首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cytoplasmic domain of erythrocyte band 3 (cdb3) serves as a center of membrane organization in the erythrocytes by its interaction with multiple proteins including ankyrin, protein 4.1, protein 4.2, hemoglobin, and several glycolytic enzymes. In this paper, human cdb3 was cloned into three different expression vectors controlled by T7 polymerase promoter and induced with isopropyl beta-D-thiogalactopyranoside in Escherichia coli. Two of the fusion proteins containing hexahistidine tag in the N-terminal or C-terminal were purified by immobilized metal affinity column chromatography. The third recombinant cdb3 containing the affinity chitin-binding tag was purified using chitin beads followed by specific self-cleavage, which released cdb3 according to the mechanism of protein splicing. The molecular weights of purified recombinant proteins were verified by mass spectrometry. The pH-dependent properties of the intrinsic tryptophan fluorescence of the three kinds of recombinant cdb3 were compared with that of the cdb3 extracted from the erythrocytes, showing that there were no significant differences between them. Using pull-down assay combined with Western blot analysis, the interaction between recombinant cdb3 and protein 4.2 C3 fragment was verified. These demonstrated that the recombinant proteins were both structurally and functionally active. The typical yields of cdb3 purified with hexahistidine tag in the N-terminal, C-terminal, and cleaved from chitin bead were 10.6, 9.6, and 1.5 mg from 1L culture medium, respectively.  相似文献   

2.
3.
This work reports the successful recombinant expression of human statherin in Escherichia coli, its purification and in vitro phosphorylation. Human statherin is a 43-residue peptide, secreted by parotid and submandibular glands and phosphorylated on serine 2 and 3. The codon-optimized statherin gene was synthesized and cloned into commercial pTYB11 plasmid to allow expression of statherin as a fusion protein with intein containing a chitin-binding domain. The plasmid was transformed into E. coli strains and cultured in Luria–Bertani medium, which gave productivity of soluble statherin fusion protein of up to 47 mg per liter of cell culture, while 112 mg of fusion protein were in the form of inclusion bodies. No significant refolded target protein was obtained from inclusion bodies. The amount of r-h-statherin purified by RP–HPLC corresponded to 0.6 mg per liter of cell culture. Attenuated total reflection-Fourier transform infrared spectroscopy experiments performed on human statherin isolated from saliva and r-h-statherin assessed the correct folding of the recombinant peptide. Recombinant statherin was transformed into the diphosphorylated biologically active form by in vitro phosphorylation using the Golgi-enriched fraction of pig parotid gland containing the Golgi-casein kinase.  相似文献   

4.
Based on their nanocage architectures, ferritins show their potential applications in medical imaging and therapeutic delivery systems. However, the recombinant human H-chain ferritin (rHF) is prone to form inclusion bodies in Escherichia coli. In our study, the cDNA of rHF was cloned into plasmid pET28a under the control of a T7 promoter. Molecular chaperones, including GroES, GroEL, and trigger factor, were coexpressed with rHF to facilitate its correct folding. The results showed that the solubility of rHF was increased more than threefold with the help of molecular chaperones. Taking advantages of its N-terminal His-tag, rHF was then purified with Ni-affinity chromatography. With a yield of 15?mg/L from bacterial culture, the purified rHF was analyzed by circular dichroism spectrometry for its secondary structure. Moreover, the rHF nanocages were characterized by transmission electron microscopy and dynamic light scattering. Our results indicate that rHF is able to self-assemble into nanocages with a narrow size distribution.  相似文献   

5.
Human interleukin-7 (IL-7) is a member of the interleukin family. Numerous studies have demonstrated IL-7's effect on B- and T-cell development as well as its potential in various clinical applications. Previously, a study reported that IL-7 could be purified from inclusion bodies using a prokaryotic system, however, the required refolding step limits the recovery rate. This study was designed to produce a bioactive recombinant human IL-7 (rhIL-7) in a eukaryotic expression system in order to obtain higher yields of the protein with simpler purification steps. We cloned human IL-7 cDNA and successfully expressed active recombinant protein in yeast using the Pichia pastoris expression system. A simple purification strategy was established to purify the rhIL-7 from the fermentation supernatant, yielding 35 mg/L at 95% purity by the use of a common SP Sepharose FF cation-exchange chromatography. Functional analysis of the purified rhIL-7 by the pre-B cell MTT (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide) proliferation assay demonstrated a specific activity comparable to commercial sources. These results suggest that purification of rhIL-7 from yeast provides a sound strategy for large-scale production of the rhIL-7 for clinical applications as well as basic researches.  相似文献   

6.
The full length human adenylosuccinate lyase gene was generated by a PCR method using a plasmid encoding a truncated human enzyme as template, and was cloned into a pET-14b vector. Human adenylosuccinate lyase was overexpressed in Escherichia coli Rosetta 2(DE3)pLysS as an N-terminal histidine-tagged protein and was purified to homogeneity by a nickel-nitriloacetic acid column at room temperature. The histidine tag was removed from the human enzyme by thrombin digestion and the adenylosuccinate lyase was purified by Sephadex G-100 gel filtration. The histidine-tagged and non-tagged adenylosuccinate lyases exhibit similar values of Vmax and Km for S-AMP. Analytical ultracentrifugation and circular dichroism revealed, respectively, that the histidine-tagged enzyme is in tetrameric form with a molecular weight of 220 kDa and contains predominantly alpha-helical structure. This is the first purification procedure to yield a stable form of human adenylosuccinate lyase. The enzyme is stable for at least 5 days at 25 degrees C, and upon rapid freezing and thawing. Temperature as well as reducing agent (DTT) play critical roles in determining the stability of the human adenylosuccinate lyase.  相似文献   

7.
The potential of angiogenin (Ang) for clinical use has been highlighted in view of its important roles in inducing angiogenesis, facilitating cell proliferation, and inhibiting cell apoptosis. To produce soluble, correctly folded recombinant protein with a high yield, a DNA fragment encoding human Ang was inserted into eukaryotic expression vector pPIC9 and transformed into Pichia pastoris. The expression of recombinant human Ang (rhAng) accounted for about 70% of total secreted proteins. Purifying the Ang from the culture supernatant yielded 30 mg/L at 90% purity by chromatography with a SP Sepharose FF column. Biological assays indicated that rhAng can induce new blood-vessel formation, promote HeLa cell proliferation, increase Erk1/2 phosphorylation, and upregulate c-myc expression. Preparation of bioactive rhAng might lay the basis for further functional study, and might provide an effective strategy for large-scale production of soluble human Ang.  相似文献   

8.
Human serum transferrin is an essential bilobal protein that transports iron in the circulation for delivery to iron-requiring cells. Obtaining the C-terminal lobe of human transferrin in verified native conformation has been problematic, possibly because its 11 disulfide bonds lead to misfolding when the lobe is expressed without its accompanying N-lobe. A recently reported method for preparing the C-lobe free of extraneous residues, with normal iron-binding properties and capable of delivering iron to cells, makes use of a Factor Xa cleavage site inserted into the interlobal connecting strand of the full-length protein. An inefficient step in this method requires the use of ConA chromatography to separate the cleaved lobes from each other, since only the C-lobe is glycosylated. Inserting a 6-His sequence near the start of the N-lobe enhances recovery of the recombinant transferrin from other proteins in the culture medium of the BHK21 cells expressing the mutant transferrin. The new procedure is more economical in time and effort than its predecessor, and offers the additional advantage of isolating C-lobe expressed with or without its glycan chains.  相似文献   

9.
Attachment of a cleavable hexa His tag is a common strategy for the production of recombinant proteins. Production of two recombinant nonglycosylated human serum transferrins (hTF-NG), containing a factor Xa cleavage site and a hexa His tag at the carboxyl terminus, has been described [Mason et al. (2001) Prot. Exp. Purif 23, 142-150]. More recently, hTF-NG with an amino-terminal His tag and a factor Xa cleavage site has been expressed (>30 mg/L) in baby hamster kidney cells and purified from the tissue culture medium. Although it is frequently assumed that addition of a His tag has little or no effect on function, this is not always confirmed experimentally. In the present study, in vitro quantitative data clearly shows that the presence of the C-terminal His tag has an effect on the release of iron from recombinant hTF at pH 7.4 and 5.6. Measurement of the rate of release from both the N- and C-lobes is reduced 2-4-fold. These findings provide further compelling evidence that the two lobes communicate with each other and highlight the importance of the C-terminal portion of the C-terminal lobe in this interaction. In contrast to these results, we demonstrate that the presence of a His tag at the N-terminus of hTF has no effect on the rate of iron release from either lobe. In a competition experiment, both unlabeled N- and C-terminal His-tagged constructs were equally effective at inhibiting the binding of radio-iodinated diferric glycosylated hTF from a commercial source to receptors on HeLa cells as the unlabeled recombinant diferric hTF-NG control. Thus, the presence of a His tag at either the N- or C-terminus of hTF-NG has no apparent effect on the ability of these hTF species to bind to transferrin receptors.  相似文献   

10.
A human liver cDNA library was screened with a synthetic oligonucleotide, complementary to the 5' region of human transferrin mRNA, as a hybridization probe. The full-length human cDNA clone isolated from this screen contained part of the 5' untranslated region, the complete coding region for the signal peptide and the two lobes of transferrin, the 3' untranslated region, and a poly(A) tail. By use of oligonucleotide-directed mutagenesis in vitro, two translational stop codons and a HindIII site were introduced after the codon for Asp-337. This fragment was inserted into two different expression vectors that were then introduced into Escherichia coli. As judged by NaDodSO4-polyacrylamide gel electrophoresis and Western blot analysis, however, recombinant hTF/2N was undetectable in bacteria transformed by these plasmids. Concurrently, we developed a plasmid vector for the expression of recombinant hTF/2N in eukaryotic cells. In this case, a DNA fragment coding for the natural signal sequence, the hTF/2N lobe, and the two stop codons was cloned into the expression vector pNUT, such that the expression of hTF/2N was controlled by the mouse metallothionein promoter and the human growth hormone termination sequences. Baby hamster kidney cells containing this hTF/2N-pNUT plasmid secreted up to 20 mg of recombinant hTF/2N per liter of tissue culture medium. Recombinant hTF/2N was purified from the medium by successive chromatography steps on DEAE-Sephacel, Sephadex G-75, and FPLC on Polyanion SI. The purified protein was characterized by NaDodSO4-PAGE, urea-PAGE, amino-terminal sequence analysis, UV-visible spectroscopy, iron-binding titration, and proton NMR.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Human flotillin-1 (reggie-2), a major hydrophobic protein of biomembrane microdomain lipid rafts, was cloned and expressed in Escherichia coli with four different fusion tags (hexahistidine, glutathione S-transferase, NusA, and thioredoxin) to increase the yield. The best expressed flotillin-1 with thioredoxin tag was solubilized from inclusion bodies, first purified by immobilized metal affinity column under denaturing condition and direct refolded on column by decreasing urea gradient method. The thioredoxin tag was cleaved by thrombin, and the flotillin-1 protein was further purified by anion exchanger and gel filtration column. The purified protein was verified by denaturing gel electrophoresis and Western blot. The typical yield was 3.4 mg with purity above 98% from 1L culture medium. Using pull-down assay, the interaction of both the recombinant flotillin-1 and the native flotillin-1 from human erythrocyte membranes with c-Cbl-associated protein or neuroglobin was confirmed, which demonstrated that the recombinant proteins were functional active. This is the first report describing expression, purification, and characterization of active recombinant raft specific protein in large quantity and highly purity, which would facilitate further research such as X-ray crystallography.  相似文献   

12.
Interleukin-24 (IL-24) can induce apoptosis of a broad range of tumor cells, and this function of IL-24 is independent of classic tumor suppressor genes, such as p53, Rb and p16. Here, we report the expression, purification and preparation of a recombinant IL-24 protein (rIL-24) without post-translational modifications, which may selectively induce apoptosis of tumor cells in vitro. We found that non-fusion rIL-24 was not able to be expressed by vectors pET11c, 28a, and 22b in Escherichia coli. To obtain recombinant non-fusion IL-24 protein, the encoding region for IL-24 was cloned between KpnI and BamHI in pET32a. The Trx (Thioredoxin)/IL-24 fusion proteins were expressed in the form of inclusion bodies in E. coli host strain BL21 (DE21). The expression level was more than 30% of total cell lysate. Inclusion bodies were disrupted, washed, and isolated at pH 9.0, and were completely dissolved in a buffer containing 2M urea at pH 9.0. After nickel ion metal affinity chromatography, gel filtration chromatography, and renaturation, the refolded fusion proteins with a purity of >96% were obtained. Trx/IL-24 proteins were digested by enterokinase (EK) to both Trx and rIL-24 fragments which then were separated by cation exchange chromatography. Cell proliferation experiments proved that the rIL-24 (98% purity) retains its cancer-selective apoptosis-inducing properties. This result suggested that the rIL-24 may have cancer therapeutic applications.  相似文献   

13.
The Smad anchor for receptor activation (SARA) protein is a binding partner for Smad2/3 that plays an important role in the fibrotic promoting signaling pathway initiated by transforming growth factor-β1 (TGF-β1). The C-terminal 665-750 aa of SARA comprises the Smad-binding domain (SBD). By direct interaction through the SBD, SARA inhibits Smad2/3 phosphorylation and blocks the interaction between Smad2/3 and Smad4, thereby restrains the process of fibrosis. In this study, we constructed a SARA peptide aptamer based on the SBD sequence. The recombinant SARA aptamer, fused with a protein transduction domain (PTD-SARA), was cloned, purified from E. coli, and characterized for the first time. The full-length PTD-SARA coding sequence, created with E. coli favored codons, was cloned into a pQE-30 vector, and the recombinant plasmid was transformed into an M15 strain. After Isopropyl β-D-1-Thiogalactopyranoside (IPTG) induction and Ni(2+) affinity purification, recombinant PTD-SARA was further identified by immunoblotting and protein N-terminal sequencing. Epifluorescence microscopy revealed that the recombinant PTD-SARA was transferred into the cytoplasm and nucleus more efficiently than SARA. Moreover, the recombinant PTD-SARA was found to up-regulate the level of E-cadherin and down-regulate the levels of α-SMA and phospho-Smad3 more efficiently than SARA (P < 0.05). Our work explored a method to obtain recombinant PTD-SARA protein. The recombinant PTD-SARA fusion protein could enter HK2 cells (an immortalized proximal tubule epithelial cell line) more efficiently than the SARA protein and reverse the renal epithelial-to-mesenchymal transdifferentiation process that was induced by TGF-β1 more effectively than the SARA protein. Recombinant PDT-SARA is likely to be a potential candidate for clinical prevention and treatment of renal fibrosis.  相似文献   

14.
Human cytosolic beta-glucosidase is a monomeric enzyme that hydrolyzes various beta-d-glycosides and its real physiological role remains unclear. Here, we describe the production of this enzyme in Sf9 cells with a N-terminal 6x His tag. The production yield of the recombinant protein was in the 10 to 30 mg/l range. The protein was purified to homogeneity using two chromatographic steps, taking advantage of the 6x His tag in the first step, then using the physical and chemical properties of the protein for ionic exchange. Gel filtration analysis revealed that the protein is monomeric as expected. The kinetic parameters for 4-methylumbelliferyl beta-L-glucopyranoside, VM and KM, were measured (KM=32 microM and VM=157 micromol/h/mg at pH 7.0) and found similar to those reported for either the natural isolated enzyme or the recombinant protein expressed in COS7 cells (KM of 60-70 microM and 40 microM, respectively). Protein crystals were obtained and are now under structural investigations. In summary, we set up a heterologous expression system in Sf9 insect cells allowing the expression and production of large amounts of a pure active human protein, suitable for crystallographic studies.  相似文献   

15.
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a progressive loss of cognitive function. Evidence indicates that abnormal processing and extracellular deposition of the beta-amyloid42 peptide, the longer form of proteolytic derivative of the transmembrane glycoprotein-amyloid precursor protein (APP), is a key step in the pathogenesis of AD. Since it is convenient and economical to obtain such a peptide biologically, in this study, we report for the first time a method to express in E. coli and purify beta-amyloid42 using glutathione-S-transferase (GST) fusion system. beta-Amyloid42 gene was inserted into a vector pGEX-4T-1 to construct a GST-fusion protein. The fusion protein GST-beta-amyloid42, expressed in BL21 (DE3) strain, was purified with GSH-affinity chromatography followed by thrombin cleavage. The digested product was further purified with an additional GSH-affinity and a Benzamidine chromatography step. After cleavage and purification, the beta-amyloid42 moiety showed the expected size of 4.5 kDa on Tricine-SDS-PAGE, and was further confirmed by Western blot. Moreover, the fibrillar recombinant beta-amyloid42 exhibited great aggregation activity and showed neurotoxicity on neuron cells in vitro. These results suggest that our method will be useful in obtaining a large quantity of recombinant beta-amyloid42 peptide for further physiological and biochemical studies.  相似文献   

16.
Thrombopoietin (TPO) is a primary regulator of megakaryocytopoiesis, a process through which megakaryocytes proliferate and mature into platelets. Recombinant human TPO (rhTPO) was expressed in Chinese hamster ovary (CHO) cells and purified from the culture medium. The cDNA encoding full-length TPO, including the native signal peptide sequence, was amplified by PCR from a human fetal liver cDNA library. The product was cloned into a mammalian expression vector under the control of the SV40 early promoter and enhancer. Secreted rhTPO was purified in three conventional chromatography steps. It migrates on SDS-PAGE as a broad band, characteristic of a heavily glycosylated protein, with an average molecular mass of 85 kDa. rhTPO expressed in CHO cells is biologically active in vitro as demonstrated by its ability to stimulate the proliferation of a megakaryocytic cell line and to trigger the JAK/STAT signal transduction pathway. rhTPO also shows activity in vivo as judged by the elevation of platelet count in treated mice.  相似文献   

17.
Insulin-like growth factor I (IGF-I) is a 70 amino acid (aa) protein that is structurally similar and functionally related to insulin. We have inserted a synthetic gene coding for human IGF-I into a Saccharomyces cerevisiae expression vector utilizing the MF alpha 1 promoter and pre-pro leader peptide. This vector directs the expression and secretion of native, biologically active growth factor. Cleavage of the pre-pro alpha factor leader sequence in vivo results in the secretion of a 70-aa recombinant IGF-I molecule with the native N-terminal glycine residue. Human IGF-I purified from yeast culture supernatant is equipotent to serum-derived IGF-I in inhibiting [125I]IGF-I binding to type-I IGF receptors and crude human serum-binding proteins. Recombinant IGF-I is also equipotent to human IGF-I in the stimulation of DNA synthesis in rat aortic smooth-muscle cells. In contrast, yeast recombinant IGF-I is less potent than serum-derived IGF-I in binding to type-2 IGF receptors. The ability to produce native, biologically active IGF-I in yeast will allow the elucidation of binding domains through the expression and characterization of specific structural analogs.  相似文献   

18.
Ma  Zhenling  Zhang  Jiajia  Wang  Lei  Liu  Yiying  Wang  Yunpeng  Liu  Wei  Xing  Guozhen  Cheng  Kun  Zheng  Wenming  Xiang  Li 《The protein journal》2022,41(2):337-344
The Protein Journal - C-C motif chemokine ligand 5 (CCL5) is crucial in the tumor microenvironment. It has been previously reported to act as a key role in tumor invasion and metastasis. However,...  相似文献   

19.
Glucagon, a peptide hormone produced by alphacells of Langerhans islets, is a physiological antagonist of insulin and stimulator of its secretion. In order to improve its bioactivity, we modified its structure at the C-terminus by amidation catalyzed by a recombinant amidase in bacterial cells. The human gene coding for glucagon-gly was PCR amplified using three overlapping primers and cloned together with a rat alpha-amidase gene in plasmid pMGA. Both genes were expressed under control of the strong constitutive promoter of aph and secretion signal melC1 in Streptomyces lividans. With Phenyl-Sepharose 6 FF, Q-Sepharose FF, SP-Sepharose FF chromatographies and HPLC, the peptide was purified to about 93.4% purity. The molecular mass of the peptide is 3.494 kDa as analyzed by MALDI TOF, which agrees with the theoretical mass value of the C-terminal amidated glucagon. The N-terminal sequence of the peptide was also determined, confirming its identity with human glucagon at the Nterminal part. ELISA showed that the purified peptide amide is bioactive in reacting with glucagon antibodies.  相似文献   

20.
Glucagon-like peptide-1 (GLP-1) is a 30-residue peptide hormone secreted by intestinal L-cells in response to nutrient ingestion. In the present study, overlapping PCR technology was employed to construct two GLP-1 mutants (GLP-1(A2G))2 and human albumin (HSA) genes in vitro without linker. The spliced gene, (GLP-1(A2G))2-HSA, was over expressed under the control of promoter AOX1 and Mat alpha signal peptide in Pichia pastoris. SDS-PAGE and Western blotting were applied to assay the recombinant fusion protein in the culture broth. The results demonstrated that the recombinant (GLP-1(A2G))2-HSA concentration in the broth could reach a level of 245.0 mg/L and the expressed fusion protein was capable of cross-reacting with anti-human GLP-1 and anti-human albumin antibody. The recombinant (GLP-1(A2G))2-HSA protein was purified by ultrafiltration, columns of Q-sepharose fast flow and Superdex 75 size-exclusion. The recombinant (GLP-1(A2G))2-HSA protein obtained could lower in vivo glucose concentration in blood and stimulate in vitro islet cell proliferation. In mouse model, the fusion protein was detectable in plasma even 308 h after a single subcutaneous dose of 1.25 mg/kg. The result showed that the terminal biological half-time of the protein was about 54.2 h which is 650-fold longer than that of GLP-1. The pharmacokinetic analysis of the protein suggests its promising application in clinical medicine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号