首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photochemistry of 4-thiouridine in Escherichia coli transfer RNA1Val   总被引:9,自引:0,他引:9  
Irradiation of pure transfer RNA1Val with monochromatic light (334 nm) produces characteristic changes in the spectral properties of 4-thiouridine, the only base which strongly absorbs light at this wavelength. Variations in absorption and fluorescence of 4-thiouridine during irradiation are interpreted in terms of a specific, quantitative photoreaction which proceeds with a yield of about 5 × 10−3E/mole. The photoreaction occurs under conditions where tRNA1Val is biologically active but not under conditions that destroy the tertiary structure of the 4-thiouridine region.  相似文献   

2.
Oligoribonucleotides containing 4-thiouridine were prepared using the Fpmp group for protection of the 2'-OH. Two uridine derivatives with the 1,2,4-triazolyl and the 2-nitrophenyl groups at position 4 were used to obtain 4-thiouridine by postsynthetic substitution with sodium hydrogen sulfide. Both uridine derivatives allow the preparation of the desired oligonucleotides in good yields.  相似文献   

3.
The hydroxyl and superoxide anion spin adducts of DMPO and 4-MePyBN, respectively, were obtained during photoirradiation of adriamycin and daunomycin solutions with visible light. Ethanol and dimethyl sulfoxide did not scavenge hydroxyl radicals in the photoirradiated drug solutions. Furthermore, the hydroxyl-DMPO spin adduct is not formed in the photolysis of air-free drug solutions, indicating that hydroxyl radicals are not directly produced in the photochemical reactions. Instead, the observed hydroxyl-DMPO is formed from the decay of the superoxide anion-DMPO spin adduct. The mechanism for generating the superoxide anion radical appears to be a direct electron transfer from the photoexcited adriamycin and daunomycin to dissolved oxygen.  相似文献   

4.
In order to obtain information concerning the mechanism of radio- and photosensitization due to 5-halogen substituted nucleic acid constituents, the free radicals produced in iodo-, bromo-, chloro- and fluoro-derivatives of uracil, uridine and deoxyuridine by reaction with hydrated electrons and with hydroxyl radicals and by direct U.V. photolysis have been studied by e.s.r. and spin-trapping. t-Nitrosobutane was used as the spin-trap. From 5-halogenated bases (except 5-fluorouracil) U.V. photolysis and reactions with hydrated electrons produced the uracilyl radical which was subsequently spin-trapped. When hydroxyl radical reactions were studied, the free radical at the N(1) position of the base was identified. From 5-fluorouracil U.V. photolysis generated the alpha-halo radical at the C(5) position of the base. For 5-halogenated ribonucleosides and deoxyribonucleosides, free radicals located on the sugar moiety were observed for reactions with hydrated electrons, hydroxyl radicals and for U.V. photolysis. The implications of these results for understanding the mechanism of radio- and photosensitization by 5-halogenated nucleic acids are discussed.  相似文献   

5.
Direct evidence for the detection of intermediate radicals of nucleic acid constituents induced by ultrasound in argon-saturated aqueous solution is presented. The method of spin trapping with 3,5-dibromo-4-nitrosobenzene sulphonate, which is a water-soluble, non-volatile, aromatic nitroso spin trap, combined with ESR, was used for the detection of sonochemically induced radicals. Spin adducts were also generated by OH radicals produced by UV photolysis of aqueous solution containing H2O2. ESR spectra observed from these photolysis experiments were identical to those after sonolysis. The ESR spectra of the spin adducts suggest that the major spin-trapped radical of thymine and thymidine was the 5-yl radical, and that of cytosine, cytidine, uracil, and uridine was the 6-yl radical. To compare the radicals induced by sonolysis and photolysis, the decay of the ESR spectra of the thymine and thymidine spin adducts was investigated. The decay curves of thymine and thymidine after sonolysis indicated biphasic decay. However, after photolysis the spin adducts from both compounds showed very little decay. These results suggest that the observed spin adducts in the sonolysis of pyrimidine bases and nucleosides were formed by OH radical and H atom addition to the 5,6 double-bond.  相似文献   

6.
The photochemical reactivity of beta-lapachone (1), nor-beta-lapachone (2) and beta-lapachone 3-sulfonic acid (3) has been examined by laser flash photolysis. Excitation (lambda = 266 nm) of degassed solutions of , in acetonitrile or dichloromethane, resulted in the formation of detectable transients with absorption maxima at 300, 380 and 650 nm. These transients, with lifetimes of 5.0 micros, were quenched by beta-carotene at a diffusion-controlled rate constant and assigned to the triplet excited states of 1-3. Addition of hydrogen donors, such as 2-propanol, 1,4-cyclohexadiene, 4-methoxyphenol or indole led to the formation of new transients, which were assigned to the corresponding ketyl radicals obtained from the hydrogen abstraction reaction by the triplets 1-3 . In the presence of triethylamine it was observed the formation of the long-lived anion radical derived from , which shows absorption maxima at 300 and 380 nm. The low values observed for the hydrogen abstraction rate constants for the beta-lapachones 1-3 using 2-propanol and 1,4-cyclohexadiene as quenchers led us to conclude that their triplet excited states show pi pi* character.  相似文献   

7.
Highly polymerized copolymers of 4-thiouridine and cytidine were prepared by direct thiolation of polycytidylic acid. Irradiation with 300–400 nm light of these copolyribonucleotides results in the covalent linkage of about 10% of the thiouridines with cytidines. No such photoreaction occurs with the corresponding mixture of nucleosides, nor with either the thiolated CpC dinucleotide or the double-stranded complexes formed by the copolymers when associated with poly(I) or poly(G): the thiouridine-cytidine covalent links are formed between non adjacent residues in the folded single-stranded chains.  相似文献   

8.
In germinating radish seeds, [U-14C]-4-thiouridine was convertedto 4-thio-UMP, 4-thio-UDP, 4-thio-UTP, 4-thio-UDP glucose and4-thiouracil, of which 4-thiouracil accounted for 60–85%.4-Thio-UTP is incorporated into RNAs of radish seedlings [Shibataet al. (1980) FEBS Lett. 119: 85]. These same metabolites werelabeled following germination of radish seeds with [2-14C]-4-thiouracil.4-Thiouridine was hydrolyzed by the uridine nucleosidase (EC3.2.2.3 [EC] ) of radish seedlings as effectively as was uridine.The activity of uridine nucleosidase was increased by germinationwith 4-thiouridine. These results are a strong indication that4-thiouridine is converted to 4-thiouracil, then to 4-thio-UMPby uracil phosphoribosyltransferase (EC 2.4.2.9 [EC] ). The alternativeformation of 4-thio-UMP from 4-thiouridine by uridine kinase(EC 2.7.1.48 [EC] ) also was suggested. A possible mechanism whichmay cause inhibition of chloroplast biogenesis in 4-thiouridine-culturedseedlings is discussed. (Received October 12, 1981; Accepted January 14, 1982)  相似文献   

9.
Horseradish peroxidase (HRP) compound I is photolabile at all temperatures between room temperature and 4 K. The photoredox reaction has been studied in frozen glassy solutions by using optical absorption and magnetic circular dichroism spectra following photolysis of HRP compound I with visible-wavelength light at 4.2 and 77 K. The photochemical process is characterized as a concerted two-electron transfer reaction which results in the conversion of the Fe(IV) heme pi-cation radical species of HRP compound I into a low-spin Fe(III) heme species. This reaction occurs even when photolysis is carried out at 4.2 K. Spectra recorded between 4.2 and 80 K for the low-spin ferric hydroxide complex of HRP closely resemble the data measured for the photochemical product. The proposed mechanism for the photoreaction is (formula; see text) No evidence is found for the formation of an Fe(II) heme at these temperatures.  相似文献   

10.
4-Thiouridine and 4-thiothymidine were developed as efficient substrates for spectrophotometric determination of uridine phosphorylase and thymidine phosphorylase activity. 4-Thiouridine has maximum absorbance at 330 nm (pH 7.5). The change in extinction coefficient for 4-thiouridine/4-thiouracil, deltaepsilon is 3000 M(-1) x cm(-1). It appeared that 4-thiouridine is a good substrate for uridine phosphorylase with Michaelis-Menten constant 130 microM and kcat 49 s(-1). In the case of 4-thiothymidine/4-thiothymine deltaepsilon is even larger: 5000 M(-1) x cm(-1) at 336 nm.  相似文献   

11.
The photoreaction of opsin regenerated with 9-demethylretinal has been investigated by UV-vis spectroscopy, flash photolysis experiments, and Fourier transform infrared difference spectroscopy. In addition, the capability of the illuminated pigment to activate the retinal G-protein has been tested. The photoproduct, which can be stabilized at 77 K, resembles more the lumirhodopsin species, and only minor further changes occur upon warming the sample to 170 K (stabilizing lumirhodopsin). UV-vis spectroscopy reveals no further changes at 240 K (stabilizing metarhodopsin I), but infrared difference spectroscopy shows that the protein as well as the chromophore undergoes further molecular changes which are, however, different from those observed for unmodified metarhodopsin I. UV-vis spectroscopy, flash photolysis experiments, and infrared difference spectroscopy demonstrate that an intermediate different from metarhodopsin II is produced at room temperature, of which the Schiff base is still protonated. The illuminated pigment was able to activate G-protein, as assayed by monitoring the exchange of GDP for GTP gamma S in purified G-protein, only to a very limited extent (approximately 8% as compared to rhodopsin). The results are interpreted in terms of a specific steric interaction of the 9-methyl group of the retinal in rhodopsin with the protein, which is required to initiate the molecular changes necessary for G-protein activation. The residual activation suggests a conformer of the photolyzed pigment which mimics metarhodopsin II to a very limited extent.  相似文献   

12.
The possibility that carotenoid radicals react with oxygen to form chain-carrying peroxyl radicals has been postulated to account for the reduction in antioxidant effetiveness displayed by some carotenoids at high oxygen concentrations. The primary objective of the work described in this paper was to measure the rate constants for oxygen addition to a series of carotenoid radicals and to examine any influence of carotenoid structural features on these rate constants. Laser flash photolysis has been used to generate long-lived carotenoid radicals (PhS-CAR) derived from radical addition reactions with phenylthiyl radicals (PhS) in benzene. The PhS-CAR radicals are scavenged by oxygen at rates that display a moderate dependence on the number of conjugated double bonds (ndb) in the carotenoid. The rate constants range from ∼103 to ∼104 M- 1 s- 1 for ndb = 7-11. The data also suggest that the presence of terminal cyclic groups may cause an increase in the rate constant for oxygen addition.  相似文献   

13.
A A Shaw  A M Falick  M D Shetlar 《Biochemistry》1992,31(45):10976-10983
We report here the photoinduced formation of a thymine-N-acetyltyrosine adduct. Irradiation of dilute solutions of thymine in the presence of N-acetyltyrosine (NAT) leads to the formation of N-acetyl-4-hydroxy-3-(6-hydrothymin-5-yl)phenylalanine (I), isolated as a mixture of the 5R and 5S diastereoisomers; the photoreaction occurs when irradiation is done either at lambda = 254 nm or at wavelengths of lambda > 290 nm. Irradiation of thymidine in the presence of NAT and of thymine in the presence of tyrosine leads to analogous photoadducts. The photoreaction of thymine with NAT is completely quenched by oxygen and cannot be sensitized by acetone. The likely mechanism involves initial photoionization of the amino acid and deprotonation to form the phenoxyl radical. Thymine then probably captures the released aqueous electron, leading to protonation at C6 of the resulting radical anion. Combination of the phenoxyl and 5,6-dihydrothymin-5-yl radicals would then lead to formation of the final products. The quantum yield for production of the thymine-NAT adduct at pH 7.8 was estimated to be about 5.5 x 10(-4), while a value of 2.3 x 10(-3) was estimated for production of corresponding thymidine adduct at pH 8.1. The dependence of the quantum yield for adduct formation on pH has been determined for both the thymine and thymidine reactions with NAT; the maxima in the quantum yield profiles occur at pH 8-8.5, while appreciable values were measured at pH 7.5. We have also demonstrated that a similar reaction occurs when tyrosine is located within a peptide.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The radical cations of 1-butyl-trans-2,3-diphenyl aziridine (1), 1-butyl-2-phenyl aziridine (2), 1,2-diphenyl aziridine (3) and 1-(p-methoxyphenyl)-2-phenyl aziridine (4) were generated upon laser flash photolysis in aqueous and aqueous acetonitrile solutions by direct photoionisation as indicated by the broad absorption band of the solvated electron above 550 nm as well.  相似文献   

15.
The photochemical behaviour of the herbicide napropamide is studied on cellulose and silica surfaces, using steady-state and laser-flash diffuse reflectance techniques. The results are used to probe how the reaction sites of the host matrices influence the photo-reactive pathways. Napropamide undergoes reaction when irradiated with UV (lamps) or visible (sunlight) radiation on both solid supports. The nature of the intermediates and final products depend strongly on the presence or absence of molecular oxygen. The triplet state of napropamide adsorbed on cellulose is detected by both time-resolved luminescence and transient absorption spectroscopies. The triplet sate was not observed on silica, but transients which include the participation of molecular oxygen are detected during flash photolysis studies. The keto intermediates of the photo-Claisen rearrangement products are observed on both solids. Substituted 1-naphthols from photo-Claisen reactions and 1-naphthol are among the main reaction products. 1,4-Naphthoquinone is a major photoproduct in the presence of molecular oxygen and is expected to be prevalent when napropamide undergoes photodegradation in the environment (i.e., after being applied to plants and fields).  相似文献   

16.
In vivo incorporation of the uridine-photoactivable analogue, 4-thiouridine, into the ribosomal RNA of an Escherichia coli pyrD strain has been demonstrated. It is highly dependent on the exogenous uridine and 4-thiouridine concentrations as well as on temperature. We have defined conditions allowing the substitution of 13 +/- 2% of the uridine residues in bulk RNA by 4-thiouridine. On a high-Mg2+ sucrose gradient, 33 +/- 3% of ribonucleic particles sediment as 70S ribosomes, the remaining being in the form of non-associated 50S and 30S particles containing immature rRNA. The thiolated 70S ribosomes tolerate a 4-5% substitution level (40 thiouridine molecules/particle). Surprisingly, 3-4% of ribosomal proteins, about two protein molecules/particle, were spontaneously covalently bound to 4-thiouridine-substituted rRNA. Specific 366-nm photoactivation increased this proportion to 10-12%, i.e. up to six or seven ribosomal protein molecules/particle. The photochemical cross-linking proceeds with apparent first-order kinetics with a quantum yield close to 5 X 10(-3). Although extensive photodynamic breakage of rRNA occurs under aerobic conditions, both the kinetics and yield of ribosomal protein cross-linking were independent of oxygenation conditions. The thiolated (4.5%) 70S ribosomes allowed the poly(U)-directed poly(Phe)synthesis at 48% the control rate. Photoactivation decreased this activity to 28% and 10% when performed under nitrogen and in aerated conditions, respectively.  相似文献   

17.
Thiyl free radicals have been shown to react with polyunsaturated fatty acids via abstraction of bisallylic hydrogen, forming pentadienyl radicals, and via addition to the double bonds. In the absence of oxygen, the latter pathway leads to regeneration of thiyl radicals through beta-elimination or "repair" of the adduct radicals by thiols. In the presence of oxygen, fixation of thiyl-induced damage occurs through reaction of O2 with the pentadienyl radical (yielding conjugated dienyl peroxyl radicals) and also with the thiyl-to-double bond adduct radical. A quantitative reaction scheme evaluated from these data considers abstraction, addition, rearrangement, and repair reactions, and the evaluation of rate constants for the individual steps. Absolute rate constants have been measured, in particular, for reactions of thiyl free radicals from glutathione, cysteine, homocysteine, N-acetylcysteine, cysteine ethyl ester, penicillamine, captopril, mercaptoethanol, and dithiothreitol with polyunsaturated fatty acids (PUFAs) ranging from 18:2 to 22:6, and the lipids trilinolein and trilinolenin. The rate constants for hydrogen abstraction were found to be typically of the order of 10(7) mol-1 dm3 s-1 and to increase with increasing lipophilicity of the attacking thiyl radical. Thioperoxyl radicals, RSOO., were found to be rather unreactive toward PUFAs, in contrast to the isomer sulfonyl radicals, RSO2., which not only abstract hydrogen from the bisallylic methylene groups of the PUFAs (although only at relatively small yield) but also readily add to the PUFA double bonds (major pathway). Specific information was obtained on the optical properties of the thiyl radical derived from the ACE inhibitor captopril, CpS. (lambda max = 340 nm, epsilon = 460 +/- 50 mol-1 dm3 cm-1), and its conjugate disulfide radical anion (CpS:.SCp) (lambda max = 420 nm).  相似文献   

18.
The UV photolysis of 8-bromo-2'-deoxyadenosine has been investigated in different solvents and in the presence of additives like halide anions. Photolytic cleavage of the C-Br bond leads to formation of the C8 radical. In methanol, subsequent hydrogen abstraction from the solvent is the main radical reaction; however, in water or acetonitrile intramolecular hydrogen abstraction from the sugar moiety, to give the C5' radical, is the major path. This C5' radical undergoes a cyclization reaction on the adenine and gives the aminyl radical. A rate constant of 1.8 x 10(5) s(-1) has been measured by laser flash photolysis in CH(3)CN for this unimolecular process. Product studies from steady-state photolysis in acetonitrile have shown the conversion of 8-bromo-2'-deoxyadenosine to 5',8-cyclo-2'-deoxyadenosine in 65% yield and in a diastereoisomeric ratio (5' R):(5' S)= 1.7. Evidence supporting that the equilibrium Br*+ Br(-)[right left harpoons] Br(2)*(-) plays an important role in this synthetically useful radical cascade is obtained by regulating the relative concentrations of the two reactive oxidizing species.  相似文献   

19.
The reactivity of Br(-) and Cl(-) with triplet of anionic 6-chloropicolinic acid (pH = 5.4) and with triplets of 6-chloro and 6-bromopicolinic acids in zwitterionic forms (pH = 0.9) was studied by laser flash photolysis and steady-state irradiation. Br(-) was found to trap the three triplets. Triplet lifetime measurements gave quenching rate constants of 8 x 10(8) mol(-1) dm(3) s(-1) for the zwitterion of 6-chloropicolinic acid and of 3.4 x 10(5) mol(-1) dm(3) s(-1) for the anionic counterpart. No secondary transient species were observed indicating that the charge transfer intermediates are subject to dissipative processes. Cl(-) trapped triplet of zwitterions only, and reactions were found to be associated with a high quantum yield of radicals. The photolysis of 6-bromopicolinic acid photolysis was drastically enhanced by Cl(-), 6-chloropicolinic acid being produced with a chemical yield of about 90%. The 6-bromo-2-carboxypyridinyl radical could be characterized (lambda(max)/nm = 318 with shoulder at 370 nm and epsilon/mol(-1) dm(3) cm(-1) = 8100).  相似文献   

20.
The photolysis of 9,10-anthraquinone (AQ), 2-methyl- and 2,3-dimethyl-AQ was studied in air-saturated acetonitrile-water in the presence of various donors: formate, ascorbic acid, alcohols, e.g. 2-propanol or methanol, and amines, e.g. ethylenediaminetetraacetate (EDTA). The photoreaction is initiated by H-atom or electron transfer from the donor to the AQ triplet state. The conversion of oxygen into hydrogen peroxide occurs via the superoxide radical and its conjugate acid. The quantum yield of oxygen uptake (Phi(-O2)) increases with increasing donor concentration. Phi(-O2) = 0.3-0.6 in the presence of 1 M 2-propanol and 3-10 mM ascorbic acid or EDTA. The properties of the quinone and donor radicals involved and the pH and concentration dependences of Phi(-O2) are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号