-(1→4)-O-α-d-glucopyranosyl-(1→4)-d-glucopyranose (12) was prepared by inversion of configuration at C-4″ of 2,3,2′,3′,6′,2″,3″-hepta-O-acetyl-1,6-anhydro-4″,6″-di-O-methylsulfonyl-β-maltotriose (7), followed by O-deacylation, acetylation, acetolysis, and de-O-acetylation. The intermediate 7 was obtained by treatment of 1,6-anhydro-β-maltotriose (2) with benzal chloride in pyridine, followed by acetylation, removal of the benzylidene group, and methane-sulfonylation. Selective tritylation of 2 and subsequent acetylation afforded 2,3,2′,3′,6′,2″,3″,4″-octa-O-acetyl-1,6-anhydro-6″-O-trityl-β-maltotriose (6), which was O-detritylated and p-toluenesulfonylated to give 2,3,2′,3′,6′,2″,3″,4″-octa-O-acetyl-1,6-anhydro-6″-O-p-tolylsulfonyl-β-maltotriose (13). Nucleophilic displacement of 13 with thioacetate, iodide, bromide, chloride, and azide ions gave 6″-S-acetyl- (14), 6″-iodo- (15), 6″-bromo- (16), 6″-chloro- (19), and 6″-azido- (20) 1,6-anhydro-β-maltotriose octaacetates, respectively. 6″Deoxy- (18) and 6″-acetamido-6″-deoxy (21) derivatives of 1,6-anhydro-β-maltotriose decaacetates were also prepared from 15 and 16, and 20, respectively. Acetolysis of 14, 15, 16, 18, 19, and 21 afforded 1,2,3,6,2′,3′,6′,2″,3″,4″-deca-O-acetyl-6″-S-acetyl (22), -6″-iodo (23), -6″-bromo (24), -6″-deoxy (25), -6″-chloro (26), and -6″-acetamido-6′-deoxy (27) derivatives of α-maltotriose, respectively. O-Deacetylation of 24, 25, and 26 furnished 6″-bromo-(28), 6″-deoxy- (29), and 6″-chloro- (30) maltotrioses, respectively, which on acetylation gave the corresponding β-decaacetates.  相似文献   

5.
The phytochemical study of Piper pleiocarpum Chang ex Tseng led to the isolation of eighteen compounds (118), including ten lignanoids, galbelgin (1), (+) sesamin (2), denudatin A (3), hancinone (4), (7S,8S, 3′R)-Δ8'-3,3′,4-trimethoxy-3′,6′-dihydro-6′-oxo-7.0.4′,8.3′-lignan[(2S,3S,3aR)-2-(3,4-dimethoxyphenyl)-3,3a-dihydro-3a-methoxy-3-methyl-5-(2-propenyl)-6(2H))-benzofuranone] (5), (−)-(7R,8R)-machilin D (6), (1R,2R)-2-[2-methoxy-4-((E)-prop-1-enyl)phenoxy]-1-(3,4-dimethoxyphenyl)propyl acetate (7), piperbonin A (8), machilin D (9), 4-methoxymachilin D (10), one amide alkaloid, Δα,β-dihydropiperine (11), six polyoxygenated cyclohexenes, ent-curcuminol F (12), uvaribonol E (13), ellipeiopsol A (14), 1S,2R,3R,4S-1-ethoxy-2-[(benzoyloxy)methyl]cyclohex-5-ene-2,3,4-triol, 3-acetate (15), (+)-crotepoxide (16), (+)-senediol (17), and one benzoate derivative, 2-acetoxybenzyl benzoate (18). Their structures were established by spectroscopic data and by comparison with the literature. All the compounds were firstly isolated from P. pleiocarpum, while ten compounds 67, 910, 1215, 1718 were isolated from the genus Piper and the family Piperaceae for the first time. The chemotaxonomic significance of these compounds was also discussed. The isolation of compounds 67, 910 may be used as chemotaxonomic markers for the genus of Piper.  相似文献   

6.
Benzoylation of benzyl 2-acetamido-2-deoxy-4,6-O-isopropylidene-α-d-glucopyranoside, benzyl 2-deoxy-2-(dl-3-hydroxytetradecanoylamino)-4,6-O-isopropylidene-α-d-glucopyranoside, and benzyl 2-deoxy-4,6-O-isopropylidene-2-octadecanoylamino-β-d-glucopyranoside, with subsequent hydrolysis of the 4,6-O-isopropylidene group, gave the corresponding 3-O-benzoyl derivatives (4, 5, and 7). Hydrogenation of benzyl 2-acetamido-4,6-di-O-acetyl-2-deoxy-3-O-[d-1-(methoxycarbonyl)ethyl]-α-d-glucopyranoside, followed by chlorination, gave a product that was treated with mercuric actate to yield 2-acetamido-1,4,6-tri-O-acetyl-2-deoxy-3-O-[d-1-(methoxycarbonyl)ethyl]-β-d-glucopyranose (11). Treatment of 11 with ferric chloride afforded the oxazoline derivative, which was condensed with 4, 5, and 7 to give the (1→6)-β-linked disaccharide derivatives 13, 15, and 17. Hydrolysis of the methyl ester group in the compounds derived from 13, 15, and 17 by 4-O-acetylation gave the corresponding free acids, which were coupled with l-alanyl-d-isoglutamine benzyl ester, to yield the dipeptide derivatives 19–21 in excellent yields. Hydrolysis of 19–21, followed by hydrogenation, gave the respective O-(N-acetyl-β-muramoyl-l-alanyl-d-isoglutamine)-(1→6)-2-acylamino-2-deoxy-d-glucoses in good yields. The immunoadjuvant activity of these compounds was examined in guinea-pigs.  相似文献   

7.
Neuropathic pain is a debilitating form of treatment-resistant chronic pain caused by damage to the nervous system. Cannabinoids have been known for suppressing neuropathic pain by modulating the endo cannabinoid system. Since the canonical Wnt/β-catenin signaling has recently been implicated in pain sensation, we investigated the impact of major cannabinoids (16) from the leaves of Cannabis sativa and an epoxy derivative of compound 2, here upon referred to as 2a, on modulating Wnt/β-catenin signaling pathway. The results presented in this study show that compound 1, 2 and 2a exhibited potent inhibitory activity against Wnt/β-catenin pathway in a dose-dependent manner. Compound 2a was seen to inhibit this pathway at slightly lower concentrations than its parent molecule 2, under similar conditions. Taken together, compound 1, 2 and 2a, by virtue of their inhibition of Wnt-catenin signaling pathway, could be developed as effective neuroprotective agents for the management of neuropathic pain.  相似文献   

8.
A new steroidal alkaloid, 5α, 14α, 17β-cevanin-6-oxo-3β, 20β, 24β-triol(1), together with ten known compounds (211) were isolated from the bulbs of Fritillaria pallidiflora Schrenk. Their structures were determined on the basis of spectroscopic analysis and by comparison of their spectral data with those reported in the literature. Compounds 8, 9, 10 were obtained from the genus Fritillaria for the first time; Compounds 2, 3, 4 and 11 are isolated from this plant for the first time.  相似文献   

9.
An efficient and practical strategy for the synthesis of unknown azetidine iminosugars (2S,3R,4S)-2-((R)-1,2-dihydroxyethyl)-3-hydroxy-4-(hydroxymethyl)azetidine 2, (2S,3r,4R)-3-hydroxy-2,4-bis(hydroxymethyl)azetidine 3 and (2S,3R,4S)-3-hydroxy-4-(hydroxymethyl)-N-methylazetidine-2-carboxylic acid 4, starting from the d-glucose has been reported. The methodology involves preparation of the 3-amino-N-benzyloxycarbonyl-3-deoxy-6-O-tert-butyldimethylsillyl-1,2-O-isopropylidene-α-d-glucofuranose 9, which was converted to the C-5-OMs derivative 11. Intramolecular nucleophilic displacement of the C-5-OMs group with in situ generated 3-amino functionality provided the required key azetidine ring skeletons 10 with additional hydroxymethyl group. Removal of 1,2-acetonide protection, followed by reduction and hydrogenolysis afforded azetidine iminosugar 2. Alternatively, removal of 1,2-acetonide group and chopping of C1-anomeric carbon gave C2-aldehyde that on reduction or oxidation followed by hydrogenolysis gave 2,4-bis(hydroxymethyl) azetidine iminosugars 3 and N-methylazetidine-2-carboxylic acid 4 respectively. The glycosidase inhibitory activity of 24 iminosugars was screened against various glycosidase enzymes and compared with a standard miglitol. Amongst synthesized targets, the compound 2 was found to be more potent amyloglucosidase inhibitor than miglitol. These results were supported by molecular docking studies.  相似文献   

10.
Prumycin (1) and related compounds have been synthesized from benzyl 2-(benzyloxycarbonyl)amino-2-deoxy-5,6-O-isopropylidene-β-d-glucofuranoside (4). Benzoylation of 4, followed by deisopropylidenation, gave benzyl 3-O-benzoyl-2-(benzyloxycarbonyl)amino-2-deoxy-β-d-glucofuranoside (6), which was converted, via oxidative cleavage at C-5–C-6 and subsequent reduction, into the related benzyl β-d-xylofuranoside derivative (7). Benzylation of 3-O-benzoyl-2-(benzyloxycarbonyl)-amino-2-deoxy-d-xylopyranose (8), derived from 7 by hydrolysis, afforded the corresponding derivatives (9, 11) of β- and α-d-xylopyranoside, and compound 7 as a minor product. Treatment of benzyl 3-O-benzoyl-2-(benzyloxycarbonyl)amino-2-deoxy-4-O-mesyl-β-d-xylopyranoside 10, formed by mesylation of 9, with sodium azide in N,N-dimethylformamide gave benzyl 4-azido-3-O-benzoyl-2-(benzyloxy-carbonyl)amino-2,4-dideoxy-α-l-arabinopyranoside (13), which was debenzoylated to compound 14. Selective reduction of the azide group in 14, and condensation of the 4-amine with N-[N-(benzyloxycarbonyl)-d-alaninoyloxy]succinimide, gave the corresponding derivative (15) of 1. Reductive removal of the protecting groups of 15 afforded 1. Prumycin analogs were also synthesized from compound 14. Evidence in support of the structures assigned to the new derivatives is presented.  相似文献   

11.
In this work the synthesis and antiparasitical activity of new 1,5-diaryl-3-oxo-1,4-pentadienyl derivatives are described. First, compounds 1a, 1b, 1c and 1d were prepared by acid-catalyzed aldol reaction between 2-butanone and benzaldehyde, anisaldehyde, p-N,N-dimethylaminobenzaldehyde and p-nitrobenzaldehyde. Reacting each of the methyl ketones 1a, 1b, 1c and 1d with the p-substituted benzaldehydes under basic-catalyzed aldol reaction, we further prepared compounds 2a2p. All twenty compounds were evaluated for antiproliferative activity, particularly for promastigote of Leishmania amazonensis and epimastigote of Trypanosoma cruzi. All compounds showed good activity while nitro compounds 2i and 2k showed inhibition activity at a few μM.  相似文献   

12.
One new bithiophenes, 5-(but-3-yne-1,2-diol)-5′-hydroxy-methyl-2,2′-bithiophene (2), two new polyacetylenic glucosides, 3-O-β-d-glucopyranosyloxy-1-hydroxy-4E,6E-tetradecene-8,10,12-triyne (8), (5E)-trideca-1,5-dien-7,9,11-triyne-3,4-diol-4-O-β-d-glucopyranoside (9), six new terpenoid glycosides, rel-(1S,2S,3S,4R,6R)-1,6-epoxy-menthane-2,3-diol-3-O-β-d-glucopyranoside (10), rel-(1S,2S,3S,4R,6R)-3-O-(6-O-caffeoyl-β-d-glucopyranosyl)-1,6-epoxy menthane-2,3-diol (11), (2E,6E)-2,6,10-trimethyl-2,6,11-dodecatriene-1,10-diol-1-O-β-d-glucopyranoside (12), 3β,16β,29-trihydroxy oleanane-12-ene-3-O-β-d-glucopyranoside (13), 3,28-di-O-β-d-glucopyranosyl-3β,16β-dihydroxy oleanane-12-ene-28-oleanlic acid (14), 3-O-β-d-glucopyranosyl-(1→2)-β-d-glucopyranosyl oleanlic-18-ene acid-28-O-β-d-glucopyranoside (15), along with fifteen known compounds (1, 37, and 1624), were isolated from the aerial parts of Eclipta prostrata. Their structures were established by analysis of the spectroscopic data. The isolated compounds 19 were tested for activities against dipeptidyl peptidase IV (DPP-IV), compound 7 showed significant antihyperglycemic activities by inhibitory effects on DPP-IV in human plasma in vitro, with IC50 value of 0.51 μM. Compounds 1024 were tested in vitro against NF-κB-luc 293 cell line induced by LPS. Compounds 12, 15, 16, 19, 21, and 23 exhibited moderate anti-inflammatory activities.  相似文献   

13.
An investigation on the phytochemistry of the medicinal plant Stephania viridiflavens H.S. Lo et M. Yang led to isolate two new naturally occurring benzyltetrahydroisoquinoline alkaloids, (+)-1S, 2R-laudanidine-Nβ-oxide 2 and (+)-1S, 2S-laudanidine-Nα-oxide 3, along with four known benzyltetrahydroisoquinoline alkaloids: (+)-laudanidine 1, (+)-reticuline 4, (+)-1S, 2R-reticuline-Nβ-oxide 5 and (+)-1S, 2S-reticuline-Nα-oxide 6. The structure and the stereochemistry of these compounds were determined on the basis of spectroscopic methods and also confirmed by partial synthesis. To examine putative acetycholinesterase (AChE) inhibitory or cytotoxic activities, various bioassays were performed, the N-oxide derivatives (5 and 6) demonstrated more potent cytotoxicity than the corresponding free base.  相似文献   

14.
Four trinorsesquiterpenoids (14) were isolated from the roots of Inula racemosa and the structures of two new compounds, (4R,5S,10S)-5-hydroxy-11,12,13-trinoreudesm-6-en-8-one (1) and (4R,5R,10R)-4,15-epoxy-11,12,13-trinoreudesman-8-one (3), were elucidated by extensive spectroscopic analysis. Furthermore, the structure of compound 2a should be revised as (4R,5R,10S)-5-hydroxy-11,12,13-trinoreudesm-6-en-8-one (2) and compound 2 showed antiproliferative activity against A549, HepG2, and HT1080 cell lines with IC50 values of 3.71, 5.94, and 3.95 μg/mL, respectively.  相似文献   

15.
The four stereoisomers of 2RS,4RS-1-[[2-(2,4-dichlorophenyl)-4-(2-(2-propenyloxy)phenoxymethyl)-1,3-dioxolan-2-yl]methyl]-1H-1,2,4-triazole (YCZ-2013), a novel brassinosteroid biosynthesis inhibitor, were prepared. The diastereomers of 2RS,4R-5 and 2RS,4S-5 were prepared by using the corresponding optically pure R and S toluene-4-sulfonic acid 2,3-dihydroxypropyl ester (R-4,S-4). The enatiomerically and diastereomerically pure acetonide (5) was obtained by a method involving diastereoselective crystallisation of the tosylate salt, followed by re-equilibration with the mother liquor and chromatography. The optical purity of four target compounds (YCZ-2013) was confirmed by chiral high-performance liquid chromatography (HPLC) and NMR. The effects of these stereoisomers on Arabidopsis stem elongation indicated that the cis isomers of 2S,4R-YCZ-2013 and 2R,4S-YCZ-2013 exhibited potent inhibitory activity with IC50 values of approximately 24 ± 3 and 24 ± 2 nM, respectively. The IC50 values of the trans isomers of 2S,4S-YCZ-2013 and 2R,4R-YCZ-2013 are approximately 1510 ± 50 and 3900 ± 332 nM, respectively. Co-application of brassinolide (10 nM), the most potent BR, and GA3 (1 μM) to Arabidopsis seedlings grown in the dark with 2R,4S-YCZ-2013 and 2S,4R-YCZ-2013 revealed that brassinolide recovered the induced dwarfism of Arabidopsis seedlings, whereas GA3 showed no effect.  相似文献   

16.
To develop potential agents for slowing the progression of Alzheimer′s disease, two pairs of new enantiomeric lignans, including a couple of rarely 8′,9′-dinor-3′,7-epoxy-8,4′-oxyneolignanes named (7S, 8S)- and (7R, 8R)-pithecellobiumin A (1a/1b) and a pair of 2′,9′-epoxy-arylnaphthalenes named (7R, 8R, 8′R)- and (7S, 8S, 8′S)-pithecellobiumin B (2a/2b) were separated by chiral high performance liquid chromatography (HPLC). Their planar structures were elucidated by spectroscopic data analyses. The absolute configurations were determined by comparing of experimental and calculated electronic circular dichroism (ECD). The inhibitory activity on Aβ aggregation of all optical pure compounds was tested by ThT assay. Interestingly, enantiomeric inhibitors 1a (62.1%) and 1b (81.6%) exhibited different degrees of anti-Aβ aggregation activity. However, 2a (65.4%) and 2b (68.4%) showed similar inhibition rate. The different inhibition profiles were explained by molecular dynamics and docking simulation studies.  相似文献   

17.
Phytochemical investigation of Bulbophyllum wendlandianum (Kraenzl.) Dammer led to the isolation of twenty-three compounds 1–23 (flavanthrinin 1, coelonin 2, lusianthridin 3, densiflorol B 4, plicatol B 5, batatasin-lll 6, gigantol 7, 5-hydroxy-3,3′-dimethoxy-2-(p-hydroxybenzyl) bibenzyl 8, 2,2-dimethyl-5-hydroxy-6-carboxy-7-(2-phenylethyl) 9, tristin 10, p-hydroxybenzyl ethyl ether 11, p-hydroxybenzaldehyde 12, hydroquinone 13, coniferaldehyde 14, p-hydroxybenzyl alcohol 15, 3,4-dihydroxy benzaldehyde 16, stigmasterol 17, β-sitosterol 18, ergosterol peroxide 19, (+)pinoresinol 20, n-butyl sulfoxide 21, tridec-4E-en-l-yl acetate 22, ethyl linolate 23) including five phenanthrenes 1–5, five bibenzyls 6–10, six phenols 11–16, three sterols 17–19, one lignan 20, one n-butyl sulfoxide 21 and two fatty acids 22–23. The structures of these compounds were elucidated by spectroscopic analyses. This is the first report of isolation of compounds 1–23 from Bulbophyllum wendlandianum and compounds 8–9, 11, 13, 15–16 and 19–23 within genus Bulbophyllum. Compound 21 is a new natural product, isolated from a natural source for the first time. Furthermore, the chemotaxonomic significance of the isolates was also discussed.  相似文献   

18.
Two new compounds, (R)-4-(2-methylpentyl)-4H-dithieno[2,3-b:3′,2′-e]pyran (1) and 4-(2-ethylbutyl)-4H-dithieno[2,3-b:3′,2′-e]pyran (2) were extracted from the seeds of Voacanga africana. The molecular structures of these compounds were measured with the help of broad spectroscopic (1D and 2D-NMR, IR, ESI-TOF-MS, HR-MS) analyses. The primary pharmacological operations of these compounds were brought to evaluation by applying the antibacterial extrasomatic test. The results revealed that compound 1 and 2 were in an effective position to stop the growth of Escherichia coli, Streptococcus and Salmonella typhi. On the other hand, the inhibitory impacts on Staphylococcus aureus as well as Pseudomonas aeruginosa were not apparent.  相似文献   

19.
Ibicella lutea and Proboscidea louisiana, both of the Martyniaceae family, are known for rich glandular trichomes on their leaves and stems. Chemical investigations of the glandular trichome exudates on leaves of the two plants furnished three types of secondary metabolites, glycosylated fatty acids, glycerides (2-O-(3,6-diacetyloxyfattyacyl)glycerols and 2-O-(3-acetyloxyfattyacyl)glycerols) and dammarane triterpenes. The glycosylated fatty acids from I. lutea were determined to be 6(S)-(6-O-acetyl-β-d-glucopyranosyloxy)-octadecanoic acid (1A), -eicosanoic acid (1B) and -docosanoic acid (1C), as well as their respective deacetyl congeners (2A, 2B and 2C), whereas P. louisiana furnished 8(S)-(6-O-acetyl-β-d-glucopyranosyloxy)-eicosanoic acid (3A) and -docosanoic acid (3B) and their respective deacetyl congeners (4A and 4B), together with 2B. Both plants contained 12 identical 2-O-[(3R,6S)-3,6-diacetyloxyfattyacyl]glycerols (5A-L), in which the fatty acyl moieties contained between 17 and 21 carbon atoms. The corresponding mono-acetyloxy compounds, 2-O-[(3R)-3-acetyloxyfattyacyl]glycerols (6AL) were detected in both plants. Among these glycerides, ten compounds (5A, 5C, 5F, 5H, 5K, 6A, 6C, 6F, 6H and 6K) had iso-fattyacyl structures and four (5E, 5J, 6E and 6J) had anteiso-fattyacyl structures. A previously unknown dammarane triterpene, betulatriterpene C 3-acetate (7), was isolated together with three known dammarane triterpenes, 24-epi-polacandrin 1,3-diacetate (8), betulatriterpene C (9) and 24-epi-polacandrin 3-acetate (10) from I. lutea, whereas 12 dammarane triterpenes, named probosciderols A–L (1223), and the known compound betulafolienetriol (11) were isolated from P. louisiana. The structures of these compounds were elucidated by spectroscopic analysis including 2D-NMR techniques and chemical transformations. The 6-O-acetylglucosyloxy-fatty acids 1AC (42%) and the dammarane triterpenes 710 (31%) were the two most abundant constituents in the glandular trichome exudate of I. lutea, whereas the dammarane triterpenes 1123 (47%) and the glucosyloxy-fatty acids (4A, 4B and 2B) (38%) were the most abundant constituents in the glandular trichome exudate of P. louisiana.  相似文献   

20.
Seventeen quinazoline alkaloids and derivatives, containing two pairs of new epimers, named as (S)- and (R)-1-(2-aminobenzyl)-3-hydroxypyrrolidin-2-one β-d-glucopyranosyl-(1?→?6)-β-d-glucopyranoside (1, 2), (S)- and (R)-vasicinone β-d-glucopyranosyl-(1?→?6)-β-d-glucopyranoside (3, 4), and a new enantiomer (12b), together with six known ones (58, 10, and 12a), and three pairs of known enantiomers (9, 11, and 13), were isolated from the ethanol extracts of the seeds of Peganum harmala L.. Their structures including the absolute configuration were elucidated by using 1D and 2D NMR, and ECD calculation approaches. The cytotoxic activities of all isolated compounds were evaluated. 11 showed moderate cytotoxicity against PC-3 cells with an IC50 value of 15.41?μM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号