共查询到20条相似文献,搜索用时 15 毫秒
1.
Substrate specificities of bacterial and human AlkB proteins 总被引:2,自引:3,他引:2
Methylating agents introduce cytotoxic 1-methyladenine (1-meA) and 3-methylcytosine (3-meC) residues into nucleic acids, and it was recently demonstrated that the Escherichia coli AlkB protein and two human homologues, hABH2 and hABH3, can remove these lesions from DNA by oxidative demethylation. Moreover, AlkB and hABH3 were also found to remove 1-meA and 3-meC from RNA, suggesting that cellular RNA repair can occur. We have here studied the preference of AlkB, hABH2 and hABH3 for single-stranded DNA (ssDNA) or double-stranded DNA (dsDNA), and show that AlkB and hABH3 prefer ssDNA, while hABH2 prefers dsDNA. This was consistently observed with three different oligonucleotide substrates, implying that the specificity for single-stranded versus double-stranded DNA is sequence independent. The dsDNA preference of hABH2 was observed only in the presence of magnesium. The activity of the enzymes on single-stranded RNA (ssRNA), double-stranded RNA (dsRNA) and DNA/RNA hybrids was also investigated, and the results generally confirm the notion that while AlkB and hABH3 tend to prefer single-stranded nucleic acids, hABH2 is more active on double-stranded substrates. These results may contribute to identifying the main substrates of bacterial and human AlkB proteins in vivo. 相似文献
2.
3.
Although many isoforms of secretory phospholipases A(2) (sPLA(2)) are known to be secreted by various inflammatory cells, and are present in plasma, their role in lipoprotein metabolism is unknown. We studied the in vitro hydrolysis of lipoprotein phospholipids by group IIa and group V sPLA(2), two structurally related enzymes with differing phospholipid specificities. The group V sPLA(2) was about 30 times more efficient than the group IIa enzyme in the hydrolysis of lipoprotein phosphatidylcholine (PC), and both enzymes were more active on high density liporotein (HDL) than on low density lipoprotein (LDL). The lower activity on LDL appears to be due to the higher sphingomyelin (SPH) concentration in this lipoprotein. PC hydrolysis in lipoproteins was stimulated significantly by enzymatic depletion of their SPH. The hydrolysis of PC in liposomes was inhibited by the incorporation of SPH, and this inhibition was reversed by treatment with sphingomyelinase. The incorporation of ceramide, on the other hand, stimulated the sPLA(2) activity significantly. Unlike most sPLA(2), which show no fatty acid preference, group V sPLA(2) released disproportionately more linoleate, and less arachidonate from lipoproteins. These studies show that group V sPLA(2) is physiologically more important than group IIa enzyme in lipoprotein metabolism, that the sPLA(2) activities are regulated by sphingomyelin and ceramide, and that the pathological effects of sPLA(2) may not be mediated through stimulation of eicosanoid synthesis. 相似文献
4.
H Nagase Y Ogata K Suzuki J J Enghild G Salvesen 《Biochemical Society transactions》1991,19(3):715-718
5.
Monoamine oxidase (MAO) is responsible for the oxidation of biogenic and dietary amines. It exists as two isoforms, A and B, which have a 70% amino acid identity and different substrate and inhibitor specificities. This study reports the identification of residues responsible for conferring this specificity in human MAO A and B. Using site-directed mutagenesis we reciprocally interchanged three pairs of corresponding nonconserved amino acids within the central portion of human MAO. Mutant MAO A-I335Y became like MAO B, which exhibits a higher preference for beta-phenylethylamine than for the MAO A preferred substrate serotonin (5-hydroxytryptamine), and became more sensitive to deprenyl (MAO B-specific inhibitor) than to clorgyline (MAO A-specific inhibitor). The reciprocal mutant MAO B-Y326I exhibited an increased preference for 5-hydroxytryptamine, a decreased preference for beta-phenylethylamine, and, similar to MAO A, was more sensitive to clorgyline than to deprenyl. These mutants also showed a distinct shift in sensitivity for the MAO A- and B-selective inhibitors Ro 41-1049 and Ro 16-6491. Mutant pair MAO A-T245I and MAO B-I236T and mutant pair MAO A-D328G and MAO B-G319D reduced catalytic activity but did not alter specificity. Our results indicate that Ile-335 in MAO A and Tyr-326 in MAO B play a critical role in determining substrate and inhibitor specificities in human MAO A and B. 相似文献
6.
Structure-function relationships of phospholipases. The anticoagulant region of phospholipases A2 总被引:3,自引:0,他引:3
In an effort to identify the anticoagulant region of venom phospholipases A2, we have systematically compared the amino acid sequences of strong, weak and non-anticoagulant phospholipases. The comparison disclosed several significant substitutions in the region between residues 54 and 77 (homology numbers). This proposed anticoagulant region is positively charged in strong, but negatively charged in weak and non-anticoagulant phospholipases. The microenvironment of a tryptophan residue falls within the proposed region, accounting for the differential characteristics of intrinsic fluorescence changes observed at 335 nm after the binding of phospholipid vesicles to strong and weak anticoagulants. Four lysine residues are located in specific positions in the "anticoagulant" region of strong anticoagulants, and should form a cationic surface, based on analogy with the available crystallographic structures. The chemical modification of lysine, arginine, tyrosine, and tryptophan residues and carboxylate groups, performed by other investigators, not only provides added support for the predicted site, but also confirms the essentiality of the positive charges in the site. This region may participate in the formation of a specific preferential hydrolytic complex leading to the strong anticoagulant effect. The anticoagulant region is distinct and separate from the predicted neurotoxic and myotoxic sites, and is located on the opposite surface of the phospholipase molecule. 相似文献
7.
Grönroos JO Laine VJ Janssen MJ Egmond MR Nevalainen TJ 《Journal of immunology (Baltimore, Md. : 1950)》2001,166(6):4029-4034
Group V phospholipase A(2) (PLA(2)) is a recently characterized 14-kDa secretory PLA(2) of mammalian heart and macrophage-derived cells. Group IIA PLA(2), which is structurally close to group V PLA(2), has been shown to kill Gram-positive bacteria in vitro and to prevent symptoms of Gram-positive infection in vivo. We studied the antibacterial properties of fully active recombinant rat group IIA and V PLA(2)s. Both group IIA and V PLA(2)s were highly bactericidal against Gram-positive bacteria, including methicillin-resistant staphylococci and vancomycin-resistant enterococci. Only high concentrations of group IIA PLA(2) showed some bactericidal effect against the Gram-negative bacterium Escherichia coli. Our results confirm that group IIA PLA(2) is a potent antibacterial enzyme against Gram-positive bacteria. Moreover, we show here that group V PLA(2) is a novel antibacterial mammalian protein, but is less potent than group IIA PLA(2). Both enzymes may be considered as future therapeutic agents against bacterial infections. 相似文献
8.
Triggiani M Granata F Balestrieri B Petraroli A Scalia G Del Vecchio L Marone G 《Journal of immunology (Baltimore, Md. : 1950)》2003,170(6):3279-3288
Secretory phospholipases A(2) (sPLA(2)s) are released in large amounts in the blood of patients with systemic inflammatory diseases and accumulate at sites of chronic inflammation, such as the airways of patients with bronchial asthma. Blood eosinophils or eosinophils recruited in inflammatory areas therefore can be exposed in vivo to high concentrations of sPLA(2). We have examined the effects of two structurally different sPLA(2)s (group IA and group IIA) on several functions of eosinophils isolated from normal donors and patients with hypereosinophilia. Both group IA and IIA sPLA(2) induced a concentration-dependent release of beta-glucuronidase, IL-6, and IL-8. Release of the two cytokines was associated with the accumulation of their specific mRNA. In addition, sPLA(2)s induced the surface expression of CD44 and CD69, two major activation markers of eosinophils. In contrast, none of the sPLA(2)s examined induced the production of IL-5, the de novo synthesis of leukotriene C(4) and platelet-activating factor, or the generation of superoxide anion from human eosinophils. Incubation of eosinophils with the major enzymatic products of the sPLA(2)s (arachidonic acid, lysophosphatidylcholine, or lysophosphatidic acid) did not reproduce any of the enzymes' effects. In addition, inactivation of sPLA(2) enzymatic activity by bromophenacyl bromide did not influence the release of beta-glucuronidase or of cytokines. Stimulation of eosinophils by sPLA(2)s was associated with activation of extracellular signal-regulated kinases 1/2. These results indicate that sPLA(2)s selectively activate certain proinflammatory and immunoregulatory functions of human eosinophils through mechanism(s) independent from enzymatic activity and from the generation of arachidonic acid. 相似文献
9.
The antibacterial properties of secreted phospholipases A(2) 总被引:4,自引:0,他引:4
There is a considerable body of evidence to support the antibacterial properties of the group IIa phospholipase A(2) as an important physiological function. This enzyme is able to act as an acute phase protein and may be part of the innate defence system of the body, acting in concert with other antibacterial proteins and peptides. The enzyme is most effective against Gram-positive bacteria whereas penetration of the lipopolysaccharide coat of Gram-negative bacteria requires bactericidal/permeability-increasing protein (BPI) as an additional permeabilizing factor. The global cationic nature of this protein (pI>10.5) appears to facilitate penetration of the anionic bacterial cell wall. In addition, the considerable preference of the enzyme for anionic phospholipid interfaces provides specificity toward anionic bacterial membranes as opposed to zwitterionic eucaryotic cell membranes. 相似文献
10.
Eva Söderling 《Archives of biochemistry and biophysics》1983,220(1):1-10
The substrate specificities of four Cl?-activated arginine aminopeptidases purified from the livers and inflammatory exudates of the rat, human fetal livers, and human erythrocytes were studied using peptides and N-l-aminoacyl-2-naphthylamides as substrates. With 2-naphthylamide substrates, these aminopeptidases showed similar substrate specificity; only the derivatives of Arg and Lys were measurably hydrolyzed. Di- and tripeptides with Arg or Lys as the N-terminal residue were readily split by the enzymes from the livers and inflammatory exudates of the rat and human fetal livers but oligopeptides were not hydrolyzed. Arg- and Lys-peptides were also hydrolyzed by the erythrocyte enzyme but this enzyme additionally split several other peptides, oligopeptides being hydrolyzed at internal bonds. The following properties were similar for all four arginine aminopeptidases: Dipeptides were preferred over tripeptides both in substrate binding and catalysis. The rat and human liver, rat exudate, and human erythrocyte enzymes revealed similar Km values for the best substrates, the values increasing in the following order: ArgPhe, ArgTrp, ArgLys < ArgVal, ArgGly, Arg-2-naphthylamide < ArgGlyGly. The kcat values were also similar for the four arginine aminopeptidases. Arg-2-naphthylamide was by far the most rapidly hydrolyzed substrate by all enzymes followed by ArgPhe and ArgTrp. With peptide substrates the highest Cl? activation (10–20%) was found with ArgPhe and ArgTrp. With Arg-2-naphthylamide, however, the activating effect of 0.2 m Cl? was severalfold. The hydrophobicity of the C-terminal residue of the substrate seemed to play an important role both in the Cl? effect and substrate catalysis. Substrate binding, however, also depended on the charged groups of the substrate. Evidently Arg-2-naphthylamide and the peptides were hydrolyzed at the same active center but the mechanisms involved in the hydrolyses of chromogenic substrates and peptides may be different. It was also concluded that the less specific Cl?-activated enzyme from human erythrocytes does not belong to the same group of Cl?-activated arginine aminopeptidases that show a narrow substrate specificity. 相似文献
11.
F Cabré A M García A Carabaza D Mauleón G Carganico 《Biochimica et biophysica acta》1992,1124(3):297-299
The activity of two human phospholipases A2, purified from synovial fluid and lumbar disc herniations, was tested using alkylacyl- and diacylglycerophosphocholines and the influence of the chemical link at the sn-1 position of glycerol was investigated. Both enzymes exhibited 2.5-3-fold selectivity for 1-ester-linked compared to 1-ether-linked phosphatidylcholine. No significant selectivity was observed with pancreatic phospholipase A2 while Naja naja naja venom enzyme was more efficient against 1-ether-phospholipids. 相似文献
12.
Secreted phospholipases A(2) (sPLA(2)s) are enzymes detected in serum and biological fluids of patients with various inflammatory, autoimmune and allergic disorders. Different isoforms of sPLA(2)s are expressed and released by human inflammatory cells, such as neutrophils, eosinophils, T cells, monocytes, macrophages and mast cells. sPLA(2)s generate arachidonic acid and lysophospholipids thus contributing to the production of bioactive lipid mediators in inflammatory cells. However, sPLA(2)s also activate human inflammatory cells by mechanisms unrelated to their enzymatic activity. Several human and non-human sPLA(2)s induce degranulation of mast cells, neutrophils and eosinophils and activate exocytosis in macrophages. In addition some, but not all, sPLA(2) isoforms promote cytokine and chemokine production from macrophages, neutrophils, eosinophils, monocytes and endothelial cells. These effects are primarily mediated by binding of sPLA(2)s to specific membrane targets (heparan sulfate proteoglycans, M-type, N-type or mannose receptors) expressed on effector cells. Thus, sPLA(2)s may play an important role in the initiation and amplification of inflammatory reactions by at least two mechanisms: production of lipid mediators and direct activation of inflammatory cells. Selective inhibitors of sPLA(2)-enzymatic activity and specific antagonists of sPLA(2) receptors are current being tested for pharmacological treatment of inflammatory and autoimmune diseases. 相似文献
13.
L M Morrice M W McLean W F Long F B Williamson 《European journal of biochemistry》1983,137(1-2):149-154
Beta-Agarase I and II were characterised by their action on agar-type polysaccharides and oligosaccharides. Beta-Agarase I, an endo-enzyme, was specific for regions containing a minimum of one unsubstituted neoagarobiose unit [3,6-anhydro-alpha-L-galactopyranosyl-(1 leads to 3)-D-galactose], hydrolysing at the reducing side of this moiety. Yaphe demonstrated that agar was degraded by this enzyme to neoagaro-oligosaccharides limited by the disaccharide but with a predominance of the tetramer [Yaphe, W. (1957) Can. J. Microbiol. 3, 987-993]. Beta-Agarase I slowly degraded neoagarohexaose but not the homologous tetrasaccharide. [1-3H]Neoagarohexaitol was cleaved to neoagarotetraose and [1-3H]neoagarobiitol. The highly substituted agar, porphyran was degraded to methylated, sulphated and unsubstituted neoagaro-oligosaccharides which were invariably terminated at the reducing end by unsubstituted neoagarobiose. The novel enzyme, beta-agarase II, was shown to be an endo-enzyme. Preliminary evidence indicated this enzyme was specific for sequences containing neoagarobiose and/or 6(1)-O-methyl-neoagarobiose. It degraded agar to neoagaro-oligosaccharides of which the disaccharide was limiting and predominant. Beta-Agarase II rapidly degraded isolated neogarotetraose and neoagarohexaose to the disaccharide. With [1-3H]neoagarohexaitol, exo-action was observed, the alditol being cleaved to neoagarobiose and [1-3H]neoagarotetraitol. Neoagarotetraitol was hydrolysed at 4% of the rate observed for the hexaitol. Porphyran was degraded to oligosaccharides, the neutral fraction comprising 24% of the starting carbohydrate. This fraction was almost exclusively disaccharides (22.4%) containing neoagarobiose (7.4%) and 6(1)-O-methyl-neoagarobiose (15%). Beta-Agarase II is probably the 'beta-neoagarotetraose hydrolase' reported by Groleau and Yaphe as an exoenzyme against neoagaro-oligosaccharides [Groleau, D. and Yaphe, W. (1977) Can. J. Microbiol. 23, 672-679]. 相似文献
14.
15.
16.
G Roy L M Villar I Lazaro M Gonzalez A Bootello P Gonzalez-Porque 《The Journal of biological chemistry》1991,266(18):11495-11501
Two phosphatidylinositol-specific phospholipases C (PI-PLC) have been purified from human spleen. PI-PLCm represents the main activity detected in the membrane, while PI-PLCc is the main activity present in the cytoplasm. PI-PLCm can be resolved into two peaks of activity of high Mr (60,000-70,000) and low Mr (16,000-18,000). High salt concentration ((NH4)2SO4, 2M) dissociates the high Mr form yielding the low molecular form and increasing the specific activity. The same effect of dissociation and potentiation of the activity is observed when membranes solubilized by n-octyl glucoside are subjected to the high voltage conditions of an isoelectric focusing run. The purified Pi-PLCm has a Mr of about 18,000 when analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis or gel filtration and a basic pI (9.0-9.2). Purified PI-PLCc has a Mr of 57,000 (sodium dodecyl sulfate-polyacrylamide gel electrophoresis or gel filtration) and a slightly acid pI (6.2). Other characteristics of both enzymes, such as cations dependence, substrate specificity, optimum pH, and kinetic parameters, are also discussed. 相似文献
17.
Rossi V Cseh S Bally I Thielens NM Jensenius JC Arlaud GJ 《The Journal of biological chemistry》2001,276(44):40880-40887
Mannan-binding lectin (MBL)-associated serine proteases-1 and 2 (MASP-1 and MASP-2) are homologous modular proteases that each interact with MBL, an oligomeric serum lectin involved in innate immunity. To precisely determine their substrate specificity, human MASP-1 and MASP-2, and fragments from their catalytic regions were expressed using a baculovirus/insect cells system. Recombinant MASP-2 displayed a rather wide, C1s-like esterolytic activity, and specifically cleaved complement proteins C2 and C4, with relative efficiencies 3- and 23-fold higher, respectively, than human C1s. MASP-2 also showed very weak C3 cleaving activity. Recombinant MASP-1 had a lower and more restricted esterolytic activity. It showed marginal activity toward C2 and C3, and no activity on C4. The enzymic activity of both MASP-1 and MASP-2 was specifically titrated by C1 inhibitor, and abolished at a 1:1 C1 inhibitor:protease ratio. Taken together with previous findings, these and other data strongly support the hypothesis that MASP-2 is the protease that, in association with MBL, triggers complement activation via the MBL pathway, through combined self-activation and proteolytic properties devoted to C1r and C1s in the C1 complex. In view of the very low activity of MASP-1 on C3 and C2, our data raise questions about the implication of this protease in complement activation. 相似文献
18.
Two species of restriction endonuclease were isolated by gel filtration and DEAE-cellulose chromatography from a cell-free extract of Bacillus amyloliquefaciens (B. subtilits) N strain; a lower molecular weight endonuclease (endonuclease R.BamNI) and a higher molecular-weight one (endonuclease R.BamNx). Both of them required only Mg2+ for their activities. Endonuclease R.BamNx introduced a larger number of site-specific scissions in Excherchia coli phage lambda DNA that endonuclease R.BamNI did. Endonuclease R.BamNx cleaved Bacillus phage phi 105C DNA at the specific sites which are classified into two groups: one type of sites is modified by B. amyloliquefaciens H strain in vivo while the other is not affected. It was also active on DNA'S OF E. coli phage T7, lambdadvl, Simian virus 40 (SV40) and colicinogenic factor ColEI and was inactive on DNAs of Bacillus phages phi 29 and M2. Endonuclease R.BamHI isolated from H strain by Wilson and Young. This endonuclease was active on DNAs of phage lambda, lambdadvl and SV40, adn was inactive on DNAs of phages phi 105C, phi 29, M2 and T7, and ColEI DNA. 相似文献
19.
Antibacterial properties of secreted phospholipases A2 (PLA2) have emerged gradually. Group (G) IIA PLA2 is the most potent among mammalian secreted (s) PLA2s against Gram-positive bacteria, but additional antibacterial compounds, e.g. the bactericidal/permeability-increasing protein, are needed to kill Gram-negative bacteria. The mechanisms of binding to the bacterial surface and the killing of bacteria by sPLA2s are based on the positive charge of the PLA2 protein and its phospholipolytic enzymatic activity, respectively. The concentration of GIIA PLA2 is highly elevated in serum of patients with bacterial sepsis, and overexpression of GIIA PLA(2) protects transgenic mice against experimental Gram-positive infection. The synthesis and secretion of GIIA PLA2 are stimulated by the cytokines TNF-alpha, IL-1 and IL-6. Secreted PLA2s may be potentially useful new endogenous antibiotics to combat infections including those caused by antibiotic-resistant bacteria such as methicillin-resistant staphylococci and vancomysin-resistant enterococci. 相似文献