首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To clarify the effects of age on bacterial translocation from the gastrointestinal tract, mice at the age of 1, 2, 4, 6, 12, and 15 months were antibiotic-decontaminated for 4 days and then inoculated orally with streptomycin-resistant Escherichia coli C25. Mice treated with cyclophosphamide and untreated controls were tested for bacterial translocation to the mesenteric lymph nodes (MLN) 2 days later. The population levels of E. coli C25 in cyclophosphamide-treated and untreated mice were approximately 10(9.3) and 10(9.5) per gram of cecum, respectively, at each tested age. There were no significant differences in the incidence of translocation of E. coli C25 to MLN at any of the tested ages, whereas the number of E. coli C25 detected in MLN was higher in young mice than in aged mice in both the cyclophosphamide-treated and untreated groups. These findings suggest that bacterial translocation from the GI tract may be a more important problem in young animals than in aged animals.  相似文献   

2.
Bacterial translocation is defined as the passage of viable bacteria from the gastrointestinal tract to the mesenteric lymph nodes and other extraintestinal sites. The translocation rate of a newly described species of indigenous bacteria,Lactobacillus murinus, was compared with the translocation rates of indigenousLactobacillus acidophilus and nonindigenousSalmonella enteritidis. Groups of germfree or antibiotic-decontaminated, specific pathogen-free mice were monoassociated with each of these bacterial strains and tested at various intervals for translocation to the mesenteric lymph nodes. The translocation rates of the various bacteria expressed in decreasing order as the numbers of translocating bacteria per gram mesenteric lymph node wereS. enteritidis, L. murinus, andL. acidophilus. The degree of histologic damage to the gastrointestinal mucosa after monoassociation with these strains followed the same pattern. Thus,L. murinus translocates from the GI tract at a surprisingly high rate for an indigenous bacterial strain, and its translocation appears to be associated with mucosal alterations.  相似文献   

3.
Bacterial translocation from the intestines   总被引:3,自引:0,他引:3  
Bacterial translocation is defined as the passage of viable bacteria from the gastrointestinal (GI) tract through the mucosal epithelium to other sites, such as the mesenteric lymph nodes, spleen, liver and blood. This paper reviews results from animal models utilized to obtain information concerning the defense mechanisms operating in the healthy host to confine bacteria to the GI tract. Gnotobiotic and antibiotic-decontaminated mice colonized with particular bacteria demonstrated that the indigenous GI flora maintains an ecologic equilibrium to prevent intestinal bacterial overgrowth and translocation from the GI tract. Studies with athymic (nu/nu) mice, thymus-grafted (nu/nu) mice, neonatally thymectomized mice, and mice injected with immunosuppressive agents demonstrated that the host immune system is another defense mechanism inhibiting bacterial translocation from the GI tract. Ricinoleic acid given orally to mice disrupted the intestinal epithelial barrier allowing indigenous bacteria to translocate from the GI tract. Thus, bacterial translocation from the GI tract of healthy adult mice is inhibited by: (a) an intact intestinal epithelial barrier, (b) the host immune defense system, and (c) an indigenous GI flora maintaining ecological equilibrium to prevent bacterial overgrowth. Deficiencies in host defense mechanisms act synergistically to promote bacterial translocation from the GI tract as demonstrated by animal models with multiple alterations in host defenses. Bacterial translocation occurred to a greater degree in mice with streptozotocin-induced diabetes, mice receiving nonlethal thermal injury, and mice receiving the combination of an immunosuppressive agent plus an oral antibiotic than in mice with only a primary alteration in host defenses. The study of bacterial translocation in these complex models suggests that opportunistic infections from the GI tract occur in discrete stages. In the healthy adult animal, bacterial translocation from the GI tract either does not occur or occurs at a very low level and the host immune defenses eliminate the translocating bacteria. Bacterial translocation does take place if one of the host defense mechanisms is compromised, such as a deficiency in the immune response, bacterial overgrowth in the intestines, or an increase in the permeability of the intestinal barrier. In this first stage, the bacteria usually translocate in low numbers to the mesenteric lymph node, and sometimes spleen or liver, but do not multiply and spread systemically.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
The incidence of translocation of viable indigenous bacteria from the gastrointestinal tract to the mesenteric lymph node, spleen, liver, and kidney was compared in neonatally thymectomized mice and sham-thymectomized specific pathogen-free mice. The immunologic responses of the thymectomized mice to sheep erythrocytes were decreased compared to the responses of sham-thymectomized mice. Strictly anaerobic bacteria were isolated from only 1.8% of the organs from thymectomized mice and from none of the organs of shamthymectomized mice. Aerobic or facultatively anaerobic bacteria were cultured from 27.4% of the organs of thymectomized mice. Of the thymectomized mice, 70.7% contained viable aerobic or facultatively anaerobic bacteria in one or more of their organs tested, compared with only 10% of the sham-thymectomized mice.Escherichia coli was the predominant bacterial species isolated from these organs, althoughStaphylococcus aureus, Streptococcus, andCorynebacterium also were present.Bacteroides were the only strictly anaerobic bacteria cultured. Neonatal thymectomy promotes the translocation of certain indigenous bacteria from the gastrointestinal tract to the mesenteric lymph node, spleen, liver, and kidney.  相似文献   

5.
Specific pathogen-free (SPF) mice were treated with certain classes of immunosuppressive chemotherapeutic agents to determine if they would promote bacterial translocation from the gastrointestinal tract to the mesenteric lymph node, spleen, or liver. The antimetabolites methotrexate, 5-fluorouracil, and cytosine arabinoside were injected once intraperitoneally into SPF mice, and the mice were tested for bacterial translocation from the gastrointestinal tract. When total organs from the treated mice were compared with the total organs from the control mice, the alkylating agent cyclophosphamide promoted bacterial translocation when injected once intraperitoneally at doses of 100–400 mg/kg. Increasing the number of injections of cyclophosphamide did not increase the incidence of bacterial translocation. The steroid prednisone also promoted bacterial translocation after one intraperitoneal injection of 10–150 mg/kg. Prednisone and cyclophosphamide at various doses appeared to be more effective in promoting bacterial translocation from the gastrointestinal tract than the antimetabolites. The aerobic and facultatively anaerobic bacteria translocating to the various organs were identified asLactobacillus acidophilus, Escherichia coli, Klebsiella pneumoniae, Streptococcus faecalis, Staphylococcus aureus, andProteus mirabilis. Groups of SPF mice also were injected once intraperitoneally with the minimal dose of each chemotherapeutic drug that induced bacterial translocation, and then tested for immune responsiveness toE. coli vaccination. Each of the chemotherapeutic agents at the minimal doses promoting bacterial translocation also suppressed the serum antibody responses to antigens of indigenousE. coli. However, other toxic manifestations of these chemotherapeutic agents also may be involved in promoting bacterial translocation. The promotion of bacterial translocation from the gastrointestinal tract by these chemotherapeutic agents has important implications for the pathogenesis of infectious disease in patients receiving these drugs.  相似文献   

6.
The potential contribution of stress-induced bacterial translocation to the activation of the hypothalamo-pituitary-adrenocortical (HPA) axis and brain biogenic amines was assessed. Mice were restrained for various periods, and brain concentrations of tryptophan, catecholamines, serotonin, and their metabolites, plasma corticosterone, and the translocation of viable bacteria from the gastrointestinal tract to the mesenteric lymph nodes, spleen, and liver were measured. Restraint induced the translocation of indigenous gram-positive bacteria in only a small proportion of animals, but translocation of gram-negative bacteria did not occur. Restraint induced short-lived increases in plasma corticosterone and brain amine metabolism, whereas bacterial translocation was slower and persisted long after the HPA axis and neurochemical responses had dissipated. When mice were infected with Salmonella typhimurium, spontaneous translocation occurred and plasma corticosterone, interleukin-6 concentrations, and brain catecholamine and indoleamine metabolism were elevated. These findings indicate that the translocation of indigenous gastrointestinal bacteria did not contribute to the HPA axis and neurochemical changes induced by restraint. However, translocation of nonindigenous S. typhimurium with or without restraint did induce HPA and neurochemical responses.  相似文献   

7.
Effects of intraperitoneal injection of cyclophosphamide, an immunosuppressant, on the degree of bacterial translocation and morphological changes of Peyer's patches (PP) in the intestine were investigated with antibiotic-decontaminated SPF mice and germfree mice monoassociated with Escherichia coli C25. It has been reported that treatment with cyclophosphamide induces bacterial translocation. Cyclophosphamide treatment in this study, however, significantly decreased E. coli C25 translocation from the gastrointestinal tract to the mesenteric lymph nodes (MLN), although the numbers of lymphoid cells, especially B cells, in the PP, MLN, and spleen were remarkably reduced. Four injections of cyclophosphamide at a dose of 100 mg/kg inhibited bacterial translocation more than one injection at a dose of 200 mg/kg in SPF mice. Germfree mice, however, treated with one dose of 200 mg/kg showed the same inhibition of bacterial translocation as those given 100 mg/kg four times. In cyclophosphamide-treated mice, lymph follicles in the PP were obviously smaller than those in control mice, M-cells were similar in appearance to absorption epithelial cells except for short microvilli, and immune cells among the M-cells had disappeared. These data suggested that inhibition of bacterial translocation in mice treated with cyclophosphamide may be the result of morphological and physiological changes of epithelial cells in the gastrointestinal tract, especially M-cells, as a point of entry of invading bacteria, independent of the changes in immunological function. Received: 16 November 1995 / Accepted: 12 December 1995  相似文献   

8.
Slc:ddY mice that received a single intraperitoneal injection of 200 mg/kg streptozotocin (STZ) were examined for persistency of diabetes (changes of indigenous bacterial floras, and bacterial translocation. Significant diabetes (increase in plasma glucose and decrease in insulin) was recognized 2 weeks after the injection, and persisted for 12 weeks. The numbers of aerobic gram-negative bacilli, staphylococci (including micrococci), and streptococci in caecal and oral floras were significantly increased, but the numbers of anaerobic bacteria in caecal flora were hardly changed. Bacterial translocation of indigenous bacteria to the mesenteric lymph node, lung, or kidney was detectable in some mice 2 weeks after the injection. The incidence of bacterial translocation in these STZ-treated mice then increased; infection caused by several organisms, e.g., Klebsiella pneumoniae, Staphylococcus epidermidis, streptococci, or Lactobacillus sp., occurred in lung, liver, spleen, kidneys, and mesenteric lymph node. No indigenous bacteria were cultured from these organs of control mice. This endogenous infection may have been due to the over population of several bacterial strains caused by disruption of indigenous floras along with depression of immunological function.  相似文献   

9.
Translocation of normally non-pathogenic bacteria across the gut may drive inflammatory responses associated with sepsis and inflammatory bowel disease. Recent evidence suggests translocation may not be purely passive, but occurs via novel transcellular pathways activated in enterocytes by inflammatory and metabolic stress. The specificity of this pathway with respect to different E. coli strains and other bacterial species, and possible molecular determinants of the "translocating" phenotype have been investigated. Translocation of E. coli strains and other bacteria was studied across Caco-2 monolayers exposed to different forms of cellular stress. All bacteria, apart from the pathogen Shigella sonnei, exhibited low levels of translocation in untreated monolayers. However, following enterocyte stress, translocation of E. coli strains C25 and HBTEC-1 was markedly stimulated, accompanied by increased internalisation into enterocytes. C25 and HBTEC-1 were typed to ECOR group A and group D respectively. Pathoarray analysis showed both strains had profiles quite different to those predicted for typical ExPEC isolates, lacking many of the genes associated with pathogenicity, although they contained several ORFs in common with ExPEC isolates. These data suggest translocating E. coli strains associated with infections are not opportunistic ExPEC strains but may comprise a separate group of E. coli strains.  相似文献   

10.
Bifidobacteria from breast-fed infants, formula-fed infants, or premature babies fed by parenteral methods were isolated and identified. The persistence of these microorganisms in the gastrointestinal tract of mice, after oral administration, was studied to determine the optimal dose and frequency of translocation to the liver and spleen. The rate of isolation among infants varied between 19 and 82% depending on the origin of the samples, with the highest values seen in breast-fed babies. The predominant species found in all cases was Bifidobacterium adolescentis. The optimal dose for oral administration of bifidobacteria to mice was 10(7) cells per day per animal for up to 2, 5, or 7 days. These bacteria remained up to 5 days postfeeding, even if feeding was interrupted. The results of bacterial translocation assays showed differences for the different strains and doses tested.  相似文献   

11.
A single administration of fluorouracil (5-FU), a well-used cancer chemotherapeutic agent, at high doses (338-800 mg/kg) to specific pathogen free mice induced a lethal infection with Escherichia coli. The infection was manifested in all the mice treated with 5-FU 7-14 days after administration of the drug, when the number of E. coli in liver reached levels ranging from 10(8) to 10(10) colony-forming units, and the type of the infecting bacteria was limited to E. coli. The infection was accompanied with the increase in the population levels of E. coli in the intestinal tract which reached levels about 10(3) to 10(4) times as high as those of normal mice. Administration of tegafur, a less toxic derivative of 5-FU, to mice at a lethal dose of 1280 mg/kg induced infection with E. coli similar to that induced by 5-FU. Multiple administration of both streptomycin sulfate and cephalothin to mice after treatment with 5-FU protected the mice completely from the lethal infection induced by 5-FU, suggesting that the lethality of 5-FU was due to indigenous bacterial infection.  相似文献   

12.
The defense mechanism against indigenous bacterial translocation was studied using a model of endogenous infection in X-irradiated mice. All mice irradiated with 9 Gy died from day 8 to day 15 after irradiation. The death of mice was observed in parallel with the appearance of bacteria from day 7 in various organs, and the causative agent was identified to be Escherichia coli, an indigenous bacterium translocating from the intestine. Decrease in the number of blood leukocytes, peritoneal cells and lymphocytes in Peyer's patches or mesenteric lymph nodes was observed as early as 1 day after irradiation with 6 or 9 Gy. The mitogenic response of lymphocytes from various lymphoid tissues was severely affected as well. The impairment of these parameters for host defense reached the peak 3 days after irradiation and there was no recovery. However, in vivo bactericidal activity of Kupffer cells in mice irradiated with 9 Gy was maintained in a normal level for a longer period. It was suggested that Kupffer cells play an important role in the defense against indigenous bacteria translocating from the intestine in mice.  相似文献   

13.
The inflammatory response to Gram-negative infection was studied in LPS responder and nonresponder C3H mice. Twenty-four hours after ascending E. coli urinary tract infection, an influx of neutrophils into the urine was observed in C3H/HeN mice (Lpsn,Lpsn); no significant neutrophil influx occurred in C3H/HeJ mice (Lpsd,Lpsd) at this time. A second peak of urinary neutrophil excretion was observed in both strains of mice approximately 6 days post-infection. The first, but not the second peak was inducible by inoculation with formalin-killed E. coli but not by Gram-positive bacteria. This finding suggested that the first peak is triggered by LPS, whereas the second peak emanates from other bacterial components which activate both LPS responder and nonresponder mice. The first peak of the inflammatory response was inversely related to bacterial clearance. C3H/HeJ mice (Lpsd,Lpsd) retained about 2000-fold more E. coli in the kidneys than C3H/HeN mice (Lpsn,Lpsn). The infection persisted despite the late-occurring influx of neutrophils in C3H/HeJ mice. These results suggest that an inflammatory response to LPS is required for the elimination of a local Gram-negative infection.  相似文献   

14.
Antagonistic activity of Lactobacillus strains has been known for some time. This property is connected with production of many active substances by lactobacilli e.g., organic acids and bacteriocin-like substances which interfere with other indigenous microorganisms inhabiting the same ecological niche, including also anaerobic gastrointestinal tract pathogens. Growing interest of clinical medicine in finding new approaches to treatment and prevention of common inflammatory infections of the digestive tract resulted in studies on a possible usage of lactic acid bacteria. Last years, several in vitro and in vivo experiments on antagonism of different Lactobacillus strains against Helicobacter pylori and Clostridium difficile were performed. These observations had been done on already established, well known probiotic Lactobacillus strains. We tested antibacterial activities of Lactobacillus strains isolated from human digestive tract. As indicator bacteria, four species known as anaerobic bacterial etiologic agents of gastroenteric infections: Helicobacter pylori, Campylobacter jejuni, C. coli and Clostridium difficile were used. Some of them were obtained from international collections, others were clinical isolates from specimens taken from patients with different defined gastrointestinal infections. We used a slab method of testing inhibitory activity described in details previously. Following conclusions were drawn from our study: All tested human Lactobacillus strains were able to inhibit the growth of all strains of anaerobic human gastrointestinal pathogens used in this study. Inhibitory activities of tested Lactobacillus strains against Helicobacter pylori, Campylobacter spp., and Clostridium difficile as measured by comparing mean diameters of the inhibition zones were similar. Differences in susceptibility of individual indicator strains of Campylobacter spp. and Clostridium difficile to inhibitory activity of Lactobacillus strains were small. A similar mechanism of inhibition of anaerobic bacteria by lactobacilli is postulated.  相似文献   

15.
Cecum-colonizing bacteria were isolated from Campylobacter jejuni-free White Leghorn (Gallus domesticus) laying hens and screened for the ability to produce anti-C. jejuni metabolites. Nine isolates were obtained that possessed this characteristic. The peroral administration of the nine isolates as a mixture (ca. 10(9) per chick) to 1-day-old chicks was followed 1 week later by peroral inoculation of Campylobacter jejuni (ca. 10(9) per chick) to determine if the cecal isolates could protect chicks from colonization by campylobacters. The nine-strain mixture of cecal bacteria provided from 41 to 85% protection from C. jejuni colonization. The protective bacteria were reduced to a mixture of three strains on the basis of their ability to utilize mucin as a sole substrate for growth. These strains included Klebsiella pneumoniae 23, Citrobacter diversus 22, and Escherichia coli (O13:H-) 25. Four feeding trials with this three-strain mixture provided from 43 to 100% (average, 78%) protection from C. jejuni colonization. The dominant cecal bacterium of chicks treated with the three-strain mixture was consistently E. coli O13:H-. Similarly, three trials with only E. coli 25 used as the protective bacterium resulted in 49 to 72% (average, 59%) protection from C. jejuni colonization, with E. coli O13:H- being the dominant cecal bacterium in all cases. Although not completely effective, E. coli 25 substantially reduced the incidence of C. jejuni colonization of chicks. For all trials, fewer C. jejuni were present in the ceca of colonized chicks receiving the protective bacteria before exposure to C. jejuni than in chicks receiving only C. jejuni.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Cecum-colonizing bacteria were isolated from Campylobacter jejuni-free White Leghorn (Gallus domesticus) laying hens and screened for the ability to produce anti-C. jejuni metabolites. Nine isolates were obtained that possessed this characteristic. The peroral administration of the nine isolates as a mixture (ca. 10(9) per chick) to 1-day-old chicks was followed 1 week later by peroral inoculation of Campylobacter jejuni (ca. 10(9) per chick) to determine if the cecal isolates could protect chicks from colonization by campylobacters. The nine-strain mixture of cecal bacteria provided from 41 to 85% protection from C. jejuni colonization. The protective bacteria were reduced to a mixture of three strains on the basis of their ability to utilize mucin as a sole substrate for growth. These strains included Klebsiella pneumoniae 23, Citrobacter diversus 22, and Escherichia coli (O13:H-) 25. Four feeding trials with this three-strain mixture provided from 43 to 100% (average, 78%) protection from C. jejuni colonization. The dominant cecal bacterium of chicks treated with the three-strain mixture was consistently E. coli O13:H-. Similarly, three trials with only E. coli 25 used as the protective bacterium resulted in 49 to 72% (average, 59%) protection from C. jejuni colonization, with E. coli O13:H- being the dominant cecal bacterium in all cases. Although not completely effective, E. coli 25 substantially reduced the incidence of C. jejuni colonization of chicks. For all trials, fewer C. jejuni were present in the ceca of colonized chicks receiving the protective bacteria before exposure to C. jejuni than in chicks receiving only C. jejuni.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
A study of colonization resistance against potentially pathogenic bacteria (Escherichia coli and Pseudomonas aeruginosa) was conducted in hexaflora-associated gnotobiotic mice. Groups of germfree AKR mice were swabbed with five bacterial and a single gastrointestinal yeast species: Streptococcus faecalis. Lactobacillus brevis. Staphylococcus epidermidis, Enterobacter aerogenes, Bacteroides fragilis var. vulgatus, and Torulopsis sp. All species became established in the gut in 8 weeks. Later these associated mice were divided and challenged by four graded doses of E. coli or P. aeruginosa. The presence of challenge organism was monitored specifically in the freshly voided fecal specimens of the challenged mice. Escherichia coli colonized the gut of each mouse at each level up to 60 days post challenge. Pseudomonas aeruginosa was completely eliminated from each mouse at each dose level after 30 days post challenge. Evidence suggests that all six species were sufficient to prevent the colonization of P. aeruginosa and not of E. coli in the gut of the gnotobiotic mice.  相似文献   

18.
The effect of psychological stress on the gastrointestinal microbiota is widely recognized. Chronic psychological stress may be associated with increased disease activity in inflammatory bowel disease, but the relationships among psychological stress, the gastrointestinal microbiota, and the severity of colitis is not yet fully understood. Here, we examined the impact of 12-week repeated water-avoidance stress on the microbiota of two inbred strains of T cell receptor alpha chain gene knockout mouse (background, BALB/c and C57BL/6) by means of next-generation sequencing of bacterial 16S rRNA genes. In both mouse strains, knockout of the T cell receptor alpha chain gene caused a loss of gastrointestinal microbial diversity and stability. Chronic exposure to repeated water-avoidance stress markedly altered the composition of the colonic microbiota of C57BL/6 mice, but not of BALB/c mice. In C57BL/6 mice, the relative abundance of genus Clostridium, some members of which produce the toxin phospholipase C, was increased, which was weakly positively associated with colitis severity, suggesting that expansion of specific populations of indigenous pathogens may be involved in the exacerbation of colitis. However, we also found that colitis was not exacerbated in mice with a relatively diverse microbiota even if their colonic microbiota contained an expanded phospholipase C-producing Clostridium population. Exposure to chronic stress also altered the concentration of free immunoglobulin A in colonic contents, which may be related to both the loss of bacterial diversity in the colonic microbiota and the severity of the colitis exacerbation. Together, these results suggest that long-term exposure to psychological stress induces dysbiosis in the immunodeficient mouse in a strain-specific manner and also that alteration of microbial diversity, which may be related to an altered pattern of immunoglobulin secretion in the gastrointestinal tract, might play a crucial role in the development of chronic stress-induced colitis.  相似文献   

19.
Citrobacter rodentium belongs to a family of human and animal enteric pathogens that includes the clinically significant enterohaemorrhagic Escherichia coli (EHEC) and enteropathogenic E. coli (EPEC). These pathogens use attaching and effacing (A/E) lesions to colonize the host gastrointestinal tract. In this study we have used bioluminescence imaging (BLI) to investigate the organ specificity, dynamics of colonization and clearance of mice by C. rodentium in situ and in real time. The bioluminescent C. rodentium derivative, strain ICC180, expresses the luxCDABE operon from the entemopathogenic nematode symbiont Photorhabdus luminescens and light levels accurately reflect bacterial numbers both in vitro and in vivo. We have demonstrated that primary colonization of the mouse by C. rodentium takes place within the caecum, specifically within the specialized patch of lymphoid tissue known as the caecal patch. Following colonization of the caecum C. rodentium established a colonic infection. Clearance of C. rodentium ICC180 parallels the colonization dynamics, i.e. the caecum was first to be cleared followed by the colon. A bioluminescent eae (encoding the outer membrane adhesin intimin) C. rodentium mutant failed to establish long-term colonization, although low levels of bacteria could be recovered for up to 3 days post challenge from the caecum.  相似文献   

20.
The alarming rate of bacterial resistance induction highlights the clinical need for antimicrobial agents that act by novel modes of action. Based on the activity profile, the general tissue distribution and renal clearance of peptide-based drugs, we hypothesized that our newly developed pyrrhocoricin derivative would be able to fight resistant uropathogens in vitro and in vivo. Indeed, the Pip-pyrr-MeArg dimer killed all 11 urinary tract infection-related Escherichia coli and Klebsiella pneumoniae strains we studied in the sub-low micromolar concentration range. Almost all control antibiotics, including the currently leading trimethoprim-sulfametoxazole combination for urinary tract infection, remained without considerable activity against two or more of these bacterial strains. In a mouse ascending urinary tract infection model with E. coli CFT073 as pathogen, two doses of intravenous, subcutaneous or oral treatment with the Pip-pyrr-MeArg derivative reduced the bacterial counts in the kidneys, bladder and urine to varying levels. Statistically significant elimination or reduction of bacteria compared to untreated animals was observed at dual intravenous or subcutaneous doses of 0.4 or 10mg/kg, respectively. Serial passage of the same E. coli strain in the presence of sublethal doses of the designed peptide failed to generate resistant mutants. The Pip-pyrr-MeArg dimer showed no toxicity to COS-7 cells to the highest 500microM concentration studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号