首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interaction of diphtheria toxin and its cross-reacting mutants crm 45,228 and 1001 with small unilamellar vesicles has been followed by a turbidity assay, electron microscopy, fluorescence energy transfer and membrane permeability. All toxins at pH lower than 6 induce the aggregation and fusion of liposomes containing negatively charged phospholipids; crm 45 and crm 1001 are less potent than diphtheria toxin. Isolated diphtheria toxin fragment B is very effective while isolated fragment A is ineffective. Liposome fusion induced by the toxins at low pH occurs without release of the internal content implying that fusion does not involve vesicle breakage and resealing. The pH dependence of the membrane interaction of diphtheria toxin monitored by turbidity is in close agreement with that monitored by fluorescence energy transfer. It shows that diphtheria toxin can alter the lipid bilayer structure in the pH interval 5-6. This pH range occurs in endosomes and suggests that histidyl and carboxyl residues are likely to be involved in the conformational change of diphtheria toxin triggered by acidic pH.  相似文献   

2.
Decylamine, dodecylamine and tetradecylamine induced aggregation and fusion of acidic liposomes at concentrations of about 1 mM, 75 μM and 75 μM, respectively. Aggregation was assayed as increase in turbidity. Fusion was assayed as intermixing of membranes and contents, and was observed in the electron-microscope to form large liposomes. Only at higher concentrations did these amphiphiles induce massive leakage of the liposomes' contents. Similar effects were caused by hexadecylpyridinium bromide (CP) and hexadecyltrimethylammonium bromide (CTAB). The trivalent cation 4-dodecyldiethylenetriamine and the more hydrophobic amphiphile, trioctylmethylammonium chloride, induced fusion at concentrations of about 10–20 μM. Octylamine and heptylamine induced size increase at mM concentrations. They induced membrane intermixing but little or no content intermixing. Thus, these amphiphiles seem to promote size increase either by transfer of lipid or mainly by ‘cracking and annealing’.  相似文献   

3.
The fusion between enzyme-containing liposomes and substrate-containing liposomes was studied, utilizing conformationally altered cytochrome c as fusion mediator under stress conditions. The liposomes were composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), and liposome aggregation and subsequent liposome fusion were induced by the addition of cytochrome c, which was partially denatured by 0.5 M guanidinium hydrochloride (GuHCl). In the presence of 0.5 M GuHCl, cytochrome c was found to have a significantly large local hydrophobicity which was determined with the aqueous two-phase partitioning method. Under these conditions, cytochrome c could efficiently bind to POPC bilayer membranes as quantitatively evaluated by immobilized liposome chromatography (ILC). The retardation of cytochrome c treated with 0, 0.5, and 1 M GuHCl on ILC could be correlated with the corresponding local hydrophobicity of cytochrome c. The enzymatic reaction triggered by liposome fusion involved the proteolytic enzyme alpha-chymotrypsin and its substrate succinyl-L-Ala-L-Ala-L-Pro-L-Phe-p-nitroanilide (Suc-AAPF-pNA), which were separately trapped in POPC liposomes. Addition of partially denatured cytochrome c (most likely in the molten globule state) to the mixture of enzyme- and substrate-containing liposomes resulted in the release of one of the hydrolysis products, p-nitroaniline, to the outer phase of the fused liposomes, indicating that the enzymatic reaction occurred during the liposome fusion process. Such a coupled fusion-reaction system may have specific advantages over the conventional fusion analysis and may find application as drug delivery system.  相似文献   

4.
The aggregation of biotin-modified phospholipid vesicles (liposomes) induced by binding the protein avidin in solution is analyzed experimentally and theoretically. Avidin has four binding sites that can recognize biotin specifically, and is able to cross-link the liposomes to form large aggregates. The aggregation kinetics were followed using quasi-elastic light scattering (QLS) to measure the mean particle size, and by measuring the solution turbidity. The rate and extent of aggregation were determined as a function of vesicle concentration, protein concentration, and the biotin density on the surface of the liposomes. A model based on Smoluchowski kinetics, fractal concepts, and Rayleigh and Mie light scattering theory was developed to analyze the experimental observations. Small aggregates (<7800 A diameter) may be treated as globular; however, the fractal nature of larger particles must be taken into account. Parameters in the model are taken from molecular simulations, or fit to the experimental observations. The aggregation kinetics are primarily determined by the biotin density on the liposome surface, the stoichiometric ratio of avidin molecules to liposomes, and the liposome concentration. Good agreement is found between the model and the experimental results. (c) 1996 John Wiley & Sons, Inc.  相似文献   

5.
P Meers  K Hong  D Papahadjopoulos 《Biochemistry》1988,27(18):6784-6794
The effect of free fatty acids on the cation-induced fusion of large unilamellar vesicles (liposomes) was investigated by using fluorescent assays which monitor the mixing of aqueous contents of liposomes. Overall fusion was modeled as a two-step process involving aggregation of vesicles followed by actual fusion. Different experimental conditions were used which favored either aggregation or fusion as the rate-limiting step in the overall process. When phosphatidylserine liposomes were induced to fuse by 4 mM Ca2+ plus 5 mM Mg2+, preincubation with arachidonic acid showed a dramatically increased overall rate of fusion compared to the same liposomes not treated with fatty acid. When fusion was induced by 3 mM Ca2+, arachidonic acid had little effect. These results were interpreted in terms of the action of arachidonic acid only at the fusion step per se and not the aggregation step. Therefore, the enhancement of the overall fusion rate would be observed solely under conditions where the actual fusion of liposomes was rate limiting (Ca/Mg) rather than the aggregation of liposomes (Ca alone). When other liposome systems were tested, the effect of arachidonic acid was observed only under fusion rate-limiting conditions. Arachidonic acid was found to act synergistically with promoters of liposomal aggregation, such as Mg2+, spermine, and synexin, to enhance the overall rate of liposome fusion, as would be expected from action at separate kinetic steps. The dependence of the fusion rates on arachidonic acid concentration demonstrated an apparently cooperative effect. The structure of the fatty acid is of critical importance in determining its effects, as shown by the fact that 16-doxylstearic acid always increased the rate of fusion while 5-doxylstearic acid always decreased the rate of fusion under all conditions tested. A number of different fatty acids, including oleic acid, elaidic acid, 16-doxylstearic acid, myristic acid, and stearic acid, were effective at increasing the fusion rate to varying extents. In general, unsaturated fatty acids were more effective than saturated ones, either due to partitioning into the membrane or because of structural requirements for promotion of fusion.  相似文献   

6.
Summary Fusion between unilamellar vesicles of both egg phosphatidylcholine and bovine phosphatidylserine was induced by polyethylene glycol. Aggregation and fusion events were monitored by electron microscopy and turbidity measurements. The threshold concentration of polyethylene glycol for aggregation and fusion is found to be independent of lipid concentration. Typically, aggregation of phosphatidylcholine vesicles starts at 2.5% (wt/wt) polyethylene glycol, but fusion is not significant until the polyethylene glycol concentration reaches 35%. Multilamellar vesicles were formed as a result of fusion.Abbreviations PEG Polyethylene glycol - IMP Intramembranous particle - PC Phosphatidylcholine - PS Phosphatidylserine - SUV Small unilamellar vesicles - MLV Multilamellar vesicles - DPPC Dipalmitoyl phosphatidylcholine - DSC Differential scanning calorimetry  相似文献   

7.
Abstract

A procedure for large-scale production of extruded oligolamellar liposomes was developed. the extrusion technique described is rapid, simple, and reproducible. Vesicles with a diameter in the range of 200-500 nm are obtained. the liposomal preparations were characterized by their specific turbidity (determined spectrophotometrically) and contamination with large particles (> 1 µm). Liposome physical stability was determined using a parameter (P) that relates the ratio of the specific turbidity before and after standardized centrifugation.

The extruded oligolamellar liposomes obtained were stable, and after 4 weeks storage at 4°C no irreversible aggregation or fusion of the vesicles occurs.

The extrusion process ensures sterilization of the final liposomal product, making it acceptable as a pharmaceutical preparation for parenteral use.  相似文献   

8.
Lamellar bodies of lung epithelial type II cells undergo fusion with plasma membrane prior to exocytosis of surfactant into the alveolar lumen. Since synexin from adrenal glands promotes aggregation and fusion of chromaffin granules, we purified synexin-like proteins from bovine lung cytosolic fraction, and evaluated their effect on the fusion of isolated lamellar bodies and plasma membrane fractions. Synexin activity, which co-purified with an approx. 47 kDa protein (pI 6.8), was assessed by following calcium-dependent aggregation of liposomes prepared from a mixture of phosphatidylcholine:phosphatidylserine (PC:PS, 3:1, mol/mol). Lung synexin caused aggregation of liposomes approximating lung surfactant lipid-like composition, isolated lamellar bodies, or isolated plasma membrane fraction. Lung synexin promoted fusion only in the presence of calcium. It augmented fusion between lamellar bodies and plasma membranes, lamellar bodies and liposomes, or between two populations of liposomes. However, selectivity with regard to synexin-mediated fusion was observed as synexin did not promote fusion between plasma membrane and liposomes, or between liposomes of surfactant lipid-like composition and other liposomes. These observations support a role for lung synexin in membrane fusion between the plasma membrane and lamellar bodies during exocytosis of lung surfactant, and suggest that such fusion is dependent on composition of interacting membranes.  相似文献   

9.
The aggregation of biotinylated phospholipid vesicles (liposomes) cross-linked by antibiotin IgG was studied experimentally and theoretically. The liposomes were either low density liposomes that contained 0.4 mol% biotinylated phospholipid ( approximately 100 exposed biotin molecules per liposome), or high density liposomes that contained 2.7 mol% biotinylated phospholipid ( approximately 1000 exposed biotin molecules per liposome). The solution turbidity and mean particle size measured by quasi-elastic light scattering (QLS) were monitored throughout the aggregation. Three different lots of antibiotin antibodies, each with different association constants and binding heterogeneities, were used. The antibody binding characteristics affected the aggregation rates. The aggregation kinetics were analyzed using a model based on the Smoluchowski theory of aggregation, fractal concepts of aggregate microstructure, and Rayleigh and Mie light scattering theory. The experimental conditions of liposome concentration, protein concentration, and ligand density under which aggregation occurred correlated well with calculated sticking probabilities based on isotherms describing the adsorption of antibiotin antibody to the liposomes. These results are compared with prior observations made when avidin was used as the cross-linking protein. (c) 1996 John Wiley & Sons, Inc.  相似文献   

10.
The effect of synthetic polycations, polyallylamine, and polyethylenimine, on liposomes containing phosphatidylserine was investigated along with that of polylysine and divalent cations. The addition of polycations caused aggregation of sonicated vesicles composed of phosphatidylserine and phosphatidylcholine (molar ratio 1:4) as determined by measuring the turbidity changes. Liposomal turbidity increased 10 times compared with that of control liposomes at charge ratios of polymer/vesicle from 0.23 (polylysine) to 2.5 (linear polyethylenimine), while the turbidity was unchanged by the addition of Ca2+ or Mg2+ at charge ratios up to 500. These polycations also induced intermixing of liposomal membranes as indicated by resonance energy transfer between fluorescent lipids incorporated in lipid bilayers, without inducing drastic permeability changes as determined from the calcein release. Fifty percent intermixing of liposomes (0.05 mM as lipid concentration) was induced by these polycations at charge ratios of around 1.0. However, the highest resonance energy transfer was produced by the addition of polyallylamine, which caused multicycles of membrane intermixing between vesicles. Polycation-induced membrane intermixing and permeability changes of phosphatidylserine liposomes were also investigated. At charge ratios of around 1.0, these polymers caused resonance energy transfer of fluorescent lipids incorporated in separate vesicles; however, polyallylamine and branched polyethylenimine also caused permeability increases of liposomal membranes. Membrane intermixing and permeability changes of phosphatidylserine vesicles induced by polyallylamine were dependent on the polymer/vesicle charge ratio, and were different from those induced by Ca2+ since the latter caused half-maximal membrane intermixing or permeability change of phosphatidylserine vesicles at about 1 mM at the liposomal concentrations investigated.  相似文献   

11.
Fusogenic capacities of divalent cations and effect of liposome size   总被引:3,自引:0,他引:3  
J Bentz  N Düzgüne? 《Biochemistry》1985,24(20):5436-5443
The initial kinetics of divalent cation (Ca2+, Ba2+, Sr2+) induced fusion of phosphatidylserine (PS) liposomes, LUV, is examined to obtain the fusion rate constant, f11, for two apposed liposomes as a function of bound divalent cation. The aggregation of dimers is rendered very rapid by having Mg2+ in the electrolyte, so that their subsequent fusion is rate limiting to the overall reaction. In this way the fusion kinetics are observed directly. The bound Mg2+, which by itself is unable to induce the PS LUV to fuse, is shown to affect only the aggregation kinetics when the other divalent cations are present. There is a threshold amount of bound divalent cation below which the fusion rate constant f11 is small and above which it rapidly increases with bound divalent cation. These threshold amounts increase in the sequence Ca2+ less than Ba2+ less than Sr2+, which is the same as found previously for sonicated PS liposomes, SUV. While Mg2+ cannot induce fusion of the LUV and much more bound Sr2+ is required to reach the fusion threshold, for Ca2+ and Ba2+ the threshold is the same for PS SUV and LUV. The fusion rate constant for PS liposomes clearly depends upon the amount and identity of bound divalent cation and the size of the liposomes. However, for Ca2+ and Ba2+, this size dependence manifests itself only in the rate of increase of f11 with bound divalent cation, rather than in any greater intrinsic instability of the PS SUV. The destabilization of PS LUV by Mn2+ and Ni2+ is shown to be qualitatively distinct from that induced by the alkaline earth metals.  相似文献   

12.
The incorporation of the positively charged stearylamine into phosphatidylcholine liposomes was studied by measuring electrophoretic mobilities. Up to a molar ratio SA/PC = 0.5 an increase of the positive zeta potential can be observed. Addition of the negatively charged macromolecule dextran sulfate leads to a change of the sign of the surface potential of the PC/SA liposomes indicating binding of the macromolecule to the surface. This process is accompanied by an increase in turbidity, which is dependent on the molecular weight of the dextran sulfate and the SA concentration (measured by turbidimetry). Using the NBD/Rh and Pyr-PC fluorescence assays the fusion of SA containing liposomes was investigated. A strong influence of the SA content and molecular weight of dextran sulfate on the fusion extent was observed. The fusion extent is proportional to the SA content in the PC membrane and the molecular weight of dextran sulfate. PC/SA/PE liposomes exhibit a higher fusion extent after addition of dextran sulfate compared to PC/SA liposomes indicating that PE additionally destabilizes the bilayer. Freeze-fracture electron microscopy reveals that the reaction products are large complexes composed of multilamellar stacks of tightly packed, straight membranes and aggregated vesicles. The tight packing of the membranes in the stacks (and the narrow contact of the aggregated vesicles) indicates a strong adherence of opposite membrane surfaces induced by dextran sulfate.  相似文献   

13.
Low-pH-induced fusion of liposomes with rat liver endoplasmic reticulum was evidenced. Fusion was inactivated by treatment of microsomes with trypsin or EEDQ (N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline), indicating the involvement of a protein. The protein was purified 555-fold by chromatographic steps. The identification and purification to homogeneity was obtained by electroelution from a slab gel, which gave a still active protein of about 50 kDa. The protein promoted the fusion of liposomes; laser light scattering showed an increase of mean radius of vesicles from 60 up to about 340 nm. Fusion was studied as mass action kinetics, describing the overall fusion as a two-step sequence of a second order aggregation followed by a first order fusion of liposomes. For phosphatidylcholine containing liposomes aggregation was not rate-limiting at pH 5.0 and fusion followed first order kinetics with a rate constant of 13 · 10−3 sec−1. For phosphatidylethanolamine/phosphatidic acid liposomes aggregation was rate-limiting; however, the overall fusion was first order process, suggesting that fusogenic protein influences both aggregation and fusion of liposomes. The protein binds to the lipid bilayer of liposomes, independently of pH, probably by a hydrophobic segment. Exposed carboxylic groups might be able to trigger pH-dependent aggregation and fusion. It is proposed that the protein inserted in the lipid bilayer bridges with an adjacent liposome forming a fused doublet. Since at endoplasmic reticulum level proton pumps are operating to generate a low-pH environment, the membrane bound fusogenic protein may be responsible for both aggregation and fusion of neighboring membranes and therefore could operate in the exchange of lipidic material between intracellular membranes. Received: 25 August 1997/Revised: 28 April 1998  相似文献   

14.
The effect of atrazine on Ca2+ induced fusion of cardiolipin(CL) and phosphatidylserine (PS) vesicles is studied by Tb3+/dipicolinic acid fluorescence and turbidity measurements. The interaction of herbicide with CL and PS membranes is studied by DPH fluorescence polarization. At low concentrations the pesticide partially inhibits fusion, especially in CL vesicles. Higher concentrations of atrazine decrease inhibition of fusion in CL, while fusion is slightly increased in PS. The Ca2(+)-induced increase of turbidity is not affected by atrazine in both PS and CL aggregation experiments. DPH polarization measurements show a perturbation only of the membrane hydrophobic core of PS, in presence of Ca2+. It is hypothesized that this biphasic effect shown by low and high atrazine concentrations on Ca2(+)-induced fusion of vesicles is due to a different localization of the pesticide in the membrane.  相似文献   

15.
在本文中,我们用荧光能量共振转移分析和荧光显微技术证明,小鼠艾氏乳腺癌腹水细胞质膜NADH-铁氰化钾氧化还原反应的电子传递所偶联的质子泵活性能诱导细胞与人工脂质体融合。糖酵解代谢的抑制剂碘乙酸能抑制融合,同时融合过程是吸取质子的。近几年来,我们实验室已报道了多种生物膜质子泵均具有诱导膜融合的功能。因此,质子泵诱导膜融合可能具有比较广泛的生理意义。并为细胞中存在有受能量代谢控制的驱动膜融合的生理机制提供了实验证据。  相似文献   

16.
J Bentz  N Düzgüne?  S Nir 《Biochemistry》1985,24(4):1064-1072
The effect of temperature and divalent cation binding (Ca2+, Sr2+, Ba2+) on the kinetic rate constants of aggregation and fusion of large phosphatidylserine liposomes is measured for the first time. Fusion is monitored by the Tb3+/dipicolinate assay. Fusion rate constants increase with temperature (15-35 degrees C) in a roughly linear fashion. These rate constants are not otherwise sensitive to whether the temperature is above or below the phase transition temperature of the Ba2+ or Sr2+ complex of phosphatidylserine, as measured by differential scanning calorimetry. Hence, the isothermal transition of the acyl chains from liquid-crystalline to gel phase induced by the cations is not the driving force of the initial fusion event. The aggregation rate constants increase with temperature, and it is the temperature dependence of the energetics of close approach of the liposomes which underlies this increase. On the other hand, the aggregation becomes more reversible at higher temperatures, which has also been observed with monovalent cation induced liposome aggregation where there is no fusion. Calculations on several cases show that the potential energy minimum holding the liposome dimer aggregates together is approximately 5-6 kT deep. This result implies that the aggregation step is highly reversible; i.e., if fusion were not occurring, no stable aggregates would form.  相似文献   

17.
The processes of membrane aggregation, permeability and fusion induced by cytotoxins from Central Asian cobra venom were investigated by studying optical density of liposome samples, permeability of liposome membranes for ferricyanide anions and exchange of lipid material between the membranes of adjacent liposomes. Cytotoxins Vc5 and Vc1 were found to induce aggregation of PC + CL and PC + PS liposomes. Cytotoxin Vc5 increased also the permeability of the liposomes for K3[Fe(CN)6] and enhanced their fusion. Cytotoxin Vc1 increased membrane permeability and enhanced fusion of PC + CL samples only. The changes in membrane permeability and fusion were found to occur within a single value of cytotoxin concentrations. The fusogenic properties of the cytotoxins studied are supposed to be due to the ability to dehydrate membrane surface and to destabilize the lipid bilayer structure. Fusion probability is largely defined by the phospholipid composition of the membranes. A model of interaction of cytotoxins with cardiolipin-containing membranes is offered.  相似文献   

18.
S Nir  T Stegmann  J Wilschut 《Biochemistry》1986,25(1):257-266
The kinetics and extent of low pH induced fusion between influenza virus and large unilamellar cardiolipin liposomes were investigated with an assay for lipid mixing based on fluorescence resonance energy transfer. The results were analyzed in terms of a mass action kinetic model, which views the overall fusion reaction as a sequence of a second-order process of virus-liposome adhesion or aggregation followed by the first-order fusion reaction itself. The fluorescence development during the course of the fusion process was calculated by numerical integration, employing separate rate constants for the initial aggregation step and for the subsequent fusion reaction. Analytical solutions were found for several limiting cases. Deaggregation of virus--liposome aggregates was explicitly taken into account but was found to be a minor effect under the conditions studied. The calculations gave good simulations and predictions for the kinetics and extent of fusion at different virus/liposome concentrations and ratios. At pH 5.0 and 37 degrees C, very high rate constants for aggregation and fusion were obtained, and essentially all of the virus particles were involved in the fusion process. Experiments at different virus/liposome ratios showed that fusion products may consist of a single virus particle and several liposomes but not of a single liposome and several virus particles. At pH 6.0, the rate constant for aggregation was the same as at pH 5.0, but the rate constant of fusion was about 5-fold lower, and only 25-40% of the virus particles were capable of fusing with the liposomes. The analytical procedure presented enables elucidation of the crucial role of the composition of target membrane vesicles in the initial adhesion and subsequent fusion of the virus at various pH values.  相似文献   

19.
The interaction of spermine with acidic phospholipids was investigated for its possible relevance to membrane fusion. Equilibrium dialysis was used to measure the binding of spermine and calcium to large unilamellar vesicles (liposomes) of phosphatidate (PA) or phosphatidylserine (PS). Spermine bound to isolated PA and PS liposomes with intrinsic association constants of approximately 2 and 0.2 M-1, respectively. Above the aggregation threshold of the liposomes, the binding of spermine increased dramatically, especially for PA. The increased binding upon aggregation of PA liposomes was interpreted as evidence for the formation of a new binding complex after aggregation. Spermine enhanced calcium binding to PA, while it inhibited calcium binding to PS, under the same conditions. This difference explained the small effect of spermine on the overall rate of calcium-induced fusion of PS liposomes as opposed to the large effect on PA liposomes. The rate increase could be modeled by a spermine-induced increase in the liposome aggregation rate. The preference for binding of spermine to PA over PS suggested a preference for accessible monoesterified phosphate groups by spermine. This preference was confirmed by the large effects of spermine on aggregation and overall fusion rates of liposomes containing phosphatidylinositol 4,5-diphosphate. The large spermine effects on these liposomes compared with phosphatidate- or phosphatidylinositol-containing liposomes suggested that spermine has a strong specific interaction with phosphatidylinositol 4,5-diphosphate. Clearly, phosphorylation of phosphatidylinositol can lead to a large change in the spermine sensitivity of membrane fusion.  相似文献   

20.
The fusogenic properties of Rz1, the proline-rich lipoprotein that is the bacteriophage lambda Rz1 gene product, were studied. Light scattering was used to monitor Rz1-induced aggregation of artificial neutral (dipalmitoylphosphatidylcholine/cholesterol) and negatively charged (dipalmitoylphosphatidylcholine/cholesterol/dioleoylphosphatidylserin e) liposomes. Fluorescence assays [the resonance energy transfer between N-(7-nitro-2,1,3-benzoxadiazol-4-yl)phosphatidylethanolamine and N-(lissamine rhodamine B sulfonyl)dihexadecanol-sn-glycero-3-phosphoethanolamine lipid fluorescent probes, as well as fluorescent complex formation between terbium ions and dipicolinic acid encapsulated in two liposome populations and calcein fluorescence] were used to monitor Rz1-induced lipid mixing, contents mixing and leakage of neutral and negatively charged liposomes. The results demonstrated that Rz1 caused adhesion of neutral and negatively charged liposomes with concomitant lipid mixing; membrane distortion, leading to the fusion of liposomes and hence their internal content mixing; and local destruction of the membrane accompanied by leakage of the liposome contents. The use of artificial membranes showed that Rz1 induced the fusion of membranes devoid of any proteins. This might mean that the proline stretch of Rz1 allowed interaction with membrane lipids. It is suggested that Rz1-induced liposome fusion was mediated primarily by the generation of local perturbation in the bilayer lipid membrane and to a lesser extent by electrostatic forces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号