首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Acrosome biogenesis involves the transport and fusion of Golgi-derived proacrosomal vesicles along the acroplaxome, an F-actin/keratin 5-containing cytoskeletal plate anchored to the spermatid nucleus. A significant issue is whether the acroplaxome develops in acrosomeless mutant mice. Male mice with a Hrb null mutation are infertile and both spermatids and sperm are round-headed and lack an acrosome. Hrb, a protein that contains several NPF motifs (Asn-Pro-Phe) and interacts with proteins with Eps15 homology domains, is regarded as critical for the docking and/or fusion of Golgi-derived proacrosomal vesicles. Here we report that the lack of an acrosome in Hrb mutant spermatids does not prevent the development of the acroplaxome. Yet the acroplaxome in the mutant contains F-actin but is deficient in keratin 5. We also show that the actin-based motor protein myosin Va and its receptor, Rab27a/b, known to be involved in vesicle transport, are present in the Golgi and Golgi-derived proacrosomal vesicles in wild-type and Hrb mutant mouse spermatids. In the Hrb mutant, myosin-Va-bound proacrosome vesicles tether to the acroplaxome, where they flatten and form a flat sac, designated pseudoacrosome. As spermiogenesis advances, round-shaped spermatid nuclei of the mutant display several nuclear protrusions, designated nucleopodes. Nucleopodes are consistently found at the acroplaxome- pseudoacrosome site. Our findings support the interpretation that the acroplaxome provides a focal point for myosin-Va/ Rab27a/b-driven proacrosomal vesicles to accumulate, coalesce, and form an acrosome in wild-type spermatids and a pseudoacrosome in Hrb mutant spermatids. We suggest that nucleopodes develop at a site where a keratin 5-deficient acroplaxome may not withstand tension forces operating during spermatid nuclear shaping.  相似文献   

2.
3.
Structural features of the mouse and rat manchette and the role of the manchette in shaping the spermatid nucleus were investigated. Rod-like elements about 10 nm in diameter and 40-70 nm in length were seen linking the innermost microtubules of the manchette and the outer leaflet of the nuclear envelope in step 8 through step 11 rat and mouse spermatids that either had been routinely fixed for electron microscopy or had been isolated and detergent extracted. Rod-like linkers were also seen joining the nuclear ring to the plasma membrane and nuclear envelope. These linkers may ensure that under normal conditions the manchette remains in a defined position relative to these membranous components. A variety of compounds (taxol, cytoxan, and 5-fluorouracil) were found to perturb the manchette and to affect nuclear shaping. In addition, sys and azh mutant mice were used to determine the consequences of defective manchette formation. These genetic conditions and chemical treatments either produced manchettes that were not in their normal position (azh, sys, and taxol) and/or caused the manchette to appear abnormal (azh, sys, cytoxan, 5-fluorouracil, and taxol), and all resulted in a deformation of the step 9-11 spermatid nucleus. In all instances where the manchette was present, either in normal or ectopic locations, the sectioned nuclear envelope was parallel to the long axis of the microtubules of the manchette. In general, areas of the nuclear envelope where the manchette was not present, or where it was expected to be present but was not, were rounded (normal animals, sys, cytoxan). In addition, there are indications using certain compounds (cytoxan and 5-fluorouracil) as well as in the azh and sys mouse that the manchette may exert pressure to deform the nucleus. It is suggested that the rod-like linkages of the manchette ensure that the nuclear envelope remains at a constant distance from the manchette microtubules and that this is a major factor acting to impart nuclear shape changes on a region of the head caudal to the acrosome during the early elongation phase of spermiogenesis. The manchette microtubules, which are also known to be linked together, may act as a scaffold to deform this part of the nucleus from its spherical shape, perhaps in concert with forces initiated by other structural elements. Evidence from sys animals indicates that structural elements, such as the acrosomal complex over the anterior head (acrosome-actin-nuclear envelope), may affect nuclear shaping over the acrosome-covered portion of the spermatid head.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Sperm-head elongation and acrosome formation, which take place during the last stages of spermatogenesis, are essential to produce competent spermatozoa that are able to cross the oocyte zona pellucida and to achieve fertilization. During acrosome biogenesis, acrosome attachment and spreading over the nucleus are still poorly understood and to date no proteins have been described to link the acrosome to the nucleus. We recently demonstrated that a deletion of DPY19L2, a gene coding for an uncharacterized protein, was responsible for a majority of cases of type I globozoospermia, a rare cause of male infertility that is characterized by the exclusive production of round-headed acrosomeless spermatozoa. Here, using Dpy19l2 knockout mice, we describe the cellular function of the Dpy19l2 protein. We demonstrate that the protein is expressed predominantly in spermatids with a very specific localization restricted to the inner nuclear membrane facing the acrosomal vesicle. We show that the absence of Dpy19l2 leads to the destabilization of both the nuclear dense lamina (NDL) and the junction between the acroplaxome and the nuclear envelope. Consequently, the acrosome and the manchette fail to be linked to the nucleus leading to the disruption of vesicular trafficking, failure of sperm nuclear shaping and eventually to the elimination of the unbound acrosomal vesicle. Finally, we show for the first time that Dpy19l3 proteins are also located in the inner nuclear envelope, therefore implying that the Dpy19 proteins constitute a new family of structural transmembrane proteins of the nuclear envelope.  相似文献   

5.
6.
《Tissue & cell》2016,48(6):605-615
Head shaping in mammalian sperm is regulated by a number of factors including acrosome formation, nuclear condensation and the action of the microtubular manchette. A role has also been suggested for the attendant Sertoli cells and the perinuclear theca (PT). In comparison, relatively little information is available on this topic in birds and the presence of a PT per se has not been described in this vertebrate order. This study revealed that a similar combination of factors contributed to head shaping in the ostrich, emu and rhea, although the Sertoli cells seem to play a limited role in ratites. A fibro-granular structure analogous to the mammalian PT was identified, consisting of sub- and post-acrosomal components. The latter was characterized by stage-specific finger-like projections that appeared to emanate from the cytoplasmic face of the nuclear envelope. They were particularly obvious beneath the base of the acrosome, and closely aligned, but not connected to, the manchette microtubules. During the final stages of chromatin condensation and elongation of the sperm head the projections abruptly disappeared. They appear to play a role in stabilizing the shape of the sperm head during the caudal translocation of the spermatid cytoplasm.  相似文献   

7.

Background

LINC complexes are nuclear envelope bridging protein structures formed by interaction of SUN and KASH proteins. They physically connect the nucleus with the peripheral cytoskeleton and are critically involved in a variety of dynamic processes, such as nuclear anchorage, movement and positioning and meiotic chromosome dynamics. Moreover, they are shown to be essential for maintaining nuclear shape.

Findings

Based on detailed expression analysis and biochemical approaches, we show here that during mouse sperm development, a terminal cell differentiation process characterized by profound morphogenic restructuring, two novel distinctive LINC complexes are established. They consist either of spermiogenesis-specific Sun3 and Nesprin1 or Sun1η, a novel non-nuclear Sun1 isoform, and Nesprin3. We could find that these two LINC complexes specifically polarize to opposite spermatid poles likely linking to sperm-specific cytoskeletal structures. Although, as shown in co-transfection/immunoprecipitation experiments, SUN proteins appear to arbitrarily interact with various KASH partners, our study demonstrates that they actually are able to confine their binding to form distinct LINC complexes.

Conclusions

Formation of the mammalian sperm head involves assembly and different polarization of two novel spermiogenesis-specific LINC complexes. Together, our findings suggest that theses LINC complexes connect the differentiating spermatid nucleus to surrounding cytoskeletal structures to enable its well-directed shaping and elongation, which in turn is a critical parameter for male fertility.  相似文献   

8.
Acrosomeless round-headed spermatozoa from three men were studied under electron microscopy and indirect immunofluorescene microscopy using the anti-calicin antibody that recognizes a basic protein of the sperm perinuclear theca (Longo et al., 1987). Electron microscopy revealed the existence of anomalies of the nuclear envelope, the nuclear matrix underlying the nuclear envelope, and the perinuclear layer. The absence of sperm labeling with the anti-calicin antibody confirmed that the formation of the perinuclear theca was impaired. Data obtained from both mature spermatozoa and ejaculated spermatids suggest that i) round-headed sperm head anomalies result from a failure of differentiation of the sperm-specific skeletal complex related to the nucleus, and ii) the acrosome spreading over the nucleus, the nuclear elongation and the post-acrosomal sheath formation are dependent on such nuclear-perinuclear differentiations. In contrast, chromatin condensation, cytokinesis and some events of the acrosomal shaping appear not to depend on those nuclear-related differentiations. The possible processes allowing the maintenance of the sperm head structures and their subsequent morphogenesis are discussed.  相似文献   

9.
Tyrosine protein kinases and spermatogenesis: truncation matters   总被引:1,自引:0,他引:1  
Protein phosphorylation on serine/threonine or tyrosine residues represents a significant regulatory mechanism in signal transduction during spermatogenesis, oogenesis, and fertilization. There are several families of tyrosine protein kinases operating during spermatogenesis: the Src family of tyrosine protein kinases; the Fujinami poultry sarcoma/feline sarcoma (Fps/Fes) and Fes-related protein (Fer) subfamily of non-receptor proteins; and c-kit, the transmembrane tyrosine kinase receptor that belongs to the family of the PDGF receptor. A remarkable characteristic is the coexistence of full-length and truncated tyrosine kinases in testis. Most of the truncated forms are present during spermiogenesis. Examples include the truncated forms of Src tyrosine kinase hematopoietic cell kinase (Hck), FerT, and tr-kit. A feature of FerT and tr-kit is the kinase domain that ensures the functional properties of the truncated protein. FerT, a regulator of actin assembly/disassembly mediated by cortactin phosphorylation, is present in the acroplaxome, a cytoskeletal plate containing an F-actin network and linking the acrosome to the spermatid nuclear envelope. This finding suggests that Fer kinase represents one of the tyrosine protein kinases that may contribute to spermatid head shaping. The c-kit ligand, stem cell factor (SCF), which induces c-kit dimerization and autophosphorylation, exists as both membrane-associated and soluble. Although tyrosine protein kinases are prominent in spermatogenesis, a remarkable observation is the paucity of phenotypic alterations in spermatogenic cells in male mice targeted with Fer kinase-inactivating mutation. It is possible that the redundant functions of the tyrosine protein kinase pool present during spermatogenesis may explain the limited phenotypes of single mutant mice. The production of compound and viable mutant mice, lacking the expression of two or more tyrosine kinases, may shed light on this intriguing issue.  相似文献   

10.
Nuclear change in relation to axis formation and condensation during spermiogenesis was investigated in the snail, Physa acuta. In the early spermatid, characteristic thick layers (termed apical and basal plates) are formed on two sides of a nuclear envelope. Soon after the formation of these plates, a developing acrosome and a flagellum attach externally to the center of the apical and basal plates, respectively. However, most (presumably all) of the chromatin filaments become attached all over the inner surface of the apical and basal plates. This means that the plates themselves are actually the specialized forms of the nuclear envelope to which chromatin filaments become connected; by means of these plates, the chromatin filaments become arranged in parallel to the antero-posterior axis as the nucleus elongates. This suggests that the formation of these two thick layers on opposing surfaces of the nucleus primarily determines the antero-posterior axis of the spermatid and the direction of the arrangement of chromatin.
The flattening of the nucleus prior to elongation is caused mainly by the enlargement of the basal plate. Subsequent nuclear shaping and condensation are discussed in relation to the change in the surface structures of the nucleus and the organization of the microtubules.  相似文献   

11.
12.
Spermiogenesis in the aplysiid, Aplysia kurodai (Gastropoda, Opisthobranchia) was studied by transmission electron microscopy, with special attention to acrosome formation and the helical organization of the nucleus and the other sperm components. In the early spermatid, the periphery of the nucleus differentiates into three characteristics parts. The first part is that electron-dense deposits accumulate on the outer nuclear envelope. This part is destined to be the anterior side of the sperm because a tiny acrosome is organized on its mid-region at the succeeding stage of spermiogenesis. The second part, in which electron-dense material attaches closely to the inner side of the nuclear envelope, is the presumptive posterior side. A centriolar fossa is formed in this part and the axoneme of the flagellum extends from the fossa. A number of lamellar vesicles derived from mitochondria assemble around the axoneme and form the flagellum complex. The third part is recognized by the chromatin which condenses locally along the inner nuclear envelope. During development of the spermatid, this part extends to form a spiral nucleus accompanied by chromatin condensation and formation of microtubular lamellae outside the extending nucleus.
Finally, in the mature sperm, a tiny, spherical acrosomal vesicle is detected at the apex. The slender nucleus, overlapping both the primary and secondary helices which are composed of different structural elements, winds around the flagellum axoneme.  相似文献   

13.
Sperm of Armadillidium peraccae have been examined with cytochemical and immunocytochemical methods for fluorescence and electron microscopic visualization of cytoskeleton components. Sperm incubation in an antibody anti-β-tubulin shows only the presence of two centrioles located in the cytoplasmic region above the nucleus; no other microtubules are present in the sperm head. Instead, fluorescence microscopy of sperm incubated in FITC-phalloidin allowed to detect the presence of a large amount of F-actin in the apical region of the sperm head. The incubation of ultrathin sections of sperm embedded in Lowicryl K4M with a phalloidin–gold complex allowed a more precise localization of F-actin in the amorphous part of the acrosome and in the cytoplasmic region between acrosome and nucleus; F-actin is also present in the thin cytoplasmic layer between plasma membrane and nuclear envelope at the apical portion of the nucleus. Although the sperm was always found completely devoid of motility, the discovery of the presence of an actin cytoskeleton leads us to hypothesize a possible acquisition of motility by the sperm at the time of its interaction with the female gamete. Such a hypothesis is supported by what is known for ostracods whose aflagellate sperm implement a type of amoeboid movement only at the time of their interaction with the female gamete.  相似文献   

14.
Intraperitoneally administered procarbazine caused, among other features previously reported (Russell et al., 1983), specific defects in the acrosome of cap phase spermatids of the rat seminiferous epithelium. The effect of procarbazine was to fragment and eventually cause resorption of the acrosomes of a small number of steps 5–9 spermatids. Although the acrosome was lost, dose union of the leaflets of the nuclear envelope underlying the acrosomal sac was maintained as was the marginal fossa and acrosomal zonule. Spermatids at steps 8 and 9 of development, which had lost their acrosomes, showed nuclei which were eccentric within the cell—a feature which normally occurs at these steps of spermiogenesis in acrosome intact cells. Even without an acrosomal sac, the plasma membrane of these cells (in stage VIII) became orientated to the region of the nuclear membrane which would have underlaid the acrosome. Although abundant, Sertoli ectoplasmic specialization did not become aligned with the spermatid head. The spermatid failed to become orientated within the seminiferous epithelium and failed to enter the crypts within the Sertoli cell as usually occurs during the elongation process. Thus, the presence of an acrosome is not likely related to the formation of an eccentric nucleus or the alignment of the surface of the nucleus which would normally underlay the acrosome with the cell's plasma membrane (internal alignment). The presence of an acrosome may be related to the alignment of the spermatid head with the ectoplasmic specialization, which in turn may influence the orientation and positioning of the late spermatids within the seminiferous epithelium (external alignment) and their position within recesses of the Sertoli cell. This study also suggests a role for the manchette in the process of elongation of the spermatid.  相似文献   

15.
We have identified a possible role for the KIFC1 motor protein in formation of the acrosome, an organelle unique to spermatogenesis. KIFC1, a C-terminal kinesin motor, first appears on membrane-bounded organelles (MBOs) in the medulla of early spermatids followed by localization to the acrosomal vesicle. KIFC1 continues to be present on the acrosome of elongating spermatids as it flattens on the spermatid nucleus; however, increasing amounts of KIFC1 are found at the caudal aspect of the spermatid head and in distal cytoplasm. The KIFC1 motor is also found in the nucleus of very immature round spermatids just prior to its appearance on the acrosome. In some cases, KIFC1 appears localized just below the nuclear membrane adjacent to the subacrosomal membrane. We demonstrate that KIFC1 is associated with importin beta and colocalizes with this nuclear transport factor on curvilinear structures associated with the spermatid nuclei. These data support a model in which KIFC1, perhaps in association with nuclear factors, assists in the formation and/or elongation of the spermatid acrosome. This article represents the first demonstration of a direct association of a molecular motor with the spermatid acrosome, the formation of which is essential for fertilization.  相似文献   

16.
Spermiogenesis, known as spermateleosis in lower vertebrates, is the transformation of the round spermatid into a highly specialized spermatozoon with a species-specific structure. Spermateleosis and sperm morphology of two species of caecilians, Ichthyophis tricolor and Uraeotyphlus cf. narayani, from the Western Ghats of Kerala, India, were studied using light and transmission electron microscopy. Spermateleosis is described in early, mid-, and late phases. During the early phase, the spermatid nucleus does not elongate, but the acrosome vesicle is Golgi-derived and its material is produced as a homogeneous substance rather than as discrete granules. In development of the acrosome, the centrioles shift in position to the lower half of the cell. The acrosomal vesicles take the full shape of the acrosome with the establishment of the perforatorium in midphase. An endonuclear canal develops and accommodates the perforatorium. The incipient flagellum is laid down when the proximal centriole attaches to the posterior side of the nucleus and the distal centriole connects to the proximal centriole, which forms the basal granule of the acrosome. The axial fiber also appears during midphase. The mitochondria shift in position to the posterior pole of the cell to commence establishment of the midphase. Late phase is characterized by nuclear condensation and elongation. Consequently, the final organization of the sperm is established with the head containing the nucleus and the acrosome. The undulating membrane separates the axoneme and axial fiber. Most of the cytoplasm is lost as residual bodies.  相似文献   

17.
18.
Mammalian spermatogenesis involves drastic morphological changes leading to the development of the mature sperm. Sperm development includes formation of the acrosome and flagellum, translocation of nucleus-acrosome to the cell surface, and condensation and elongation of the nucleus. In addition, spermatogenic cell progenies differentiate as cohorts of units interconnected by intercellular bridges. Little is known about the structural components involved in the establishment of conjoined spermatogenic cells and the mechanism of nuclear shaping of the male gamete. We identified two isoforms of delta-tubulin and found that the long isoform is predominantly expressed in testis, while the short isoform is expressed in all tissues examined. We also found that delta-tubulin forms intercellular bridges conjoining sister spermatogenic cells. In addition, delta-tubulin is a component of the perinuclear ring of the manchette, which acts on translocation and elongation of the nucleus. Furthermore, small rings clearly distinct from the intercellular bridges, which might mature to perinuclear ring of the manchette in later stages of spermatogenesis, were detected on the cell surface of round spermatids. These results suggest that delta-tubulin is a component of two types of ring, the intercellular bridges and the perinuclear rings, which may be involved in morphological changes of spermatid to mature sperm.  相似文献   

19.
SPACA1 is a membrane protein that localizes in the equatorial segment of spermatozoa in mammals and is reported to function in sperm-egg fusion. We produced a Spaca1 gene-disrupted mouse line and found that the male mice were infertile. The cause of this sterility was abnormal shaping of the sperm head reminiscent of globozoospermia in humans. Disruption of Spaca1 led to the disappearance of the nuclear plate, a dense lining of the nuclear envelope facing the inner acrosomal membrane. This coincided with the failure of acrosomal expansion during spermiogenesis and resulted in the degeneration and disappearance of the acrosome in mature spermatozoa. Thus, these findings clarify part of the cascade leading to globozoospermia.  相似文献   

20.
周娜  常岩林  王莉 《昆虫学报》2012,55(4):395-402
为阐明F-肌动蛋白在优雅蝈螽Gampsocleis gratiosa Brunner von Wattenwyl精子形成过程中的动态变化, 本研究利用微分干涉相衬技术和免疫荧光技术首次对优雅蝈螽精子形成过程中的F-肌动蛋白进行了细胞定位, 利用透射电镜技术从超微水平观察了优雅蝈螽精子顶体复合体的结构。结果显示: 精子形成早期, F-肌动蛋白富集于亚顶体区域, 形态由“球状”转变为“棒锥状”; 精子形成中期, F-肌动蛋白呈“倒Y型”分布于亚顶体区域和细胞核前端两侧; 精子形成后期, 亚顶体区域的F 肌动蛋白解聚消失, F-肌动蛋白呈“箭头状”, 仅分布于顶体复合体扩张的两翼中。F-肌动蛋白动态变化伴随着细胞核和精子头部的形态改变, F-肌动蛋白的动态装配在精子顶体复合体形态构建和细胞核的形变中起着重要的作用。本研究还发现未成熟的精子尾部有一些富含F-肌动蛋白的细胞质微滴, 与精子形成过程中多余细胞质和细胞器的外排有关。F-肌动蛋白的动态变化研究为进一步阐明细胞骨架蛋白在昆虫精子形成过程中的功能和作用机制奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号