首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The estrogen receptor (ER) is a rapidly turning over protein, with a half-life of ca. 3–4 h in estrogen target cells. Sequence analysis of the human ER reveals a putative PEST sequence, sequences rich in proline (P), glutamic acid (E), serine (S) and threonine (T), in the carboxy-terminal F domain of the protein. Since PEST sequences have been implicated in the rapid turnover of some proteins, we have used site-directed mutagenesis to investigate the role of the F region containing PEST residues in the stability and bioactivity of the receptor. A truncated form of ER lacking the last 41 amino acids of the protein and encompassing the PEST sequences (amino acids 555 to 567) was made by mutagenesis of the ER cDNA. Pulse-chase experiments, involving immunoprecipitation of [35S]methionine/[35]Scysteine labeled receptors or of receptors covalently labeled with tamoxifen aziridine followed by gel electrophoresis, were used to determine the half-life of the wild-type and truncated ERs. These experiments showed that the turnover rate of the receptors expressed in Chinese hamster ovary and monkey kidney (COS-1) cells was 3 to 5 h and that elimination of the PEST residues did not have a significant effect on the degradation rate of the protein. Moreover, deletion of the last 41 amino acids (F domain) of the ER did not affect transactivation ability, ligand binding affinity, or the phosphorylation pattern of the receptor. Therefore, the role of domain F in ER function remains unclear, but it is not a determinant of the relatively rapid rate of ER turnover in cells.  相似文献   

2.
The protein encoded by varicella-zoster virus open reading frame 63 and carboxy-terminal deletions of the same were expressed either as fusion proteins at the carboxy terminus of the maltose-binding protein in Escherichia coli or independently in transfected mammalian cells. The truncations contained amino acids 1 to 142 (63 delta N) or 1 to 210 (63 delta K) of the complete 278-amino-acid primary sequence. Recombinant casein kinase II phosphorylated the 63F and 63 delta KF fusion proteins in vitro but did not phosphorylate the 63 delta NF fusion protein, implying that phosphorylation occurred between amino acids 142 and 210. Immunoprecipitation of 35S- or 32P-labelled extracts of cells transfected with plasmids expressing 63, 63 delta N, or 63 delta K also indicated that in situ phosphorylation most likely occurred between amino acids 142 and 210. These combined results suggest that casein kinase II plays a significant role in the phosphorylation of the varicella-zoster virus 63 protein. Indirect immunofluorescence of transfected cells indicated nuclear localization of the 63 protein and cytoplasmic localization of 63 delta K and 63 delta N, implying a requirement for sequences between amino acids 210 and 278 for efficient nuclear localization.  相似文献   

3.
Mammalian ornithine decarboxylase (ODC), a key enzyme in polyamine biosynthesis, is rapidly degraded in cells, an attribute important to the regulation of its activity. Mutant and chimeric ODCs were created to determine the structural requirements for two modes of proteolysis. Constitutive degradation requires the carboxy terminus and is independent of intracellular polyamines. Truncation of five or more carboxy-terminal amino acids prevents this mode of degradation, as do several internal deletions within the 37 carboxy-most amino acids that spare the last five residues. Polyamine-dependent degradation of ODC requires a distinct region outside the carboxy terminus. The ODC of a parasite, Trypanosoma brucei, is structurally very similar to mouse ODC but lacks the carboxy-terminal domain; it is not a substrate for either pathway. The regulatory properties of enzymatically active chimeric proteins incorporating regions of the two ODCs support the conclusion that distinct domains of mouse ODC confer constitutive degradation and polyamine-mediated regulation. Mouse ODC contains two PEST regions. The first was not required for either form of degradation; major deletions within the second ablated constitutive degradation. When mouse and T. brucei ODC RNAs were translated in vitro in a reticulocyte lysate system, the effects of polyamine concentration on ODC protein production and activity were similar for the two mRNAs, which contradicts claims that this system accurately reflects the in vivo effects of polyamines on responsive ODCs.  相似文献   

4.
Genome segment 9 of bluetongue virus serotype 10 encodes the minor protein VP6. The protein is abundant with basic residues particularly in two regions of the carboxy half of the molecule. A series of amino- and carboxy-terminal deletion mutants was expressed in mammalian cells by using a vaccinia virus T7 polymerase-driven transient expression system, and the intracellular fate of the products was monitored by both immunofluorescence staining and cell fractionation techniques. Data obtained indicated clearly that VP6 has nuclear transportation signals which may be correlated with positively charged domains of the molecule. In the intact molecule, though, these signals are masked and the protein is retained in the cytoplasm. The biochemical and immunofluorescence data obtained indicate that sequences in the region of residues 33 to 80 of the 328-amino acid protein are required for the retention of VP6 within the cell cytoplasm while amino acids 303 to 308 in the carboxy-terminal half of the molecule appear to possess nuclear localization capabilities.  相似文献   

5.
A series of seven carboxy-terminal deletion mutants of oat phytochrome A were stably expressed in transgenic tobacco to localize phytochrome domains involved in chromophore attachment, spectral integrity, photoreversibility between the red light (Pr)- and far-red light (Pfr)-absorbing forms, dimerization, and biological activity. Amino acids necessary for chromophore attachment in vivo were localized to the amino-terminal 398 residues because mutant proteins this small had covalently bound chromophore. Deletion mutants from the carboxy terminus to residue 653 were spectrally indistinguishable from the full-length chromoprotein. In contrast, further truncation to residue 399 resulted in a chromoprotein with a bleached Pfr absorbance spectrum, Pr and Pfr absorbance maxima shifted toward shorter wavelengths, and reduced Pfr to Pr phototransformation efficiency. Thus, residues between 399 ad 652 are required for spectral integrity but are not essential for chromophore attachment. The sequence(s) between residues 919 and 1093 appears to be necessary for dimerization. Carboxy-terminal mutants containing this region behaved as dimers under nondenaturing conditions in vitro, whereas truncations without this region behaved as monomers. None of the plants expressing high levels of deletion mutants lacking the 35 carboxy-terminal amino acids displayed the light-exaggerated phenotype characteristic of plants expressing biologically active phytochrome A, even when the truncated phytochromes were expressed at levels 6- to 15-fold greater than that effective for the full-length chromoprotein. Collectively, these data show that the phytochrome protein contains several separable carboxy-terminal domains required for structure/function and identify a domain within 35 residues of the carboxy terminus that is critical for the biological activity of the photoreceptor in vivo.  相似文献   

6.
7.
Targeting of E. coli beta-galactosidase to the nucleus in yeast   总被引:111,自引:0,他引:111  
M N Hall  L Hereford  I Herskowitz 《Cell》1984,36(4):1057-1065
In order to identify determinants governing nuclear protein localization, we constructed a set of hybrid genes by fusing the S. cerevisiae gene, MAT alpha 2, coding for a presumptive nuclear protein, and the E. coli gene, lacZ, coding for beta-galactosidase. The resultant hybrid proteins contain 3, 13, 25, 67, or all 210 amino acids of wild-type alpha 2 protein at the amino terminus and a constant, enzymatically active portion of beta-galactosidase at the carboxy terminus. Indirect immunofluorescence and subcellular fractionation studies with yeast cells containing the alpha 2-LacZ hybrid proteins indicate that the alpha 2 segment can direct localization of beta-galactosidase to the nucleus. A segment as small as 13 amino acids from alpha 2 is sufficient for this localization. Comparison of amino acid sequences of other nuclear proteins with this region of alpha 2 reveals a sequence that may be necessary for nuclear targeting. Production of some alpha 2-LacZ hybrid proteins causes cell death, perhaps as a result of improper or incomplete localization. These studies also indicate that the alpha 2 protein, argued on genetic grounds to be a negative regulator, acts in the yeast nucleus.  相似文献   

8.
9.
  • 1.1. Most of proteins which are rapidly degraded inside eukaryotic cells have been found to contain amino acid sequences (PEST sequences) enriched in proline, acidic residues (glutamic acid and/or aspartic acid) and hydrophilic residues (serine and threonine) (Rogers et al. (1986) Science234, 364–368).
  • 2.2. This correlation was tested on nuclear proteins and a close relationship was found between nuclear protein stability and the presence of PEST regions.
  • 3.3. Nuclear proteins with structural functions which can be considered as stable components of cell nuclei generally lack PEST sequences.
  • 4.4. In contrast, regulatory nuclear factors which have specific and transient functions generally possess at least one PEST sequence.
  相似文献   

10.
A castor bean (Ricinus communis cv. Hale) cDNA encoding catalase was cloned and sequenced. The cDNA encoding the carboxy-terminal domain of catalase was compared to the corresponding sequences of six other plant catalases. The deduced amino acid sequences were compared according to the chemical attributes of each amino acid within each carboxy-terminal domain. A tripeptide sequence having the chemical attributes of the peroxisomal targeting sequence [Gould, S.J., Keller, G.-A., Hosken, N., Wilkinson, J. & Subramani, S. (1989) J. Cell Biol. 108, 1657-1664] was common to all the glyoxysomal/peroxisomal plant catalases. This sequence motif was located six amino acids from the carboxy terminus of each of the plant catalases. An identical motif was also found within the carboxy-terminal domain of three mammalian catalases previously sequenced. We hypothesize that these motifs are at least part of the targeting mechanism for catalase entry into plant glyoxysomes/peroxisomes.  相似文献   

11.
The L1 major capsid protein of human papillomavirus type 11 (HPV-11) was expressed in Escherichia coli, and the soluble recombinant protein was purified to near homogeneity. The recombinant L1 protein bound DNA as determined by the Southwestern assay method, and recombinant mutant L1 proteins localized the DNA-binding domain to the carboxy-terminal 11 amino acids of L1. Trypsin digestion of the full-length L1 protein yielded a discrete 42-kDa product (trpL1), determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, resulting from cleavage at R415, 86 amino acids from the L1 carboxy terminus. Sucrose gradient sedimentation analysis demonstrated that trpL1 sedimented at 11S, while L1 proteins with amino-terminal deletions of 29 and 61 residues sedimented at 4S. Electron microscopy showed that the full-length L1 protein appeared as pentameric capsomeres which self-assembled into capsid-like particles. The trpL1 protein also had a pentameric morphology but was unable to assemble further. In an enzyme-linked immunosorbent assay, the trpL1 and L1 capsids reacted indistinguishably from virus-like particles purified after expression of HPV-11 L1 in insect cells. The carboxy terminus of L1 therefore constitutes the interpentamer linker arm responsible for HPV-11 capsid formation, much like the carboxy-terminal domain of the polyomavirus VP1 protein. The trypsin susceptibility of HPV-11 L1 capsids suggests a possible mechanism for virion disassembly.  相似文献   

12.
Bluetongue virus produces large numbers of tubules during infection. The tubules are formed from a 552-amino-acid, 64-kDa NS1 protein encoded by the viral double-stranded RNA segment M6. A series of deletion and extension mutants of bluetongue virus serotype 10 NS1 has been generated and expressed in insect cells in order to identify the carboxy-terminal components of the protein which are important for tubule formation. The mutants AcCT5 and AcCT10, lacking 5 and 10 of the carboxy-terminal residues, respectively, were prepared. By analyzing their abilities to form tubules, it was shown that AcCT5 was capable of this function whereas AcCT10 was not, indicating that the last five amino acids are not strongly involved in NS1 tubule formation. Extension mutants including foreign antigenic sequences involving up to 16 amino acids added to the C terminus of NS1 were shown to form tubules, although an extension of 19 amino acids inhibited tubule formation. Analysis of a panel of monoclonal antibodies has established that an NS1 antigenic site is located near the carboxy terminus of the protein. It appears to be exposed on the surface of tubules. The opportunities to develop new vaccines using recombinant NS1 to deliver foreign epitopes are discussed.  相似文献   

13.
14.
Three clones coding for carboxy-terminal portions of type II cytokeratins have been isolated from a cDNA library constructed from the epidermis of the frog Xenopus laevis. These clones have been identified by hybridization-selection-translation and Northern blot analysis, and contain sequences complementary to mRNAs of similar size that code for three different polypeptides of the Mr 64,000 group, Ia-c, i.e. the only major type II cytokeratins expressed in this tissue. A comparison of the corresponding nucleotide sequences and the amino acid sequences deduced therefrom shows only minor differences in these polypeptides, most of which occur as isolated point mutations. This indicates that coding sequences of the different type II cytokeratin genes in epidermis of Xenopus are very similar, in contrast to the more extended differences of type II cytokeratin genes expressed in mammalian epidermis, which probably reflects a lower degree of evolutionary divergence of members of this protein family in amphibia. A comparison of the Xenopus sequences with those of mammalian type II cytokeratins reveals the same characteristic features, i.e. an alpha-helical domain ending with the familiar consensus sequence T Y R (X Y) L E G E, followed by a non-helical domain Cl enriched in hydroxyamino acids. Both domains are remarkably conserved in sequence between Xenopus and mammals. The following glycine-rich domain (C2) displays similar oligopeptide repeats (mostly of the type G G G M in the frog keratins), and the terminal C3 domain is characterized by a region exceptionally rich in hydroxyamino acids, which immediately precedes a cluster of basic amino acids at the carboxy terminus. Our results show that the typical features of the domain of type II cytokeratins are already established in amphibia and that these homologies are not restricted to the alpha-helical rod of these proteins but, in principle, extend to the other domains located in the so-called hypervariable tail portion. This suggests that the hypervariable regions are not subject to random variability but contain functionally important domains that have been well conserved during evolution.  相似文献   

15.
16.
The binding domains of four monoclonal antibodies (MAbs) specific for the M protein of the PUR46-MAD strain of transmissible gastroenteritis coronavirus (TGEV) have been located in the 46 carboxy-terminal amino acids of the protein by studying the binding of MAbs to recombinant M protein fragments. Immunoelectron microscopy using these MAbs demonstrated that in a significant proportion of the M protein molecules, the carboxy terminus is exposed on the external surface both in purified viruses and in nascent TGEV virions that recently exited infected swine testis cells. The same MAbs specifically neutralized the infectivity of the PUR46-MAD strain, indicating that the C-terminal domain of M protein is exposed on infectious viruses. This topology of TGEV M protein probably coexists with the structure currently described for the M protein of coronaviruses, which consists of an exposed amino terminus and an intravirion carboxy-terminal domain. The presence of a detectable number of M protein molecules with their carboxy termini exposed on the surface of the virion has relevance for viral function, since it has been shown that the carboxy terminus of M protein is immunodominant and that antibodies specific for this domain both neutralize TGEV and mediate the complement-dependent lysis of TGEV-infected cells.  相似文献   

17.
DNA topoisomerase IIα is the intracellular target for several important chemotherapeutic agents, and drug-resistant human tumor cell lines have been described in which deletions in the C-proximal region of this enzyme are associated with its cytoplasmic localization. We have identified multiple potential bipartite nuclear localization signal (NLS) sequences in this region using a modified definition of the motif, and in the present study, we have expressed five of these as fusion proteins with β-galactosidase. Only one sequence (spanning amino acids 1454 to 1497) was sufficient to cause strong nuclear localization. Subsequent mutation analyses indicated that this NLS sequence was bipartite and that both domains contain more than two basic amino acids. Substitution of the lysine residue at position 1492 in the second basic domain with glutamine resulted in a fusion protein that localized inefficiently to the nucleus, indicating that all three basic residues in this domain are necessary. Our results confirm that a broader definition is required to detect all potential bipartite NLS motifs in a polypeptide sequence, although functional tests are still essential for identification of those sequences actually capable of directing nuclear localization.  相似文献   

18.
19.
The karyophilic protein N1 (590 amino acids) is an abundant soluble protein of the nuclei of Xenopus laevis oocytes where it forms defined complexes with histones H3 and H4. The amino acid sequence of this protein, as deduced from the cDNA, reveals a putative nuclear targeting signal as well as two acidic domains which are candidates for the interaction with histones. Using two different histone binding assays in vitro we have found that the deletion of the larger acidic domain reduces histone binding drastically to a residual value of approximately 15% of the complete molecule, whereas removal of the smaller acidic domain only slightly reduces histone complex formation in solution, but infers more effectively with binding to immobilized histones. In the primary structure of the protein both histone-binding domains are distant from the conspicuous nuclear accumulation signal sequence (residues 531-537) close to the carboxy terminus which is very similar to the SV40 large T-antigen nuclear targeting sequence. Using a series of N1 mutants altered by deletions or point mutations we show that this signal is required but not sufficient for nuclear accumulation of protein N1. The presence of an additional, more distantly related signal sequence in position 544-554 is also needed to achieve a level of nuclear uptake equivalent to that of the wild-type protein. Results obtained with point mutations support the concept of two nuclear targeting sequences and emphasize the importance of specific lysine and arginine residues in these signal sequences.  相似文献   

20.
The 289 residue nuclear oncoprotein encoded by the adenovirus 5 Ela gene contains two peptide sequences that behave as nuclear localization signals (NLS). One signal, located at the carboxy terminus, is like many other known NLSs in that it consists of a short stretch of basic residues (KRPRP) and is constitutively active in cells. The second signal resides within an internal 45 residue region of E1a that contains few basic residues or sequences that resemble other known NLSs. Moreover, this internal signal functions in injected Xenopus oocytes, but not in transfected Xenopus A6 cells, suggesting that it could be regulated developmentally (Slavicek et al. 1989. J. Virol. 63:4047). In this study, we show that the activity of this signal is sensitive to ATP depletion in vivo, efficiently directs the import of a 50 kD fusion protein and can compete with the E1a carboxy-terminal NLS for nuclear import. In addition, we have delineated the precise amino acid residues that comprise the second E1a NLS, and have assessed its utilization during Xenopus embryogenesis. Using amino acid deletion and substitution analyses, we show that the signal consists of the sequence FV(X)7-20MXSLXYM(X)4MF. By expressing in Xenopus embryos a truncated E1a protein that contains only the second NLS and by monitoring its cytoplasmic/nuclear distribution during development with indirect immunofluorescence, we find that the second NLS is utilized up to the early neurula stage. In addition, there appears to be a hierarchy among the embryonic germ layers as to when the second NLS becomes nonfunctional. For this reason, we refer to this NLS as the developmentally regulated nuclear localization signal (drNLS). The implications of these findings for early development are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号