首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In-situ root extent measurements by electrical capacitance methods   总被引:8,自引:0,他引:8  
F. N. Dalton 《Plant and Soil》1995,173(1):157-165
A conceptual model is presented that provides a rational basis for using plant root capacitance as an in-situ measurement for assessing plant root development. This method is based on measuring the electricla capacitance of an equivalent parallel resistance-capacitance circuit formed by the interface between soil-water and the plant root surface. Nutrient solution studies using tomato (Lycopersicon esculentum Mill.) showed a good correlation between plant root capacitance and root mass. Stage of development studies showed plant root capacitance measurements capable of detecting root development rate and suggested the method to be sensitive to root function. Soil water content was shown to have a significant effect on plant root capacitance measurement. The possibility of using this technique to assess relative root function is discussed. Positioning of the plant shoot electrode was shown to also have a significant effect on measurement of plant root capacitance, demonstrating the need for using consistent measurement techniques. The electrical capacitance method shows considerable promise. More research is needed before it can be used routinely.  相似文献   

2.
A novel integrated bio-sensor technology based on thin-film bulk acoustic wave resonators on silicon is presented and the feasibility of detecting DNA and protein molecules proofed. The detection principle of these sensors is label-free and relies on a resonance frequency shift caused by mass loading of an acoustic resonator, a principle very well known from quartz crystal micro balances. Integrated ZnO bulk acoustic wave resonators with resonance frequencies around 2 GHz have been fabricated, employing an acoustic mirror for isolation from the silicon substrate. DNA oligos have been thiol-coupled to the gold electrode by on-wafer dispensing. In a further step, samples have either been hybridised or alternatively a protein has been coupled to the receptor. The measurement results show the new bio-sensor being capable of both, detecting proteins as well as the DNA hybridisation without using a label. Due to the substantially higher oscillation frequency, these sensors already show much higher sensitivity and resolution comparable to quartz crystal micro balances. The potential for these sensors and sensors arrays as well as technological challenges will be discussed in detail.  相似文献   

3.
Using a first-principles linear response theory, the capacitance of the DNA nucleotides, adenine, cytosine, guanine, and thymine, are calculated. The difference in the capacitance between the nucleotides is studied with respect to conformational distortion. The result suggests that although an alternate current capacitance measurement of a single-stranded DNA chain threaded through a nanogap electrode may not be sufficient to be used as a standalone method for rapid DNA sequencing, the capacitance of the nucleotides should be taken into consideration in any GHz-frequency electric measurements and may also serve as an additional criterion for identifying the DNA sequence.  相似文献   

4.
Based on interdigitated aluminum electrodes covered with Al(2)O(3) and silver precipitation via biotin-antibody coupled gold nano-labels as signal enhancement, three complementary electrical methods were used and compared to detect the hybridization of target DNA for concentrations down to the 50 pM of a PCR product from cytochrome P450 2b2 gene. Human hepatic cytochrome P450 (CYP) enzymes participate in detoxification metabolism of xenobiotics. Therefore, determination of mutational status of P450 gene in a patient could have a significant impact on the choice of a medical treatment. Our three electrical extraction procedures are performed on the same interdigitated capacitive sensor lying on a passivated silicon substrate and consist in the measurement of respectively the low-frequency inter-electrodes capacitance, the high-frequency self-resonance frequency, and the equivalent MOS capacitance between the short-circuited electrodes and the backside metallization of the silicon substrate. This study is the first of its kind as it opens the way for correlation studies and noise reduction techniques based on multiple electrical measurements of the same DNA hybridization event with a single sensor.  相似文献   

5.
A thermostable, single polypeptide chain enzyme, esterase 2 from Alicyclobacillus acidocaldarius, was covalently conjugated in a site specific manner with an oligodeoxynucleotide. The conjugate served as a reporter enzyme for electrochemical detection of DNA hybridization. Capture oligodeoxynucleotides were assembled on gold electrode via thiol-gold interaction. The esterase 2-oligodeoxynucleotide conjugates were brought to electrode surface by DNA hybridization. The p-aminophenol formed by esterase 2 catalyzed hydrolysis of p-aminophenylbutyrate was amperometrically determined. Esterase 2 reporters allows to detect approximately 1.5 x 10(-18)mol oligodeoxynucleotides/0.6 mm2 electrode, or 3 pM oligodeoxynucleotide in a volume of 0.5 microL. Chemically targeted, single site covalent attachment of esterase 2 to an oligodeoxynucleotide significantly increases the selectivity of the mismatch detection as compared to widely used, rather unspecific, streptavidin/biotin conjugated proteins. Artificial single nucleotide mismatches in a 510-nucleotide ssDNA could be reliably determined using esterase 2-oligodeoxynucleotide conjugates as a reporter.  相似文献   

6.
This paper describes a sensor for label-free, fully electrical detection of DNA hybridization based on capacitive changes in the electrode-electrolyte interface. The sensor measures capacitive changes in real time according to a charging-discharging principle that is limited by the hysteresis window. In addition, a novel autonomous searching technique, which exclusively monitors desorption-free hybridized electrodes among electrode arrays, enhances the performance of the sensor compared with conventional capacitive measurement. The sensor system achieves a detection range of 80 dB. The integrated circuit sensor is fabricated with a 0.35 μm CMOS process. The proposed sensor offers rapid, robust and inexpensive measurement of capacitance with highly integrated detection circuitry. It also facilitates quantitative evaluations of molecular densities on a chip with distinctive impedance variations by monitoring desorption-free hybridized electrodes. Our electrical biosensor has great potential for use with bio analytical tools and point-of-care diagnosis.  相似文献   

7.
Three-electrode electrochemical impedance technique was investigated for detection of Salmonella typhimurium by monitoring the growth of bacteria in selenite cystine (SC) broth supplemented with trimethylamine oxide hydrochloride (TMAO.HCl) and mannitol (M). The change in the system impedance during the growth of bacteria was studied using frequency spectral scanning. It was found that the impedance at low frequencies (<10 kHz) mainly came from the double-charged layer capacitance, reflecting the changes at the electrode interface and the adsorption on the electrode surface. While at high frequencies (>10 kHz), the system impedance mainly depended on the medium resistance. The adsorption of bacteria on the electrode surface was detected by measuring low frequency impedance, and verified with Faradic impedance spectroscopy. Enumeration of S. typhimurium using a low frequency (1 Hz) capacitance measurement and a high frequency (1 MHz) resistance measurement were compared. The detection times were determined for quantitative analysis based on the growth curves of bacteria referring to either the medium resistance or electrode capacitance. The regression equations for the detection times (t(d), h) and the initial cell number (N, cells.ml(-1)) were t(d)=-1.24logN+13.4 with R(2)=0.98 and t(d)=-1.40logN+14.46 with R(2)=0.97 for the medium resistance and electrode capacitance methods, respectively.  相似文献   

8.
Neural prostheses often suffer from undesired chronic inflammatory tissue response. This can lead to neuronal loss and formation of glial scar tissue, which would serve as a barrier to neural signal transduction. In situ monitoring of neuro-inflammatory cytokines may improve our understanding of device induced inflammatory responses. Furthermore, early detection of the onset and degree of inflammation and releasing drugs accordingly may lead to improved long term performance of such implanted devices. For this reason, biosensor applying aptamer as probe and non-faradic electrochemical impedance spectroscopy (NIS) as the detection method has been developed. Aptamers, certain kinds of DNA or RNA molecules which can bind variety of molecules at high specificity, have the overwhelming advantages over antibodies of low cost and ease of use. Platelet-derived growth factor BB (PDGF-BB), one of the important cytokines involved in neural inflammation, has been selected as our detection target. Binding of PDGF to its aptamer immobilized on the silicon electrode surface lead to a decrease in capacitance measured by NIS. A good linear relationship between the decrease of capacitance and the logarithm of protein concentration was obtained, which proves the feasibility of quantitative measurements. By sweeping the applied electrode potential of potentiostatic EIS, -0.1 V to +0.1 V was determined to be the optimal range for achieving best discrimination between specific target binding and non-specific protein adsorption on aptamer-modified silicon surface. Under such conditions, the specificity of the detection measured by the ratio of the positive to negative control is around 10:1 and the detection limit is approximately 1 microg/ml (40 nM). The online measurement result exhibited negligible response for non-specific adsorption but significant signal changes for the specific target. Since the non-faradic strategy does not require any reagent to be loaded when performing the test, together with the ability of online measurements, this biosensor design is promising for in vivo monitoring.  相似文献   

9.
A capacitance immunosensor based on a plasma-polymerized ethylenediamine film (PPEF) has been developed. The resulting PPEF is studied with scanning electrode micrograph (SEM), IR reflection spectrum and cyclic voltammetry. SEM and IR reflection spectrum showed that the plasma-polymerized film (PPF) formed on the gold electrode surface is quite homogeneous, flat, nonporous and contains plenty of free-reacted -NH2. Moreover, cyclic voltammetry showed that the hexacyanoferrate redox reactions were blocked well by the formed PPF, that is to say, the formed PPF has excellent insulating characteristics. To investigate its applicability for capacitive immunosensing, goat-anti-human IgG antibody (IgGAb) was coupled to the PPF-coated gold electrode surface via glutaraldehyde (GA) to form an immunoglobulin G (IgG) probe. Alternating current (ac) impedance and capacitance measurement were used in the immunoassay. The experiment results show that the PPEF is applicable to form insulating layer of capacitive immunosensors.  相似文献   

10.
在原代培养的大鼠肾上腺嗜铬细胞上,综合运用细胞内钙测定法和全细胞膜片钳法,以检测膜电容变化为手段测定单一肾上腺嗜铬细胞的胞吐过程。-70mV到+20mV去极化引起的钙电流和细胞膜电容的变化以及吹加60mmol/LKCl时,细胞内游离钙离子浓度[Ca2+]i和细胞膜电容变化的同时检测,表明了Ca2+对细胞胞吐的控制作用。而用微碳纤电极则能检测到吹加60mmol/LKCl导致嗜铬细胞胞吐时儿茶酚胺的量子化释放。细胞膜电容检测和微碳纤电极检测从不同侧面动态的反映了细胞胞吐过程与Ca2+的相关性  相似文献   

11.
A simple and novel electrochemical biosensor based approach is described for differentiating between differing species of fish on the basis of DNA hybridisation events. Screen-printed carbon electrodes modified with a variety of polymers were used to immobilise commercially available DNA in a single-stranded form. AC impedimetric measurements were firstly carried out on these systems and then upon exposure to single-stranded DNA solutions. When the electrode and solution DNA were complementary, a large drop in impedance was measured; this did not occur for non-matching DNA exposures. DNA hybridisation sensors for closely related species of fish were in the first instance developed as a demonstration for this approach. Species of fish such as herrings and salmon could be differentiated by this method. This sensor format offers great promise for many DNA hybridisation applications and lends itself to mass fabrication due to the simplicity and inexpensiveness of the materials and methods used. The hybridisation results were confirmed by use of ellipsometry to measure the characteristics of similar films deposited on silicon substrates.  相似文献   

12.
The electrode adsorption method for the determination of enzyme activity requires substrates that, besides having good kinetics constants for the enzyme, also show good adsorption/desorption kinetics to the electrode surface and adsorb in such a way that they change the double-layer capacitance of the electrode. A series of peptide substrates containing one to three aromatic groups has been synthesized. Our results show that the aromatic groups are of crucial importance for the capacitance change caused by the adsorbing/desorbing substrate. Thus, the tripeptide substrate, Bz-Phe(NO2)-Val-Arg-pNA, with three aromatic groups is superior to the other synthesized substrates containing only one or two aromatic groups. Our desorption experiments show that several factors determine the rate of capacitance increase observed when thrombin is added to a substrate solution in equilibrium with a substrate-covered electrode. The kinetic constants of the substrate determine how the substrate concentration in the solution decreases and, consequently, determine the spontaneous desorption measured as capacitance increase. Thrombin does not seem to split adsorbed substrate molecules but it adsorbs to the substrate-covered surface and in that way causes a capacitance decrease counteracting the change caused by desorption of substrate.  相似文献   

13.
The aim of this work was to develop an integrated solution to DNA hybridisation monitoring for diagnostics on a monolithic silicon platform. A fabrication process was developed incorporating a gold initiation electrode patterned directly onto a PIN photodiode detector. Patterned interdigitated type electrodes exhibited the smallest reduction in photodiode sensitivity, therefore these were chosen as the ECL initiator design. A novel DNA hybridisation assay was developed based on the displacement of a partially mismatched complementary strand by a perfectly matched labelled complementary strand. Pre-hybridised thiolated oligonucleotide and unlabelled 25% mismatched oligonucleotide were assembled on the gold initiation electrode. On addition of the labelled perfectly complementary oligonucleotide, the mismatched strands were displaced and a signal was generated. The sensitivity of the photodiode to light emitted at 620 nm, the ruthenium emission wavelength, was determined and subsequently, the diode current response to light generated by flow addition of ruthenium solution was found to be measurable to a concentration of 10 fM. Pre-hybridised duplex DNA, consisting of thiolated oligonucleotide and ruthenium labelled complementary oligonucleotide, was assembled on the gold initiation electrode. The difference between the current measured during flow of buffer and the ECL co-reactant TPA was three orders of magnitude, indicating that DNA assembled on the surface comprised sufficient ruthenium to generate a measurable signal. Finally, the displacement of unlabelled partial mismatch oligonucleotide from the sensor surface was monitored on addition of the ruthenium labelled perfectly complementary oligonucleotide in TPA flow and the measured photodiode current response was up to 50 times greater.  相似文献   

14.
The EcoRV mutant D90A which carries an amino acid substitution in its active center does not cleave DNA. Therefore, it is possible to perform DNA binding experiments with the EcoRV-D90A mutant both in the absence and in the presence of Mg2+. Like wild-type EcoRV [Taylor et al. (1991) Biochemistry 30, 8743-8753], it does not show a pronounced specificity for binding to its recognition site in the absence of Mg2+ as judged by the appearance of multiple shifted bands in an electrophoretic mobility shift assay with a 377-bp DNA fragment carrying a single EcoRV recognition sequence. In the presence of Mg2+, however, only one band corresponding to a 1:1 complex appears even with a high excess of protein over DNA. This complex most likely is the specific one, because its formation is suppressed much more effectively by a 13-bp oligodeoxynucleotide with an EcoRV site than by a corresponding oligodeoxynucleotide without an EcoRV site. The preferential interaction of the EcoRV-D90A mutant with specific DNA in the presence of Mg2+ was also demonstrated directly: a 20-bp oligodeoxynucleotide with an EcoRV site is bound with KAss = 4 x 10(8) M-1, while a corresponding oligodeoxynucleotide without an EcoRV site is bound with KAss less than or equal to 1 x 10(5) M-1. From these data it appears that Mg2+ confers DNA binding specificity to this mutant by lowering the affinity to nonspecific sites and raising the affinity to specific sites as compared to binding in the absence of Mg2+. It is concluded that this is also true for wild-type EcoRV.  相似文献   

15.
Intracellular recordings of neuronal membrane potential are a central tool in neurophysiology. In many situations, especially in vivo, the traditional limitation of such recordings is the high electrode resistance and capacitance, which may cause significant measurement errors during current injection. We introduce a computer-aided technique, Active Electrode Compensation (AEC), based on a digital model of the electrode interfaced in real time with the electrophysiological setup. The characteristics of this model are first estimated using white noise current injection. The electrode and membrane contribution are digitally separated, and the recording is then made by online subtraction of the electrode contribution. Tests performed in vitro and in vivo demonstrate that AEC enables high-frequency recordings in demanding conditions, such as injection of conductance noise in dynamic-clamp mode, not feasible with a single high-resistance electrode until now. AEC should be particularly useful to characterize fast neuronal phenomena intracellularly in vivo.  相似文献   

16.
Theoretical and experimental study towards a nanogap dielectric biosensor   总被引:1,自引:0,他引:1  
Theoretical and experimental studies of nanogap capacitors as potential label free biosensors are presented. The nanogap device is capable of detecting the existence of single stranded DNA (ssDNA) oligonucleotides (20-mer) in 100 nM aqueous solutions using a 20 nm gap of 1.2 pl in volume. While the dielectric properties of DNA solution have been widely investigated, early approaches are limited at low frequency by the parasitic noise due to the electrical double layer (EDL) impedance. Nanogap electrodes have the potential to serve as biomolecular junctions because their size (5-100 nm) minimizes electrode polarization effects regardless of frequency. In this paper, we modeled the effects of the EDL interaction between two parallel nanogap electrodes by solving the Poisson-Boltzmann (PB) equation for equilibrium state. When the gap size is smaller than the EDL thickness, the dependence of the nanogap capacitance on the ionic strength is insignificant. This is critical in using the capacitance change as an indicator of the existence of target molecules. The predicted capacitance of nanogaps filled with various ionic strength electrolytes was in quantitative agreement with the experimental measurements. The various concentrations of the target molecules in nanogap sensor were characterized. A capacitance change of a 20 nm x (10)1.5 microm x 4mm gap from 3.5 to 4.1 nF at 200 Hz was recorded between deionized water (DI) and 100 nM ssDNA solution (about 70,000 molecules inside the gap for equilibrium state).  相似文献   

17.
Liu X  Qu X  Dong J  Ai S  Han R 《Biosensors & bioelectronics》2011,26(8):3679-3682
A novel electrochemical method of detecting DNA hybridization is presented based on the change in flexibility between the single and double stranded DNA. A recognition surface based on gold nanoparticles (GNPs) is firstly modified via mixing self-assembled monolayer of thiolated probe DNA and 1,6-hexanedithiol. The hybridization and electrochemical detection are performed on the surface of probe-modified GNPs and electrode, respectively. Here in our method the charge transfer resistance (R(ct)) signal is enhanced by blocking the surface of electrode with DNA covered GNPs. The GNPs will be able to adsorb on the gold electrode when covered with flexible single stranded DNA (ssDNA). On the contrary, it will be repelled from the electrode, when covered with stiff double stranded DNA (dsDNA). Therefore, different R(ct) signals are observed before and after hybridization. The hybridization events are monitored by electrochemical impedance spectroscopy (EIS) measurement based on the R(ct) signals without any external labels. This method provides an alternative route for expanding the range of detection methods available for DNA hybridization.  相似文献   

18.
Equilibrium binding is believed to play an important role in directing the subsequent covalent attachment of many carcinogens to DNA. We have utilized UV spectroscopy to examine the non-covalent interactions of aflatoxin B1 and B2 with calf thymus DNA, poly(dAdT):poly(dAdT), and poly(dGdC):poly(dGdC), and have utilized NMR spectroscopy to examine non-covalent interactions of aflatoxin B2 with the oligodeoxynucleotide d(ATGCAT)2. UV-VIS binding isotherms suggest a greater binding affinity for calf thymus DNA and poly(dAdT):poly(dAdT) than for poly(dGdC):poly(dGdC). Scatchard analysis of aflatoxin B1 binding to calf thymus DNA in 0.1 M NaCl buffer indicates that binding of the carcinogen at levels of bound aflatoxin less than 1 carcinogen per 200 base pairs occurs with positive cooperativity. The cooperative binding effect is dependent on the ionic strength of the medium; when the NaCl concentration is reduced to 0.01 M, positive cooperativity is observed at carcinogen levels less than 1 carcinogen per 500 base pairs. The Scatchard data may be fit using a "two-site" binding model [L.S. Rosenberg, M.J. Carvlin, and T.R. Krugh, Biochemistry 25, 1002-1008 (1986)]. This model assumes two independent sets of binding sites on the DNA lattice, one a high affinity site which binds the carcinogen with positive cooperativity, the second consisting of lower affinity binding sites to which non-specific binding occurs. NMR analysis of aflatoxin B2 binding to d(ATGCAT)2 indicates that the aflatoxin B2/oligodeoxynucleotide complex is in fast exchange on the NMR time scale. Upfield chemical shifts of 0.1-0.5 ppm are observed for the aflatoxin B2 4-OCH3, H5, and H6a protons. Much smaller chemical shift changes (less than or equal to 0.06 ppm) are observed for the oligodeoxynucleotide protons. The greatest effect for the oligodeoxynucleotide protons is observed for the adenine H2 protons, located in the minor groove. Nonselective T1 experiments demonstrate a 15-25% decrease in the relaxation time for the adenine H2 protons when aflatoxin B2 is added to the solution. This result suggests that aflatoxin B2 protons in the bound state may be in close proximity to these protons, providing a source of dipolar relaxation. Further experiments are in progress to probe the nature of the aflatoxin B1 and B2 complexes with polymeric DNA and oligodeoxynucleotides, and to establish the relationship between the non-covalent DNA-carcinogen complexes observed in these experiments, and covalent aflatoxin B1-guanine N7 DNA adducts.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号