首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Evidence for a direct metabolic effect of insulin in isolated liver preparations is scarce. The stimulation of glycolysis by insulin previously demonstrated in monolayer cultures of adult rat hepatocytes [(1982) Eur. J. Biochem. 126, 271-278] was further investigated. The degree of stimulation varied with the age of the culture and amounted to 250%, 200%, 500% and 200% of the control value using cells at the culture age of 2 h, 24 h, 48 h, and 72 h, respectively. Half-maximal dose of insulin was 0.1 nM. Maximal stimulation was reached within 5 min and lasted for at least 4 h. Dexamethasone acted both as a long-term and short-term modulator. Long-term pretreatment of the cells with dexamethasone proved necessary to permit insulin action. In addition to this permissive action, pretreatment with dexamethasone reduced the insulin-independent basal glycolytic rate. In short-term experiments dexamethasone decreased the basal glycolytic flux, however, it did not affect the absolute increase in glycolysis brought about by insulin. The half-maximal dose of dexamethasone was 10 nM. The stimulatory effects of insulin may in part be attributed to the activation of pyruvate kinase. Insulin produced a left-shift of the substrate saturation curve, decreasing the K0.5 value for phosphoenolpyruvate.  相似文献   

2.
Glucocorticoid regulation of enkephalins in cultured rat adrenal medulla   总被引:4,自引:0,他引:4  
The effect of dexamethasone on enkephalin-containing (EC) peptide levels and preproenkephalin mRNA levels was determined in adrenal medullary explants (glands) from sham and hypophysectomized (hypox) rats. Culture for 4 days in serum-free medium without dexamethasone resulted in a 13- and 4-fold increase in EC peptide levels in sham and hypox glands, respectively. The addition of dexamethasone (10(-5) M) produced a 20- to 26-fold increase in EC peptides in sham and hypox glands. In serum free medium, hypox glands showed a concentration dependent increase in EC peptides with the ED50 for dexamethasone equal to 5.7 x 10(-7) M. Since the glucocorticoid antagonist RU486 partially blocked the rise in EC peptides in sham glands, it appears that the increase in EC peptides in sham glands in the absence of dexamethasone is a result of a higher concentration of endogenous corticosterone in sham compared to hypox glands. Dexamethasone resulted in a 6-fold increase in preproenkephalin mRNA in hypox glands cultured for 2 days. This increase was approximately proportional to the increase in EC peptides seen at 4 days. In serum free medium progesterone, testosterone, and deoxycorticosterone failed to increase EC peptides in hypox glands. These results indicate that glucocorticoid treatment is required for maximal proenkephalin gene expression and EC peptide biosynthesis in cultured glands.  相似文献   

3.
The effects of a mild heat shock were investigated using cultured 15-day-old fetal rat hepatocytes in which an acute glucocorticoid-dependent glycogenic response to insulin was present. After exposure from 15 min to 2 h at 42.5°C, cell surface [125I]insulin binding progressively decreased down to 60% of the value shown in cells kept at 37°C, due to a decrease in the apparent number of insulin binding sites with little change in insulin receptor affinity. In parallel cultures, protein labeling with [35S]methionine exhibited stimulated synthesis of specific proteins, in particular, 73-kDa Hsc (heat shock cognate) and 72-kDa Hsp (heat shock protein). When cells were returned to 37°C after 2 h at 42.5°C, cell surface insulin binding showed a two-third restoration within 3 h (insulin receptor half-life = 13 h), with similar concomitant return of Hsps72,73 synthesis to preinduction levels. The rate of [14C]glucose incorporation into glycogen measured at 37°C after 1- to 2-h heat treatment revealed a striking yet transient increase in basal glycogenesis (up to 5-fold). At the same time, the glycogenesis stimulation by insulin was reduced (from 3.2 to 1.4—fold), whereas that induced by a glucose load was maintained. Induction of thermotolerance after a first heating was obtained for the heat shock-dependent events except for the enhanced basal glycogenesis. In insulin-unresponsive cells grown in the absence of glucocorticoids, heat shock decreased the glycogenic capacity without modifying the glucose load stimulation, supporting the hypothesis that insulin and thermal stimulation of glycogenesis share at least part of the same pathway. Inverse variations were observed between Hsps72,73 synthesis and both cell surface insulin receptor level and insulin glycogenic response in fetal hepatocytes experiencing heat stress. © 1995 Wiley-Liss, Inc.  相似文献   

4.
The regulation of RNA degradation by specific amino acids and insulin was investigated in cultured rat hepatocytes from fed rats previously injected in vivo with [6-14C]orotic acid. The effects of three groups of amino acids were compared to those of a complete amino acid mixture. The first one consisted of the eight amino acids (leucine, proline, glutamine, histidine, phenylalanine, tyrosine, methionine, tryptophan) previously found to be particularly effective in the control of proteolysis. The two other groups were defined from our study with single additions of amino acids, one consisting of proline, asparagine, glutamine, alanine, phenylalanine, and leucine and the other including the latter group with serine, histidine, and tyrosine. The results showed that these three groups were able to strongly inhibit deprivation-induced RNA breakdown at one and ten times normal plasma concentrations but to a lower extent than the complete amino acid mixture. Six amino acids (proline, asparagine, glutamine, alanine, phenylalanine, leucine) inhibited individually RNA degradation by more than 20%. However, the deletions of proline, asparagine, glutamine, or alanine from the group of these six amino acids were not followed by a loss of inhibitory effect. On the contrary, an important loss of inhibition was observed when leucine and phenylalanine were deleted. Furthermore, only these two amino acids exhibited an additive inhibitory effect. Thus leucine and phenylalanine could be considered as important inhibitors of RNA breakdown in cultured rat hepatocytes. Finally, insulin which had no significant effect on RNA degradation in the absence of amino acids, was able to potentiate the inhibitory effect of different amino acid groups. © 1993 Wiley-Liss, Inc.  相似文献   

5.
The ability of the glucocorticoid dexamethasone to modulate the insulin receptor was examined directly in primary cultures of hepatocytes prepared from adult male rats. Hepatocytes were cultured in a defined medium in the presence and absence of dexamethasone, 0.1 microM. The exposure of hepatocytes to dexamethasone resulted in a time-dependent (steady state by 32 h) increase in insulin binding in both intact hepatocytes and Triton X-100-soluble extracts (total insulin receptor content). The enhanced insulin binding found in soluble extracts of dexamethasone-treated hepatocytes was the result of an increase in insulin receptor number without a change in receptor affinity. In order to assess the mechanism by which dexamethasone "up-regulates" the insulin receptor, the heavy isotope density-shift technique was used to analyze insulin receptor turnover in control and dexamethasone-treated hepatocytes. Hepatocytes were initially cultured for 32 h in standard culture media containing only "light" (14C, 12C, 1H) amino acids. In hepatocytes exposed to dexamethasone, a 417% increase in insulin binding in Triton X-100-soluble extracts was observed. After 32 h, when steady state binding is achieved in dexamethasone-treated cultures, parallel cultures of hepatocytes incubated in the absence and presence of dexamethasone were washed and subsequently cultured in media containing "heavy" amino acids (15N, 13C, 2H). The time-dependent disappearance of light insulin receptor (receptor degradation) and appearance of heavy insulin receptor (receptor synthesis) were monitored using CsCl gradients to resolve the two density species of receptor. At steady state, the rate of receptor synthesis (k8) was 2.94 and 0.62 fmol of insulin bound h-1 in dexamethasone-treated and control hepatocytes, respectively. In contrast to this large increase in the rate of receptor synthesis observed in dexamethasone-treated cells, the first order rate constant for decay (k d) was the same in dexamethasone-treated (0.074 h-1) and in control (0.077 h-1) hepatocytes. We therefore conclude that glucocorticoid-induced up-regulation of the insulin receptor in the liver is due to stimulation of insulin receptor synthesis.  相似文献   

6.
Fetal hepatocytes cultured in the presence of dexamethasone even in low concentration were maintained alive for several weeks. The expression of monoxygenase in these cells is switched from fetal to adult type. Their aldrin epoxidase and ethoxycoumarin-o-de-ethylase activities were maintained at a high level. Cytochrome P-450 concentration remains stable in these cells throughout the culture period. Cell-cell and cell-biomatrix interactions seem to play an important role in the control of growth, maturation and enzymatic activity expression of the cells in culture. This model may constitute an interesting approach for the study of drug metabolism and drug toxicity in vitro.  相似文献   

7.
Insulin-stimulated glycogenesis and insulin degradation were studied simultaneously at 37 degrees C in cultured foetal hepatocytes grown for 2-3 days in the presence of cortisol. Degradation of cell-associated insulin, as measured by trichloroacetic acid precipitation, was significant after 4 min in the presence of 1-3 nM-125I-labelled insulin. This process became maximal (30% of insulin degraded) after 20 min, a time when binding-state conditions were achieved. No insulin-degradative activity was detected in a medium that had been exposed to cells. At steady-state, the appearance of insulin degradation products in the medium was linearly dependent on time (1.5 fmol/min per 10(6) cells at 1nM-125I-labelled insulin). Chloroquine (3-50 microM), bacitracin (0.1-10 mM) and NH4Cl (1-10 mM) inhibited insulin degradation as soon as this became detectable and caused an increase in the association of insulin to hepatocytes after 20 min. Lidocaine and dansylcadaverine had similar effects, whereas N-ethylmaleimide, aprotinin, phenylmethanesulphonyl fluoride and leupeptin were found to be ineffective. Chloroquine, and also bacitracin, at concentrations that inhibited insulin degradation, decreased the insulin-stimulated incorporation of [14C]glucose into glycogen over 2 h. This effect of chloroquine was specific, since it did not modify the basal glycogenesis, or the glycogenic effect of a glucose load in the absence of insulin. It therefore appears that the receptor-mediated insulin degradation (or some associated pathway) is functionally related to the glycogenic effect of insulin in foetal hepatocytes.  相似文献   

8.
The glycogenic effects of a glucose load (15 mM) and/or insulin (10 nM) were studied in 18-day-old fetal rat hepatocytes after 2 days of culture when medium contained 4 mM glucose. A glucose load led to a stimulation of [14C]glucose glycogen labelling (20 min) earlier than with insulin (30–40 min); maximal stimulations were 3-fold after 1 h for the glucose load and 5-fold after 2–3 h for insulin. Simultaneous addition of the two agents produced synergic effects. When insulin was added 4 h after a glucose load (or vice versa), a second glycogenic response was elicited: a further addition of the same glycogenic agent was ineffective. The early glycogenic effects (up to 2 h) also occurred in the presence of 10 μM cycloheximide, with, however, some decrease of insulin stimulation. The contribution of medium glucose to the glycogen formed for 2 days (67% in the absence of glycogenic agent) was clearly enhanced by a glucose load and to a lesser degree by insulin after a 4-h exposure (83 and 71%, respectively). This was accompanied by a related modification of the participation of glucogenic precursors such as fructose and galactose. Thus, acute glycogenic response to glucose and insulin appeared both synergic and independent, and quite different in several aspects in cultured fetal hepatocytes.  相似文献   

9.
1. Bestatin, a microbial aminopeptidase inhibitor, induced accumulation of low-molecular weight intermediate peptides of insulin degradation in liver of rats in vivo and in primary cultured rat hepatocytes. However, bestatin did not affect the association and internalization of the hormone into hepatic cells. 2. Results of the HPLC analyses showed that the intermediate peptides of insulin degradation are small ones and specifically accumulate only in the presence of bestatin. 3. The above results, together with those employing other protease inhibitors, show that cytosolic bestatin-sensitive protease(s), trypsin-like protease(s) and thiol protease(s) play an important role in the intracellular degradation process of insulin.  相似文献   

10.
Anin vitro experimental model, fetal rat hepatocytes in culture, was metabolically characterized. Several enzymatic activities were expressed in these hepatocytes, namely, testosterone hydroxylations. Hepatocytes cultured up to 3 weeks in the presence of dexamethasone and phenobarbital still expressed some drug-metabolizing enzyme activities (e.g., ECOD). The enzymatic activities were measured both directly on monolayers during culture and on the corresponding harvested and homogenized cells. The results correlate perfectly with each other. The on cell procedure allows us to repeat the assay or to measure several activities on the same cells at different time intervals. The presence of dexamethasone in the culture medium allows the expression and the induction of several cytochrome P450 isoenzymes, namely, those hydroxylating testosterone. This makes the model particularly attractive for induction experiments as well as for metabolic or toxicological studies needing longer treatments.Abbreviations BA benzanthracene - CLO clofibric acid - DEXA dexamethasone - DMSO dimethylsulfoxide - ECOD ethoxycoumarin-O-dethylase - PB phenobarbital - RER rough endoplasmic reticulum  相似文献   

11.
D Cotariu  L Barr-Nea  N Papo  J L Zaidman 《Enzyme》1988,40(4):212-216
Hepatocytes isolated as a relatively pure population from normal fetal rats were maintained in primary monolayer culture for 4-10 days. Hepatocytes exhibited a small increase in basal gamma-glutamyl transferase (GGT) activity over time. Exposure to dexamethasone (10(-6) mol/l) elicited a rise in GGT activity after a lag of 24 h. The presence of the steroid was necessary to maintain induction, and its removal resulted in reversal of induction. The maximal response was 2- to 3-fold, 72 h after exposure to the steroid. After this maximal response, a gradual decay in enzyme activity occurred, despite the continuous presence of the hormone. Actinomycin D or cycloheximide given prior to/or simultaneously with the steroid prevented the induction, thus suggesting that both RNA and protein biosynthesis are necessary for induction to occur.  相似文献   

12.
13.
Addition of vasopressin (100 nM) to rat hepatocytes prelabelled with [3H]inositol stimulated the production of inositol phosphates in the presence of 20 mM Li+. Preincubation of hepatocytes with insulin (50 nM) or glucagon (10 nM) had no significant effect alone but enhanced the effects of vasopressin after a lag period of at least 1 min. The effects of insulin and glucagon appeared additive in this respect. Insulin also enhanced the norepinephrine-mediated stimulation of inositol phosphate accumulation. The enhancement by insulin of the effects of vasopressin required at least 0.5-5 nM insulin and did not involve changes in [3H]inositol lipid labelling or IP3 phosphatase activity. The effect of insulin appeared insensitive to prior treatment of hepatocytes with pertussis toxin (200 ng/ml for 18-24 h) or cholera toxin (100 ng/ml for 3-4 h). The glucagon enhancement of the effects of vasopressin was not affected by pertussis toxin but was mimicked by cholera toxin. The response of hepatocytes to vasopressin in the absence of Li+ was smaller and more transient. Under these conditions a 5 min prior incubation with insulin inhibited the stimulation by vasopressin of inositol phosphate accumulation. A similar inhibitory effect of prior insulin exposure on the transient activation by vasopressin of exogenous phosphatidylinositol 4,5-bisphosphate breakdown by hepatocyte homogenates was also seen. These data indicate that insulin, although having no effect on basal inositol phosphate accumulation, can either enhance or antagonise the effects of vasopressin in primary rat liver hepatocyte cultures depending on the experimental conditions.  相似文献   

14.
The role of substrate availability in the regulation of gluconeogenesis in isolated rat hepatocytes was studied using [U-14C]alanine as a tracer in the presence of different concentrations of L-alanine in the incubation medium. At low alanine concentrations (0.5 mM) insulin decreased the 14C incorporation into the glucose pool and increased the incorporation of tracer carbons into the protein and lipid pools and into CO2. The net radioactivity lost from the glucose pool was only a small percentage of the total increase in the activity of the protein, lipid, CO2, or glycogen pools, supporting the notion that the effect of insulin in diminishing gluconeogenesis is secondary to its effects on pathways using pyruvate. At higher concentrations of alanine (2.5, 5.0, and 10.0 mM) in the incubation medium insulin increased the movement of alanine carbons into protein and glucose. This suggests that at higher substrate concentrations the ability of the liver to synthesize proteins is overwhelmed and the pyruvate carbons are forced into the gluconeogenesis pathway. These results were further confirmed by using [U-14C]lactate. The increases in observed specific activity of glucose following insulin administration would not be possible if insulin acted by affecting the activity of any enzyme directly involved in the formation or utilization of pyruvate, most of which have been proposed as sites of insulin action. Data presented show that insulin "inhibits" gluconeogenesis by affecting a change in substrate availability.  相似文献   

15.
Regulation of insulin-binding and basal (insulin-independent) as well as insulin-stimulated glycogen synthesis from [14C]glucose, net glycogen deposition and glycogen synthase activation by insulin and dexamethasone were studied in primary cultures of adult rat hepatocytes maintained under chemically defined conditions. (1) Insulin receptor number was increased in a dose-dependent fashion by dexamethasone added to the medium between 24 and 48 h of culture and reduced by insulin, whereas ligand affinity remained unaltered. Insulin-induced down-regulation of insulin receptors was not affected by the glucocorticoid. (2) Although the changes in the sensitivity to insulin of glycogen synthesis from glucose and net glycogen deposition paralleled the modulation of the number of insulin receptors, postbinding events appear to be implicated also in the regulation of insulin-sensitivity. (3) Alterations of the responsiveness of glycogen synthesis to insulin caused by the glucocorticoid and/or insulin and by variation between individual rats were inversely related to cellular glycogen contents, suggesting that hepatocellular glycogen content participates in the regulation of insulin-responsiveness of this metabolic pathway. (4) Regulation of insulin-independent glycogenesis in response to an increase from 5 to 10 mM glucose, and of insulin-dependent glycogen synthesis were different. Since the effects of this ‘physiological’ increase in exogenous glucose were small compared to the acute action of insulin, insulin rather than portal venous glucose is considered to represent the prime stimulator of hepatic glycogen synthesis.  相似文献   

16.
Regulation of insulin-binding and basal (insulin-independent) as well as insulin-stimulated glycogen synthesis from [14C]glucose, net glycogen deposition and glycogen synthase activation by insulin and dexamethasone were studied in primary cultures of adult rat hepatocytes maintained under chemically defined conditions. Insulin receptor number was increased in a dose-dependent fashion by dexamethasone added to the medium between 24 and 48 h of culture and reduced by insulin, whereas ligand affinity remained unaltered. Insulin-induced down-regulation of insulin receptors was not affected by the glucocorticoid. Although the changes in the sensitivity to insulin of glycogen synthesis from glucose and net glycogen deposition paralleled the modulation of the number of insulin receptors, postbinding events appear to be implicated also in the regulation of insulin-sensitivity. Alterations of the responsiveness of glycogen synthesis to insulin caused by the glucocorticoid and/or insulin and by variation between individual rats were inversely related to cellular glycogen contents, suggesting that hepatocellular glycogen content participates in the regulation of insulin-responsiveness of this metabolic pathway. Regulation of insulin-dependent glycogen synthesis were different. Since the effects of this 'physiological' increase in exogenous glucose were small compared to the acute action of insulin, insulin rather than portal venous glucose is considered to represent the prime stimulator of hepatic glycogen synthesis.  相似文献   

17.
The role of amino acids in the regulation of RNA degradation was investigated in cultured hepatocytes from fed rats previously labeled in vivo with [6-14C]orotic acid. Rates of RNA degradation were determined between 42 and 48 h of culture from the release of radioactive cytidine in the presence of 0.5 mM unlabeled cytidine. The fractional rate was about 4.4 +/- 0.4%/h in the absence of amino acids (0x). The catabolism of RNA was decreased to basal level (1.5 +/- 0.3%/h) by the addition of amino acids at 10 times normal plasma concentration (10x). The inhibition of RNA degradation, expressed as percentage of maximal deprivation-induced response (0x minus 10x), averaged 60% at normal plasma levels of amino acids. The degree of responsiveness was greatly improved as compared to freshly isolated hepatocytes (20%) and was similar to the sensitivity previously observed with perfused livers. In cultured hepatocytes, the sensitivity of RNA degradation to amino acids was not affected by varying the volume of medium from 1 to 4 ml per dish. In freshly isolated hepatocytes, the inhibitory effect of amino acids was not modified by changing the cell density from 0.5 to 5 x 10(6) cells per ml. In the range of normal plasma concentration of amino acids, the low sensitivity of RNA degradation in isolated hepatocytes persisted with inhibition ranging from 10 to 20%. These findings suggest that the control of RNA degradation in both cultured and isolated hepatocytes is not affected by the total quantity of amino acids available in the medium, but their concentration is crucial. Electron microscopy observations and the inhibitory effect of 3-methyl-adenine in cultured rat hepatocytes partially confirmed the role of the lysosomal system in the increase of RNA degradation and its regulation by amino acids.  相似文献   

18.
Binding and degradation of 125I-labelled insulin were studied in cultured foetal hepatocytes after exposure to the protein-synthesis inhibitors tunicamycin and cycloheximide. Tunicamycin (1 microgram/ml) induced a steady decrease of insulin binding, which was decreased by 50% after 13 h. As the total number of binding sites per hepatocyte was 20000, the rate of the receptor degradation could not exceed 13 sites/min per hepatocyte. Cycloheximide (2.8 micrograms/ml) increased insulin binding by 30% within 6 h, an effect that persisted for up to 25 h. This drug had a specific inhibitory effect on the degradation of proteins prelabelled for 10 h with [14C]glucosamine, without affecting the degradation of total proteins. Chronic exposure to 10 nM-insulin neither decreased insulin binding nor modified the effect of the drugs. The absence of down-regulation of insulin receptors cannot be attributed to rapid receptor biosynthesis in foetal hepatocytes. Cellular insulin degradation, which is exclusively receptor-mediated, was determined by two different parameters. First, the rate of release of degraded insulin into the medium was 600 molecules/min per hepatocyte with 1 nM labelled hormone, and increased (preincubation with cycloheximide) or decreased (tunicamycin) as a function of the amount of cell-bound insulin. Secondly, the percentage of cell-bound insulin degraded was not changed by the presence of protein-synthesis inhibitors (25-30%). The stability of insulin degradation suggested that this process was dependent on long-life proteinase systems. Such differences in degradation rates and cycloheximide sensitivity imply that hormone- and receptor-degradation processes utilize distinct pathways.  相似文献   

19.
The amount of 125I-insulin associated with freshly isolated hepatocytes was increased 50% in the presence of 0.2 mM chloroquine (CQ) after 2 h of incubation. The degradation of insulin by the hepatocytes incubated with CQ was significantly diminished as compared with control cells. Hepatocytes incubated with 125I-insulin in the presence of CQ showed a slower rate of ligand dissociation than control cells. More TCA-precipitable and less TCA-soluble material appeared in the dissociation buffer of CQ-treated cells. However, CQ inhibited only 25-35% of intracellular insulin degradation. Non-lysosomal intracellular insulin degradation appears to be responsible for the remaining portion of the ligand degradation by isolated hepatocytes.  相似文献   

20.
To determine the effect of insulin on its receptor concentrations in hepatocytes of fetal and adult rats, these cells were preincubated in the presence or absence of insulin. The reduced [125I]-insulin binding observed in adult hepatocytes was dependent on the concentration of insulin and on the duration of exposure, while in fetal hepatocytes insulin did not induce any reduction in insulin binding. In contrast, glucagon receptors were unaffected by preincubation with insulin. The modifications observed in insulin binding were accounted for by changes in receptor concentrations rather than any change in receptor affinity for the hormone. Studies on the kinetic properties of the insulin receptors of fetuses and adult rats revealed that association and dissociation rates were undistinguishable. These results indicate an absence of insulin receptor down-regulation in the fetus, which could favour anabolic processes during intrauterine life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号